TOSHIBA Bipolar Linear IC Silicon Monolithic

TA2170FTG

Low Current Consumption Headphone Amplifier (Built-in input selector)

The TA2170FTG is a stereo headphone amplifier built in the selector switch of 3 inputs.

The mute switch is built in each 3 input, and an output can choose 1 output or a mixer output.

Features

• Low current consumption

```
V_{CC} = 3 V, f = 1 kHz, R_L = 32 \Omega, typ.
```

• No signal mode

ICCQ = 0.9 mA (1 input mode) ICCQ = 1.0 mA (2 inputs mode) ICCQ = 1.1 mA (3 inputs mode)

• 0.1 mW × 2 ch

```
I<sub>CC</sub> = 2.2 mA (1 input mode)
```

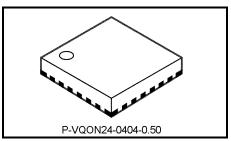
```
I<sub>CC</sub> = 2.3 mA (2 inputs mode)
```

```
ICC = 2.4 mA (3 inputs mode)
```

• $0.5 \text{ mW} \times 2 \text{ ch}$

.

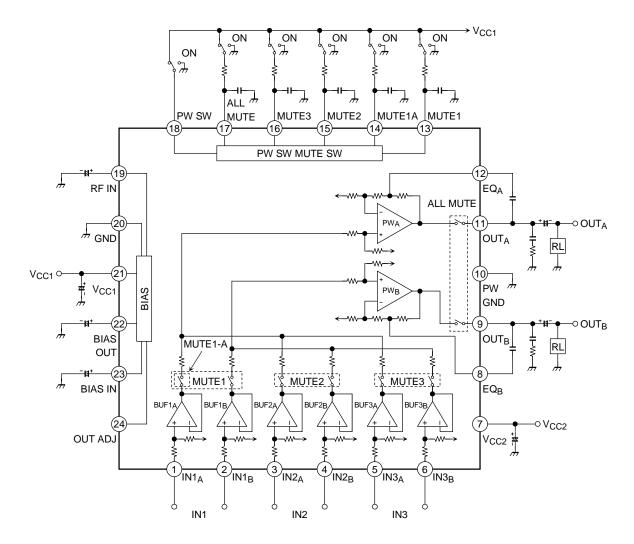
```
ICC = 4.1 mA (1 input mode)
```


```
ICC = 4.2 \text{ mA} (2 \text{ inputs mode})
```

```
ICC = 4.3 mA (3 inputs mode)
```

- $G_V = -0.3 dB (1 \text{ input mode, typ.})$
- Built-in signal level adjustment circuit, so that a 1 output or a mixer output doesn't change a feeling of volume either.
- Built-in power switch
- Built-in all mute switch
- Built-in mute switch at each buffer amplifier.
- Built-in one side mute switch at buffer amplifier 1.

• Operating supply voltage range (Ta = 25° C): V_{CC1} (opr) = 1.8 to 4.5 V


VCC2 (opr) = 0.9 to 4.5 V

Weight: 0.03 g (typ.)

Marking: 2170

Block Diagram

TOSHIBA

Pin Descriptions

Pi	n Voltage	Typical I	Pin voltage for	test circuit when	no input s	signal is	applied	VCC1 = VCC2	= 3 V Ta = 2	5°C
T T	ii voitage	Typical I	in voltage ioi		ino input t	Signar is	appnea,	1001 - 1002	1 = 0, 1a = 2	

	lo. and Name	Function	Internal Circuit	Pin Voltage (V)
1	IN1 _A	Inputs to buffer amplifier 1	N	1.15
2	IN1 _B			1.10
3	IN2 _A	Inputs to buffer amplifier 2		1.15
4	IN2 _B	inputs to buffer amplifier 2		1.15
5	IN3 _A	Inputs to buffer amplifier 3	↓ BIAS	1.15
6	IN3 _B			1.15
7	V _{CC2}	V_{CC} for power drive stage		3
9	OUT _B	Outputs from power amplifier		1.15
11	11 OUT _A			1.10
10	PW GND	GND for power drive stage		0
8	EQB	Low-pass Compensation pins		1.15
12	EQA	Low-pass compensation pins	G 15 kΩ 43 kΩ 15 kΩ 43 kΩ 12 BIAS OUT	1.15

Pin N	lo. and Name	Function	Internal Circuit	Pin Voltage (V)		
13	MUTE1	Mute switch of buffer amplifier 1 Mute ON : L level Mute OFF: H level Refer to application note 4.				
14	MUTE1A	Mute switch of buffer amplifier 1A (Mute ON : L level Mute OFF: H level this switch is used when it turn on A channel mutes of a buffer amplifier 1. Refer to application note 4.				
15	MUTE2	Mute switch of buffer amplifier 2 Mute ON : L level Mute OFF: H level Refer to application note 4.				
16	MUTE3	Mute switch of buffer amplifier 3 Mute ON : L level Mute OFF: H level Refer to application note 4.		_		
17	ALL MUTE	All mute switch (Mute ON : L level Mute OFF: H level Refer to application note 4.	V_{CC}			
18	PW SW	Power switch (IC ON : H level IC OFF: L level Refer to application note 4.		3		
19	RF IN	Ripple filter input		2.7		
21	V _{CC1}	V _{CC} for everything other than power drive stage		3		
22	BIAS OUT	Bias circuit output		1.15		
23	BIAS IN	Bias circuit input		1.15		
24 (OUT ADJ	DC output voltage adjustment Either connect this pin or leave it open depending on the level of V _{CC2} . If the power supply of a 1.5 V system is applied to V _{CC2} , connect this pin to BIAS IN (pin14) If the power supply of a 3 V system is applied to V _{CC2} , leave this pin open.				
	1	1		0		

Application Notes

1. Mute switch and voltage gain

This IC is designed so that a volume feeling may not change with a single output and many outputs. When the input signal to buffer amplifier is same and a linear domain, the relation between mute switches and voltage gain are as follows.

Test condition: V_{CC} = 3 V, f = 1 kHz, V_{in} = –20dBV, theoretical value

(1) 1 input mode

MUTE SW					Attenua	tion to an	input sig			Total gain	
			BL	JF1		IF2	BL	JF3	(d	B)	
MUTE1	MUTE1A	MUTE2	MUTE3	Ach	Bch	Ach	Bch	Ach	Bch	Ach	Bch
Input signal i	is applied to BL	JF 1.									
OFF	OFF	ON	ON	0	0	—	_		_	0	0
OFF	OFF	OFF	ON	-6	-6	_	_	_	_	-6	-6
OFF	OFF	ON	OFF	-6	-6	_	_	_	_	-6	-6
OFF	OFF	OFF	OFF	-9.5	-9.5	_	_	_	_	-9.5	-9.5
OFF	ON	ON	ON	_	0	_	_	_	_	_	0
OFF	ON	OFF	ON	_	-6	_	_	_	_	_	-6
OFF	ON	ON	OFF	_	-6	_	_	_	_	_	-6
OFF	ON	OFF	OFF	—	-9.5						-9.5
Input signal i	s applied to BL	JF 2									
ON	ON/OFF	OFF	ON	_		0	0			0	0
ON	ON/OFF	OFF	OFF	_	_	-6	-6	_	_	-6	-6
OFF	OFF	OFF	ON	_		-6	-6	_		-6	-6
OFF	ON	OFF	ON	_	_	0	-6	_	_	0	-6
OFF	OFF	OFF	OFF	_	_	-9.5	-9.5	_	_	-9.5	-9.5
OFF	ON	OFF	OFF	_	_	-6	-9.5	_	_	-6	-9.5
Input signal i	s applied to BL	JF 3.		•	•	•	•		•	•	
ON	ON/OFF	ON	OFF	_				0	0	0	0
ON	ON/OFF	OFF	OFF	_	_	—	_	-6	-6	-6	-6
OFF	OFF	ON	OFF	_	—	—	—	-6	-6	-6	-6
OFF	ON	ON	OFF	_	_	—	—	0	-6	0	-6
OFF	OFF	OFF	OFF	_	_	—	—	-9.5	-9.5	-9.5	-9.5
OFF	ON	OFF	OFF	_	_	_	_	-6	-9.5	-6	-9.5

TOSHIBA

(2) 2 inputs mode

MUTE SW					Attenuation to an input signal (dB)						gain
			BL	JF1	BL	F2	BL	BUF3		B)	
MUTE1	MUTE1A	MUTE2	MUTE3	Ach	Bch	Ach	Bch	Ach	Bch	Ach	Bch
Input signal i	Input signal is applied to BUF 1 and BUF 2.										
OFF	OFF	OFF	ON	-6	-6	-6	-6	_	_	0	0
OFF	OFF	OFF	OFF	-9.5	-9.5	-9.5	-9.5	_	_	-3.5	-3.5
OFF	ON	OFF	ON	_	_	_	_	_	_	_	_
OFF	ON	OFF	OFF	_	-6	-9.5	-6	_	_	-3.5	0
Input signal i	s applied to BL	JF 1 and BUF 3	3.								
OFF	OFF	ON	OFF	-6	-6	_	_	-6	-6	0	0
OFF	OFF	OFF	OFF	-9.5	-9.5	_	_	-9.5	-9.5	-3.5	-3.5
OFF	ON	ON	OFF	_	-6	_	_	-6	-6	-6	0
OFF	ON	OFF	OFF	_	-9.5	_	_	-9.5	-9.5	-9.5	-3.5
Input signal i	Input signal is applied to BUF 2 and BUF 3.										
ON	ON/OFF	OFF	OFF			-6	-6	-6	-6	0	0
OFF	ON	OFF	OFF			-6	-9.5	-6	-9.5	0	-3.5
OFF	OFF	OFF	OFF	—	_	-9.5	-9.5	-9.5	-9.5	-3.5	-3.5

(3) 3 inputs mode

MUTE SW					Attenuation to an input signal (dB)						gain
	MOTE SW			BL	JF1	BUF2		BUF3		(dB)	
MUTE1	MUTE1A	MUTE2	MUTE3	Ach	Bch	Ach	Bch	Ach	Bch	Ach	Bch
OFF	OFF	OFF	OFF	-9.5	-9.5	-9.5	-9.5	-9.5	-9.5	0	0
OFF	ON	OFF	OFF	_	-9.5	-9.5	-9.5	-9.5	-9.5	-3.5	0

2. Low-cut compensation

The low-frequency range can be decreased using an output-coupling capacitor and a load ($f_c = 50$ Hz at $C = 100 \ \mu$ F, $R = 32 \ \Omega$). However, since the capacitor is connected between the IC's output pin (pin 9/11) and EQ pin (pin 8/12), the low-frequency gain of the power amplifier increases, enabling low-cut compensation to be performed. For the response of capacitors of different values, please refer to Figure 1.

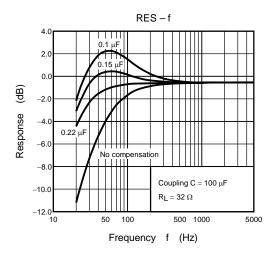
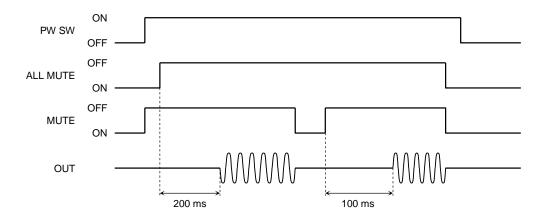


Figure 1 Capacitor response

3. Adjustment of DC output voltage

Please perform the OUT ADJ pin (pin 24) as follows by the power supply of VCC1 and VCC2.

• If a boost voltage is applied to V_{CC1} , V_{CC2} is connected to a battery and the difference between V_{CC1} and V_{CC2} is greater than or equal to 0.7 V, short pins 23 and 24 together. In this case the DC output voltage


will be
$$\frac{V_{CC2}}{2}$$
.

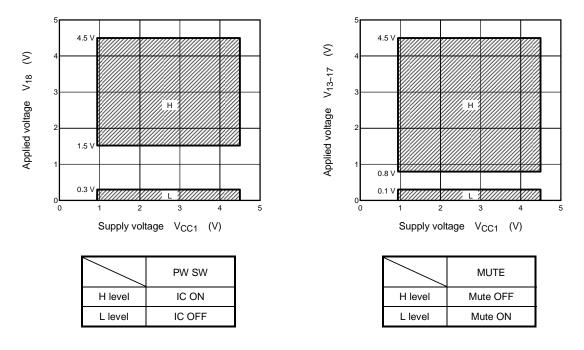
• If the difference between VCC1 and VCC2 is less than 0.7 V, or if VCC1 and VCC2 are connected to the same power supply, leave pin 24 open.

In these cases the DC output voltage will be $\frac{V_{CC2} - 0.7 V}{2}$.

4. Switch

(1) Timing chart Refer to Fig. 2 for the IC timing chart.

(2) PW SW


The device is ON when this pin is set to High. To prevent the IC being turned ON by external noise, it is necessary to connect an external pull-down resistor to the PW SW pin. The pin is highly sensitive. Mute smoothing

(3) Mute smoothing The resistor is connected to a mute pin less than $100 \text{ k}\Omega$

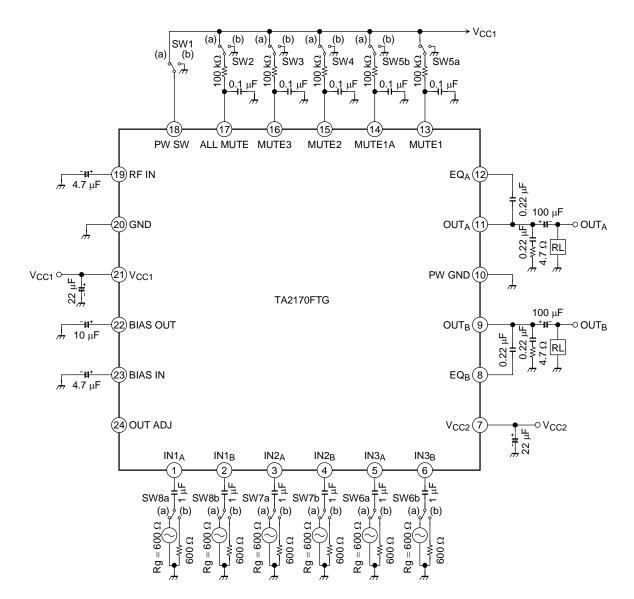
When larger than this, the switch circuit doesn't operate normally.

(4) Switch sensitivity ($Ta = 25^{\circ}C$)

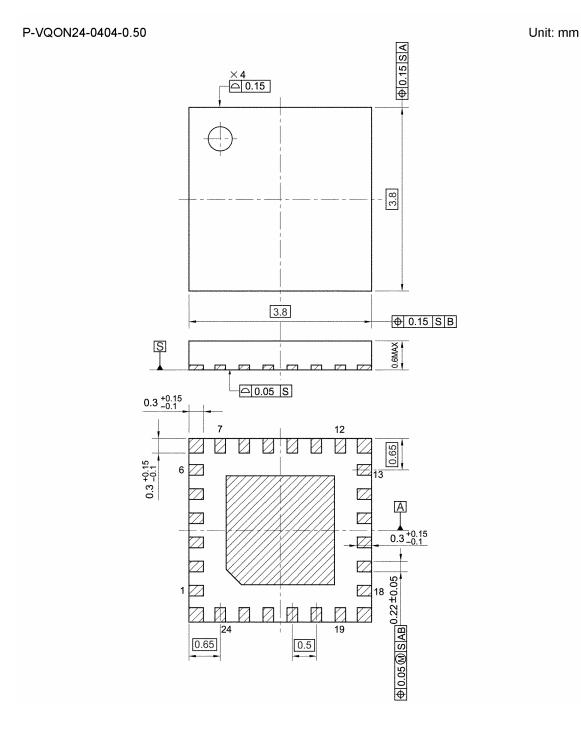
5. Capacitor

The following capacitors must have excellent temperature and frequency characteristics.

Absolute Maximum Ratings (Ta = 25°C)


Characteristic	Symbol	Rating	Unit
Supply voltage 1	V _{CC1}	4.5	V
Supply voltage 2	V _{CC2}	4.5	v
Output current	I _{o (peak)}	100	mA
Power dissipation	P _D (Note)	350	mW
Operating temperature	T _{opr}	-25~75	°C
Storage temperature	T _{stg}	-55~150	°C

Note: Derated by 2.8 mW/°C above $Ta = 25^{\circ}C$


Electrical Characteristics (Unless otherwise specified, $V_{CC1} = V_{CC2} = 3 V$, $Rg = 600 \Omega$, $R_L = 32 \Omega$, f = 1 kHz, $Ta = 25^{\circ}\text{C}$, SW1~SW5: a, SW6~SW8: a)

Characteristic	Symbol	Test condition	Min.	Тур.	Max.	Unit	
	I _{CCQ1}	IC OFF mode SW1~5: b			5	μA	
	ICCQ2	1 input on mode BUF1: ON (SW5: a, SW3/4: b) BUF2: ON (SW4: a, SW3/5: b) BUF3: ON (SW3: a, SW4/5: b)		0.9	1.6		
Quiescent supply current	ICCQ3	2 input on mode BUF1/2: ON (SW4/5: a, SW3: b) BUF1/3: ON (SW3/5: a, SW4: b) BUF2/3: ON (SW3/4: a, SW5: b)	_	1.0	1.8	mA	
	I _{CCQ4}	3 input on mode		1.1	2.0		
	ICCQ5	1 input on mode V _{CC1} = 2.4 V, V _{CC2} = 1.2 V BUF1: ON (SW5: a, SW3/4: b) BUF2: ON (SW4: a, SW3/5: b) BUF3: ON (SW3: a, SW4/5: b)	_	0.9	1.6		
	I _{CC1}	1 input on mode 0.1 mW/32 Ω × 2 ch BUF1: ON (SW5: a, SW3/4: b) BUF2: ON (SW4: a, SW3/5: b) BUF3: ON (SW3: a, SW4/5: b)	_	2.2	_	mA	
Power supply current during drive	ICC2	2 input on mode 0.1 mW/32 Ω × 2 ch BUF1/2: ON (SW4/5: a, SW3: b) BUF1/3: ON (SW3/5: a, SW4: b) BUF2/3: ON (SW3/4: a, SW5: b)	—	2.3	_		
	I _{CC3}	3 input on mode 0.1 mW/32 Ω \times 2 ch		2.4		<u> </u>	
	G _{V1}	1 input on mode V _o = -20dBV BUF1: ON (SW5: a, SW3/4: b) BUF2: ON (SW4: a, SW3/5: b) BUF3: ON (SW3: a, SW4/5: b)	-1.8	-0.3	1.2	dB	
Voltage gain	G _{V2}	2 input on mode V _o = -20dBV BUF1/2: ON (SW4/5: a, SW3: b) BUF1/3: ON (SW3/5: a, SW4: b) BUF2/3: ON (SW3/4: a, SW5: b)	-1.0	0.5	2.0		
	G _{V3}	3 input on mode $V_0 = -20$ dBV	-0.8	0.7	2.2		
Channel balance	СВ	$V_0 = -20 dBV$	-1.5	0	1.5	dB	
	P _{o1}	THD = 10%	15	20			
Output power	P _{o2}	$V_{CC1} = 2.4 \text{ V}, V_{CC2} = 1.2 \text{ V}$ THD = 10%	3	6		mW	
Total harmonic distortion	THD	$P_0 = 1 \text{ mW}$		0.1	0.3	%	
Output noise voltage	V _{no}	$R_g = 600 \ \Omega$, Filter: IHF-A, SW6~8: b		-100	-96	dBV	
Cross talk	СТ	$V_0 = -20 dBV$	-53	-60	—	dB	
Ripple rejection ratio	RR	$f_r = 100 \text{ Hz}, \text{ V}_r = -20 \text{dBV}$	-70	-80		dB	
Muting attenuation	ATT1	ALL MUTE SW: ON, $V_0 = -20 dBV$	-75	-90		dB	
	ATT2	MUTE SW: ON, $V_0 = -20 dBV$	-47	-62		<u> </u>	
PW SW ON current	l19	$V_{CC1} = 1.8 \text{ V}, V_{CC2} = 0.9 \text{ V}$	5			μA	
PW SW OFF voltage	V19	V _{CC1} = 1.8 V, V _{CC2} = 0.9 V	0		0.3	V	
MUTE SW OFF current	I ₂₀₋₂₄	$V_{CC1} = 1.8 \text{ V}, V_{CC2} = 0.9 \text{ V}$	5	—	—	μΑ	
MUTE SW ON voltage	V ₂₀₋₂₄	$V_{CC1} = 1.8 \text{ V}, V_{CC2} = 0.9 \text{ V}$	0	—	0.1	V	

Test Circuit

Package Dimensions

Note: The die length by the projective technique from a package top face prescribes the part of a package side-face part, And it is made into 0.15 maximum.

The flux of solder cream should use RMA type or RA type.

Weight: 0.03 g (typ.)

RESTRICTIONS ON PRODUCT USE

060116EBA

The information contained herein is subject to change without notice. 021023_D

• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A

• The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B

- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_C
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E

About solderability, following conditions were confirmed

- Solderability
 - (1) Use of Sn-37Pb solder Bath
 - solder bath temperature = 230°C
 - dipping time = 5 seconds
 - the number of times = once
 - use of R-type flux
 - (2) Use of Sn-3.0Ag-0.5Cu solder Bath
 - solder bath temperature = 245°C
 - dipping time = 5 seconds
 - the number of times = once
 - use of R-type flux