TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

# TC74VCX2373FT, TC74VCX2373FK

Low-Voltage Octal D-Type Latch with 3.6-V Tolerant Inputs and Outputs

The TC74VCX2373 is a high-performance CMOS octal D-type latch. Designed for use in 1.8-V, 2.5-V or 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

It is also designed with overvoltage tolerant inputs and outputs up to  $3.6\ V.$ 

This 8 bit D-type latch is controlled by a latch enable input (LE) and a output enable input ( $\overline{OE}$ ). When the  $\overline{OE}$  input is high, the eight outputs are in a high-impedance state. The 26- $\Omega$  series resistor helps reducing output overshoot and undershoot without external resistor.

All inputs are equipped with protection circuits against static discharge.

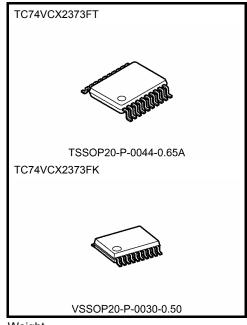
#### **Features**

- 26-Ω series resistors on outputs.
- Low-voltage operation: V<sub>CC</sub> = 1.8 to 3.6 V
- High-speed operation:  $t_{pd} = 5.1 \text{ ns (max) (V}_{CC} = 3.0 \text{ to } 3.6 \text{ V)}$

 $t_{pd} = 6.1 \text{ ns (max) (V}_{CC} = 2.3 \text{ to } 2.7 \text{ V}$ 

 $t_{pd} = 9.8 \text{ ns (max) (VCC} = 1.8 \text{ V)}$ 

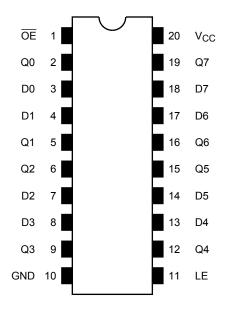
• Output current: I<sub>OH</sub>/I<sub>OL</sub> = ±12 mA (min) (V<sub>CC</sub> = 3.0 V)


 $: I_{OH}/I_{OL} = \pm 8 \text{ mA (min) (V}_{CC} = 2.3 \text{ V)}$ 

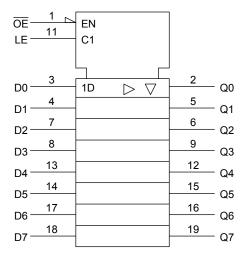
:  $I_{OH}/I_{OL} = \pm 4$  mA (min) ( $V_{CC} = 1.8$  V)

- Latch-up performance: -300 mA
- ESD performance: Machine model  $\geq \pm 200 \text{ V}$

Human body model  $\geq \pm 2000 \text{ V}$ 


- Package: TSSOP and VSSOP (US)
- 3.6-V tolerant function and power-down protection provided on all inputs and outputs




Weight

TSSOP20-P-0044-0.65A : 0.08 g (typ.) VSSOP20-P-0030-0.50 : 0.03 g (typ.)

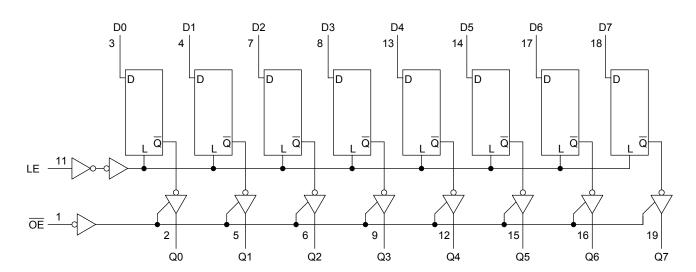
### Pin Assignment (top view)



### **IEC Logic Symbol**



### **Truth Table**


|    | Inputs | Outputs |         |
|----|--------|---------|---------|
| ŌĒ | LE     | D       | Outputs |
| Н  | Х      | Х       | Z       |
| L  | L      | Х       | Qn      |
| L  | Н      | L       | L       |
| L  | Н      | Н       | Н       |

X: Don't care

Z: High impedance

Qn: Q outputs are latched at the time when the LE input is taken to a low logic level.

### **System Diagram**



### **Absolute Maximum Ratings (Note 1)**

| Characteristics                                   | Symbol                            | Rating                        | Unit |
|---------------------------------------------------|-----------------------------------|-------------------------------|------|
| Power supply voltage                              | $V_{CC}$                          | -0.5 to 4.6                   | V    |
| DC input voltage                                  | V <sub>IN</sub>                   | -0.5 to 4.6                   | V    |
|                                                   |                                   | -0.5 to 4.6 (Note 2)          |      |
| DC output voltage                                 | $V_{OUT}$                         | -0.5 to V <sub>CC</sub> + 0.5 | V    |
|                                                   |                                   | (Note 3)                      |      |
| Input diode current                               | I <sub>IK</sub>                   | -50                           | mA   |
| Output diode current                              | lok                               | ±50 (Note 4)                  | mA   |
| DC output current                                 | lout                              | ±50                           | mA   |
| Power dissipation                                 | $P_{D}$                           | 180                           | mW   |
| DC V <sub>CC</sub> /ground current per supply pin | I <sub>CC</sub> /I <sub>GND</sub> | ±100                          | mA   |
| Storage temperature                               | T <sub>stg</sub>                  | -65 to 150                    | °C   |

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: OFF state

Note 3: High or low state. IOUT absolute maximum rating must be observed.

Note 4:  $V_{OUT} < GND$ ,  $V_{OUT} > V_{CC}$ 

### **Operating Ranges (Note 1)**

| Characteristics          | Characteristics Symbol Rating    |                               | Unit |  |
|--------------------------|----------------------------------|-------------------------------|------|--|
| Power supply voltage     | Voc                              | 1.8 to 3.6                    | V    |  |
| Power supply voltage     | V <sub>CC</sub>                  | 1.2 to 3.6 (Note 2)           | ľ    |  |
| Input voltage            | VIN                              | -0.3 to 3.6                   | V    |  |
| Output voltage           | Vout                             | 0 to 3.6 (Note 3)             | V    |  |
| Output voltage           | VOU1                             | 0 to V <sub>CC</sub> (Note 4) | V    |  |
|                          |                                  | ±12 (Note 5)                  |      |  |
| Output current           | I <sub>OH</sub> /I <sub>OL</sub> | ±8 (Note 6)                   | mA   |  |
|                          |                                  | ±4 (Note 7)                   |      |  |
| Operating temperature    | T <sub>opr</sub>                 | -40 to 85                     | °C   |  |
| Input rise and fall time | dt/dv                            | 0 to 10 (Note 8)              | ns/V |  |

Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Note 2: Data retention only

Note 3: OFF state

Note 4: High or low state

Note 5:  $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$ 

Note 6:  $V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$ 

Note 7:  $V_{CC} = 1.8 \text{ V}$ 

Note 8:  $V_{IN} = 0.8$  to 2.0 V,  $V_{CC} = 3.0$  V



### **Electrical Characteristics**

# DC Characteristics (Ta = -40 to 85°C, 2.7 V < $V_{CC} \leq 3.6 \ V)$

| Characterist                        | ics                      | Symbol           | Test C                                               | Condition                            | V <sub>CC</sub> (V) | Min                      | Max   | Unit |
|-------------------------------------|--------------------------|------------------|------------------------------------------------------|--------------------------------------|---------------------|--------------------------|-------|------|
| Innut voltage                       | H-level                  | $V_{IH}$         | -                                                    |                                      | 2.7 to 3.6          | 2.0                      | _     | V    |
| Input voltage                       | L-level                  | V <sub>IL</sub>  | -                                                    | _                                    | 2.7 to 3.6          | _                        | 0.8   | ٧    |
|                                     |                          |                  |                                                      | I <sub>OH</sub> = -100 μA            | 2.7 to 3.6          | V <sub>CC</sub><br>- 0.2 | _     |      |
|                                     | H-level                  | V <sub>OH</sub>  | V <sub>IN</sub> = V <sub>IH</sub> or V <sub>IL</sub> | $I_{OH} = -6 \text{ mA}$             | 2.7                 | 2.2                      | _     |      |
|                                     |                          |                  |                                                      | $I_{OH} = -8 \text{ mA}$             | 3.0                 | 2.4                      | _     |      |
| Output voltage                      |                          |                  |                                                      | $I_{OH} = -12 \text{ mA}$            | 3.0                 | 2.2                      | _     | V    |
|                                     | L-level V                |                  | V <sub>IN</sub> = V <sub>IH</sub> or V <sub>IL</sub> | $I_{OL} = 100 \mu A$                 | 2.7 to 3.6          | _                        | 0.2   |      |
|                                     |                          | V <sub>OL</sub>  |                                                      | $I_{OL} = 6 \text{ mA}$              | 2.7                 | _                        | 0.4   |      |
|                                     |                          |                  |                                                      | $I_{OL} = 8 \text{ mA}$              | 3.0                 | _                        | 0.55  |      |
|                                     |                          |                  |                                                      | $I_{OL} = 12 \text{ mA}$             | 3.0                 | _                        | 0.8   |      |
| Input leakage current               |                          | I <sub>IN</sub>  | V <sub>IN</sub> = 0 to 3.6 V                         |                                      | 2.7 to 3.6          | _                        | ±5.0  | μΑ   |
| 2 state output OFF sta              | ata aurrant              | 1                | $V_{IN} = V_{IH}$ or $V_{IL}$                        | = V <sub>IH</sub> or V <sub>IL</sub> |                     |                          | 110.0 | ^    |
| 3-state output OFF state current    |                          | loz              | V <sub>OUT</sub> = 0 to 3.6 V                        |                                      | 2.7 to 3.6          | _                        | ±10.0 | μА   |
| Power-off leakage current           |                          | loff             | $V_{IN}$ , $V_{OUT} = 0$ to 3.6 \                    | /                                    | 0                   | _                        | 10.0  | μА   |
| 0.:                                 |                          | Icc              | V <sub>IN</sub> = V <sub>CC</sub> or GND             |                                      | 2.7 to 3.6          | _                        | 20.0  |      |
| Quiescent supply curre              | Quiescent supply current |                  | $V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$     |                                      | 2.7 to 3.6          | _                        | ±20.0 | μΑ   |
| Increase in I <sub>CC</sub> per inp | out                      | Δl <sub>CC</sub> | V <sub>IH</sub> = V <sub>CC</sub> - 0.6 V            |                                      | 2.7 to 3.6          | _                        | 750   |      |

# DC Characteristics (Ta = -40 to 85°C, 2.3 V $\leq$ V<sub>CC</sub> $\leq$ 2.7 V)

| Characte                         | ristics | Symbol          | Test                                                 | t Condition               | V <sub>CC</sub> (V) | Min                      | Max   | Unit |
|----------------------------------|---------|-----------------|------------------------------------------------------|---------------------------|---------------------|--------------------------|-------|------|
|                                  | H-level | VIH             |                                                      | _                         | 2.3 to 2.7          | 1.6                      | _     | .,   |
| Input voltage                    | L-level | V <sub>IL</sub> |                                                      |                           | 2.3 to 2.7          | _                        | 0.7   | V    |
|                                  |         |                 |                                                      | I <sub>OH</sub> = -100 μA | 2.3 to 2.7          | V <sub>CC</sub><br>- 0.2 | _     |      |
|                                  | H-level | V <sub>OH</sub> | V <sub>IN</sub> = V <sub>IH</sub> or V <sub>IL</sub> | I <sub>OH</sub> = -4 mA   | 2.3                 | 2.0                      | _     |      |
|                                  |         |                 |                                                      | I <sub>OH</sub> = -6 mA   | 2.3                 | 1.8                      | _     | V    |
| Output voltage                   |         |                 |                                                      | I <sub>OH</sub> = -8 mA   | 2.3                 | 1.7                      | _     |      |
|                                  |         |                 | $V_{IN} = V_{IH}$ or $V_{IL}$                        | I <sub>OL</sub> = 100 μA  | 2.3 to 2.7          | _                        | 0.2   |      |
|                                  | L-level | V <sub>OL</sub> |                                                      | I <sub>OL</sub> = 6 mA    | 2.3                 | _                        | 0.4   |      |
|                                  |         |                 |                                                      | I <sub>OL</sub> = 8 mA    | 2.3                 | _                        | 0.6   |      |
| Input leakage curre              | nt      | I <sub>IN</sub> | V <sub>IN</sub> = 0 to 3.6 V                         |                           | 2.3 to 2.7          | _                        | ±5.0  | μА   |
| 3-state output OFF state current |         | I <sub>OZ</sub> | V <sub>IN</sub> = V <sub>IH</sub> or V <sub>IL</sub> |                           | 2.3 to 2.7          |                          | ±10.0 | μА   |
|                                  |         |                 | V <sub>OUT</sub> = 0 to 3.6 V                        |                           |                     |                          |       |      |
| Power-off leakage of             | current | loff            | $V_{IN}$ , $V_{OUT} = 0$ to 3.6 V                    |                           | 0                   | _                        | 10.0  | μΑ   |
| Quiescent supply current         |         | Icc             | V <sub>IN</sub> = V <sub>CC</sub> or GND             |                           | 2.3 to 2.7          | _                        | 20.0  | μА   |
| Gaiocociii Gappiy ol             | un ont  | 100             | $V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$     |                           | 2.3 to 2.7          | _                        | ±20.0 | μιτ  |



# DC Characteristics (Ta = -40 to 85°C, 1.8 V $\leq$ V<sub>CC</sub> < 2.3 V)

| Characteristics                  |         | Symbol Test Condition |                                                         | _                         | Min        | Max                                                 | Unit                     |         |
|----------------------------------|---------|-----------------------|---------------------------------------------------------|---------------------------|------------|-----------------------------------------------------|--------------------------|---------|
|                                  |         | - Cy                  | . 551 5                                                 | root condition            |            |                                                     |                          | <b></b> |
| Input voltage                    | H-level | V <sub>IH</sub>       | -                                                       | _                         | 1.8 to 2.3 | $\begin{array}{c} 0.7 \times \\ V_{CC} \end{array}$ |                          | V       |
| input voltage                    | L-level | V <sub>IL</sub>       | -                                                       | _                         | 1.8 to 2.3 | I                                                   | 0.2 ×<br>V <sub>CC</sub> | V       |
|                                  | H-level | Voh                   | V <sub>IN</sub> = V <sub>IH</sub> or V <sub>IL</sub>    | I <sub>OH</sub> = -100 μA | 1.8        | V <sub>CC</sub><br>- 0.2                            |                          |         |
| Output voltage                   |         |                       |                                                         | I <sub>OH</sub> = -4 mA   | 1.8        | 1.4                                                 | _                        | V       |
|                                  | L-level | V <sub>OL</sub>       | $V_{IN} = V_{IH}$ or $V_{IL}$                           | I <sub>OL</sub> = 100 μA  | 1.8        | _                                                   | 0.2                      |         |
|                                  | L-level |                       |                                                         | I <sub>OL</sub> = 4 mA    | 1.8        |                                                     | 0.3                      |         |
| Input leakage current            |         | I <sub>IN</sub>       | V <sub>IN</sub> = 0 to 3.6 V                            |                           | 1.8        | _                                                   | ±5.0                     | μА      |
| 3-state output OFF state current |         | loz                   | $V_{IN} = V_{IH}$ or $V_{IL}$<br>$V_{OUT} = 0$ to 3.6 V |                           | 1.8        | _                                                   | ±10.0                    | μА      |
| Power-off leakage current        |         | l <sub>OFF</sub>      | V <sub>IN</sub> , V <sub>OUT</sub> = 0 to 3.6 V         |                           | 0          | _                                                   | 10.0                     | μΑ      |
| Quiocont aupply curre            | ant .   | lcc.                  | V <sub>IN</sub> = V <sub>CC</sub> or GND                |                           | 1.8        | _                                                   | 20.0                     | ^       |
| Quiescent supply curre           | erit.   |                       | $V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$        |                           | 1.8        | _                                                   | ±20.0                    | μА      |



# AC Characteristics (Ta = –40 to 85°C, input: $t_r = t_f$ = 2.0 ns, $C_L$ = 30 pF, $R_L$ = 500 $\Omega$ ) (Note 1)

| Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Symbol                | Symbol Test Condition |                     | Min    | Max   | Unit     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|---------------------|--------|-------|----------|
| Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Symbol Test Condition |                       | V <sub>CC</sub> (V) | IVIIII | iviax | Offic    |
| Propagation delay time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>.</b>              |                       | 1.8                 | 1.5    | 9.8   |          |
| (D-Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t <sub>pLH</sub>      | Figure 1, Figure 2    | $2.5 \pm 0.2$       | 8.0    | 6.1   | ns       |
| (D-Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | фнг                   |                       | $3.3 \pm 0.3$       | 0.6    | 5.1   |          |
| Dronagation dalay time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                     |                       | 1.8                 | 1.5    | 9.8   |          |
| Propagation delay time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t <sub>pLH</sub>      | Figure 1, Figure 2    | $2.5\pm0.2$         | 0.8    | 6.3   | ns       |
| (LE-Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t <sub>pHL</sub>      |                       | $3.3 \pm 0.3$       | 0.6    | 5.1   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       | 1.8                 | 1.5    | 9.8   |          |
| 3-state output enable time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t <sub>pZL</sub>      | Figure 1, Figure 3    | $2.5\pm0.2$         | 0.8    | 6.5   | ns       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t <sub>pZH</sub>      |                       | $3.3 \pm 0.3$       | 0.6    | 5.0   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Figure 1, Figure 3    | 1.8                 | 1.5    | 7.7   | ns       |
| 3-state output disable time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t <sub>pLZ</sub>      |                       | $2.5\pm0.2$         | 0.8    | 4.3   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       | $3.3 \pm 0.3$       | 0.6    | 3.9   |          |
| NACCE CONTRACTOR OF THE PROPERTY OF THE PROPER |                       | Figure 1, Figure 2    | 1.8                 | 4.0    | _     |          |
| Minimum pulse width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t <sub>w (H)</sub>    |                       | $2.5 \pm 0.2$       | 1.5    | _     | ns       |
| (LE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                       | $3.3 \pm 0.3$       | 1.5    | _     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       | 1.8                 | 2.5    | _     |          |
| Minimum set-up time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ts                    | Figure 1, Figure 2    | $2.5\pm0.2$         | 1.5    | _     | ns       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       | $3.3 \pm 0.3$       | 1.5    | _     | <b> </b> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       | 1.8                 | 1.0    | _     |          |
| Minimum hold time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t <sub>h</sub>        | Figure 1, Figure 2    | $2.5 \pm 0.2$       | 1.0    | _     | ns       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       | $3.3 \pm 0.3$       | 1.0    | _     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       | 1.8                 | _      | 0.5   |          |
| Output to output skew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tosLH                 | (Note 2)              | $2.5\pm0.2$         | _      | 0.5   | ns       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t <sub>osHL</sub>     |                       | $3.3 \pm 0.3$       | _      | 0.5   |          |

Note 1: For  $C_L = 50 \ pF$ , add approximately 300 ps to the AC maximum specification.

Note 2: Parameter guaranteed by design.

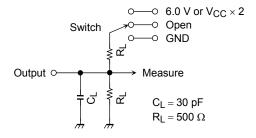
 $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$ 

### Dynamic Switching Characteristics (Ta = 25°C, input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF)

| Characteristics                              | Symbol           | Test Condition                                      | V <sub>CC</sub> (V) | Тур.  | Unit |
|----------------------------------------------|------------------|-----------------------------------------------------|---------------------|-------|------|
|                                              |                  | $V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (Not | 9) 1.8              | 0.15  |      |
| Quiet output maximum dynamic V <sub>OL</sub> | V <sub>OLP</sub> | V <sub>IH</sub> = 2.5 V, V <sub>IL</sub> = 0 V (Not | 2.5                 | 0.25  | V    |
|                                              |                  | $V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (Not | 9) 3.3              | 0.35  |      |
|                                              | V <sub>OLV</sub> | $V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (Not | 9) 1.8              | -0.15 | V    |
| Quiet output minimum dynamic $V_{OL}$        |                  | $V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (Not | 2.5                 | -0.25 |      |
|                                              |                  | $V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (Not | 9) 3.3              | -0.35 |      |
|                                              |                  | $V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (Not | 9) 1.8              | 1.55  |      |
| Quiet output minimum dynamic V <sub>OH</sub> | V <sub>OHV</sub> | $V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (Not | 2.5                 | 2.05  | V    |
|                                              |                  | $V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (Not | 3.3                 | 2.65  |      |

Note: Parameter guaranteed by design.

### **Capacitive Characteristics (Ta = 25°C)**


| Characteristics               | Symbol Test Condition |                                        |                     | Tyro | Unit  |
|-------------------------------|-----------------------|----------------------------------------|---------------------|------|-------|
| Characteristics               | Symbol                | rest condition                         | V <sub>CC</sub> (V) | Тур. | Offic |
| Input capacitance             | C <sub>IN</sub>       | _                                      | 1.8, 2.5, 3.3       | 6    | pF    |
| Output capacitance            | CO                    | _                                      | 1.8, 2.5, 3.3       | 7    | pF    |
| Power dissipation capacitance | C <sub>PD</sub>       | $f_{\text{IN}} = 10 \text{ MHz}$ (Note | 1.8, 2.5, 3.3       | 20   | pF    |

Note: C<sub>PD</sub> is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8 \text{ (per bit)}$ 

#### **AC Test Circuit**



| Parameter                           | Switch                                                |
|-------------------------------------|-------------------------------------------------------|
| t <sub>pLH</sub> , t <sub>pHL</sub> | Open                                                  |
| t <sub>pLZ</sub> , t <sub>pZL</sub> | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| t <sub>pHZ</sub> , t <sub>pZH</sub> | GND                                                   |

Figure 1

#### **AC Waveform**

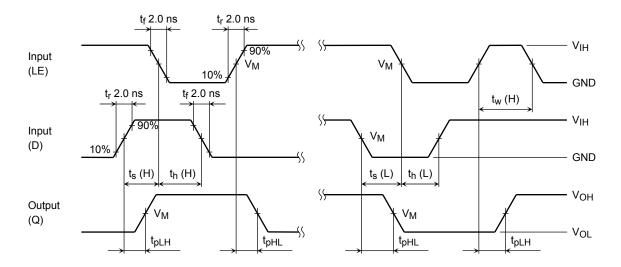



Figure 2 t<sub>pLH</sub>, t<sub>pHL</sub>, t<sub>w</sub>, t<sub>s</sub>, t<sub>h</sub>

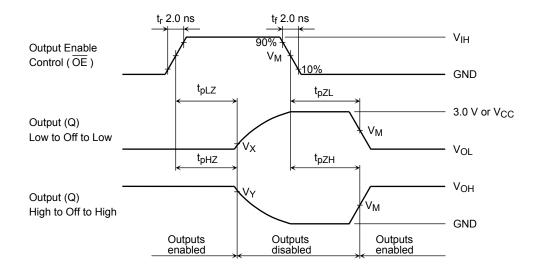
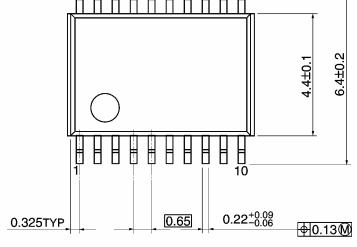
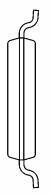
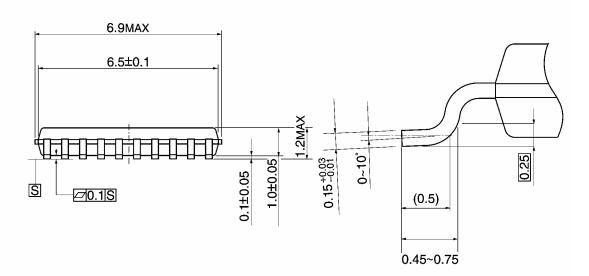



Figure 3 t<sub>pLZ</sub>, t<sub>pHZ</sub>, t<sub>pZL</sub>, t<sub>pZH</sub>


8

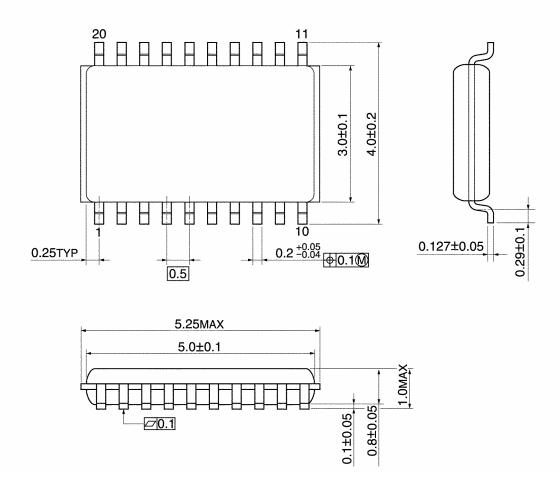

| Symbol          |                         | V <sub>CC</sub>          | -                        |
|-----------------|-------------------------|--------------------------|--------------------------|
| Symbol          | $3.3\pm0.3~\textrm{V}$  | $2.5\pm0.2\textrm{V}$    | 1.8 V                    |
| V <sub>IH</sub> | 2.7 V                   | V <sub>CC</sub>          | V <sub>CC</sub>          |
| V <sub>M</sub>  | 1.5 V                   | V <sub>CC</sub> /2       | V <sub>CC</sub> /2       |
| VX              | V <sub>OL</sub> + 0.3 V | V <sub>OL</sub> + 0.15 V | V <sub>OL</sub> + 0.15 V |
| VY              | V <sub>OH</sub> – 0.3 V | V <sub>OH</sub> – 0.15 V | V <sub>OH</sub> – 0.15 V |


# **Package Dimensions**

TSSOP20-P-0044-0.65A

Unit: mm








Weight: 0.08 g (typ.)

# **Package Dimensions**

VSSOP20-P-0030-0.50 Unit: mm



Weight: 0.03 g (typ.)

#### **RESTRICTIONS ON PRODUCT USE**

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
  In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
  compatibility. Please use these products in this document in compliance with all applicable laws and regulations
  that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
  occurring as a result of noncompliance with applicable laws and regulations.