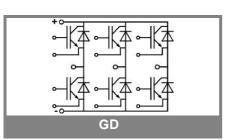
SKIM 180GD176D

SKiM[®] 4

IGBT Modules

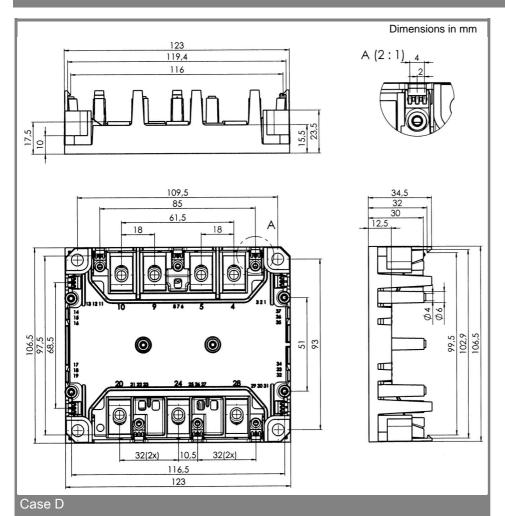
SKIM 180GD176D

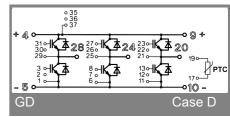

Target Data

Features

- · Homogeneous Si
- Trench = Trenchgate Technology
- · Low inductance case
- Isolated by Al₂O₃ DCB (Direct Copper Bonded) ceramic plate
- Pressure contact technology for thermal contacts
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6x I_C
- Integrated temperature sensor
- Spring contact system to attach driver PCB to the auxiliary terminals

Typical Applications


- AC inverter drives mains 575 -750 V AC
- public transport (auxiliary syst.)



Absolute	Maximum Ratings	T _c = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT		<u> </u>						
V_{CES}		1700	V					
I _C	T _s = 25 (70) °C	180 (130)	Α					
I _{CM}	$T_s = 25 (70) ^{\circ}\text{C}, t_p = 1 \text{ms}$	360 (260)	Α					
V_{GES}	·	± 20	V					
$T_j (T_{stg})$		- 40 +150 °C (125)	°C					
T _{cop}	max. case operating temperature	125	°C					
V_{isol}	AC, 1 min.	3300	V					
Inverse diode								
I _F	T _s = 25 (70) °C	140 (100)	Α					
$I_{FM} = -I_{CM}$	$T_s = 25 (70) ^{\circ}C, t_p = 1 \text{ms}$	360 (260)	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	1450	Α					

Characte	eristics	$T_c = 25 ^{\circ}C$	_c = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$; $I_C = 8 \text{ mA}$	5,15	5,8	6,45	V	
I _{CES}	V _{GE} = 0; V _{CE} = V _{CES} ; T _i = 25 °C			0,3	mA	
V_{CEO}	T _i = 25 (125) °C		1 (0,9)	1,2 (1,1)	V	
r_{CE}	T _j = 25 () °C		5 (7,5)	6,3	$m\Omega$	
V_{CEsat}	$I_C = 200 \text{ A}; V_{GE} = 15 \text{ V},$		2 (2,4)	2,45	V	
	T _j = 25 (125) °C on chip level					
C _{ies}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz				nF	
C _{oes}	$V_{GE} = 0; V_{CE} = 25 V; f = 1 MHz$				nF	
C _{res}	$V_{GE} = 0; V_{CE} = 25 V; f = 1 MHz$				nF	
L _{CE}					nH	
R _{CC'+EE'}	resistance, terminal-chip T _c = 25 °C		1,1		mΩ	
$t_{d(on)}$	V _{CC} = 1200 V				ns	
t _r	I _C = 200 A				ns	
t _{d(off)}	$R_{Gon} = R_{Goff} = \Omega$				ns	
t _f	T _j = 125 °C				ns	
E _{on} (E _{off})	V _{GE} ± 15 V		120 (80)		mJ	
E _{on} (E _{off})	with SKHI 64; T _j = 125 °C				mJ	
	V_{CC} = 1200 V; I_{C} = 200 A					
Inverse o						
$V_F = V_{EC}$	I _F = 200 A; V _{GE} = 0 V; T _i = 25 (125) °C				V	
V_{TO}	T _i = 25 (125) °C				V	
r_T	$T_{j} = 25 (125) ^{\circ}C$				mΩ	
I _{RRM}	I _F = 200 A; T _j = 125 °C				Α	
Q_{rr}	$V_{GE} = 0 \text{ V di/dt} = A/\mu s$				μC	
E _{rr}	$R_{Gon} = R_{Goff} =$				mJ	
	characteristics	_				
$R_{th(j-s)}$	per IGBT			0,25	K/W	
$R_{th(j-s)}$	per FWD			0,45	K/W	
Tempera	ture Sensor				_	
R _{TS}	T = 25 (100) °C		1 (1,67)		kΩ	
tolerance	T = 25 (100) °C		3 (2)		%	
Mechani	cal data	•			•	
M_1	to heatsink (M5)	2		3	Nm	
M_2	for terminals (M6)	4		5	Nm	
W				310	g	

SKIM 180GD176D

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.