

Order this document
by AN1816/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

n
c

..
.

AN1816

USING THE HC912B32 TO IMPLEMENT THE DISTRIBUTED
SYSTEMS INTERFACE (DSI) PROTOCOL
By Tracy McHenry August 1999

Introduction

System design requirements are continually changing as systems
become increasingly complex. In conventional systems where sensors
and actuators are connected directly to a microcontroller (MCU), the
number of pins available on the MCU limits system expansion. As a
result, extra costs can be incurred if another MCU is required or if the
hardware has to be redesigned to accommodate a higher pin count
MCU. An alternative approach is to move to a distributed bus
architecture. This option allows one master MCU to interconnect to
many remote sensors and actuators.

The Distributed Systems Interface (DSI) is one such master/slave
system, with the central control module being the master and the remote
sensors and actuators acting as slave devices. A key feature of the DSI
architecture is that the sensors and actuators can be connected on the
same bus. Another benefit of the DSI is that it promotes the use of
standard components and interfaces which enables maximum re-use
and accelerates time to market. This is a great advantage to systems
designers who are therefore able to develop flexible system solutions. It
was initially developed for the automotive market although it is equally
suited to other applications that require distributed sensors and/or
actuators. Examples of possible DSI applications include occupant
safety systems, body networks, building and industrial controls.

This application note provides an overview of the DSI and describes the
hardware and software design of a demonstrator system.
© Motorola, Inc., 1999 AN1816
For More Information On This Product,

 Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
fslcopyrightline

rxzb30
freescalecolorjpeg

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Distributed Systems Interface (DSI) Overview

The Distributed Systems Interface (DSI) was designed to interconnect
multiple remote sensor and actuator devices to a central control module.
It provides simultaneous support for sensors and actuators using a
2-wire bus that provides both power and communications. This results in
savings in wiring costs and connector complexity. Unlike conventional
systems, the size of the connector for the control module does not need
to grow to accommodate every new sensor or actuator. A new sensor or
actuator can be added to the bus without reconfiguring the system
design. The DSI, therefore, enables the development of easily
expandible systems.

The DSI communication bus is simple yet robust. Signals are
superimposed onto the power line and, as communication between the
master and slave nodes is bi-directional, the DSI makes efficient use of
bus bandwidth. Also, to ensure message integrity, each message
contains a 4-bit Cyclic Redundancy Check (CRC).

Slave nodes can be attached to the bus in daisy chain or parallel
connections. Each slave device on a bus has a unique address. The
daisy chain connection allows the central module to establish the node
addresses at power-up. The parallel configuration can be used for
devices that have pre-programmed or fixed addresses. It is possible to
have a combination of the two on one bus with the maximum number of
nodes on a DSI bus being 16 (1 master and 15 slaves).

Signalling The DSI uses two mediums for signalling - voltage mode for messages
from the master to the slaves, and current mode for the responses from
the slaves.

Voltage Mode
Encoding

The voltage mode signal bits are sent on a 2:1 ratio as shown in Figure
1 Voltage Mode Bit Encoding.

Figure 1 Voltage Mode Bit Encoding

Logic 1 Logic 0 Logic 0 Logic 1
AN1816

2
For More Information On This Product,

 Go to: www.freescale.com

Distributed Systems Interface (DSI) Overview

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

The DSI protocol has been designed such that the first third of a voltage
mode signal bit is always low and the last third is always high. The
central third defines the signal value. For a logic zero the master
produces a signal that is low for 2/3 of the bit time and high for the final
1/3. For a logic one the signal is low for 1/3 of the bit time and high for
2/3 of the bit time. Each slave has a built-in oscillator. This feature of the
DSI message protocol has created a high immunity to temporal
distortion. Consequently, each slave IC is simpler and cheaper to design
while still able to capture all messages accurately. An added benefit is
that it allows for a range of operating frequencies.

Bus Voltage Levels The voltage mode signalling uses a tri-level bus as shown in Figure 2
Tri-level bus.

Figure 2 Tri-level bus

The DSI bus provides power to the slave nodes as well as supporting
bi-directional communication between the slave nodes and the master.
When the bus is at the idle voltage, which ranges from 8 to 25 volts, it
supplies power to the slave nodes. A high threshold level (typically 6V)
and a low threshold level (typically 3V) play a significant part in message
transmission. The start of a word occurs when the bus voltage drops
from the idle voltage below the high threshold level and then below the
low threshold level. Data values are determined by the ratio of time spent
above and below the low threshold. The voltage rising above the high
threshold level signals the end of a word.

Current Mode
Encoding

Slave responses to commands are returned by modulating the amount
of current sunk by the device. This is measured at the end of each bit to
determine a ‘zero’ or ‘one’ response. When responding with a logic one,

Idle
High Threshold

Signal High
Low Threshold

Signal Low
Gnd

End of First Bit ("0") End of Word
Start of Word End of Second Bit ("1") Start of Next Word
AN1816

3

For More Information On This Product,
 Go to: www.freescale.com

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

the slave draws additional current from the source during the bit time.
Conversely, no extra current is drawn when responding with a logic zero.
Figure 3 Current Waveform shows a representation of the current
waveform referenced to a voltage waveform.

Figure 3 Current Waveform

Message
Format

DSI messages are composed of individual words separated by a
minimum frame delay. Transfers are full duplex, that is, command
messages from the master occur at the same time as responses from
the slaves. This is an important feature of the DSI as it doubles the
effective signal bandwidth. Slave responses to commands occur during
the next command message. This allows slaves time to decode the
command, act upon it and then respond to the master. The minimum
frame delay is present to allow recharge of energy storage devices in the
slaves. This is necessary because the slave receives its power from the
signal line.

Message
Encoding

Message encoding depends on the direction of the transfer. Command
and control messages are sent from the master to the slave. Response
messages are sent from the slaves to the master. In both cases there
are long word and short word messages. A long word consists of 16-bits
of information followed by a 4-bit cyclic redundancy check (CRC). A
short word is composed of 8-bits of information followed by the 4-bit
CRC.

Voltage
(from Master)

Current
(from Slave)

Logic 1Logic 0 Logic 0Logic 1

Logic 1 Logic 0 Logic 1 Logic 0
AN1816

4
For More Information On This Product,

 Go to: www.freescale.com

Distributed Systems Interface (DSI) Overview

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Command and
Control Messages

The long word command and control message encoding is shown in
Figure 4 Long Word Command and Control Message.

The message consists of 8 bits of data, the encoded 4-bit address of the
intended slave device, a 4-bit encoded command, and the calculated
4-bit CRC.

The short word command and control message encoding is shown in
Figure 5 Short Word Command and Control Message.

The message consists of the encoded 4-bit address of the intended
slave device, a 4-bit encoded command, and the calculated 4-bit CRC.

Response
Messages

A long word response message is sent from the slave to the master in
response to a long word command and control message to the slave’s
address. The response is transmitted during the next command and
control message. The long word response message encoding is shown
in Figure 6 Long Word Response Message.

The message consists of two 8-bit data bytes and the calculated 4-bit
CRC

A short word response message is sent from the slave to the master in
response to a short word command and control message to the slave’s
address. The response is transmitted during the next command and

DATA ADDRESS COMMAND CRC

D7 D6 D5 D4 D3 D2 D1 D0 A3 A2 A1 A0 C3 C2 C1 C0 X3 X2 X1 X0

Figure 4 Long Word Command and Control Message

ADDRESS COMMAND CRC

A3 A2 A1 A0 C3 C2 C1 C0 X3 X2 X1 X0

Figure 5 Short Word Command and Control Message

DATA BYTE 1 DATA BYTE 2 CRC

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 X3 X2 X1 X0

Figure 6 Long Word Response Message
AN1816

5

For More Information On This Product,
 Go to: www.freescale.com

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

control message. The short word response message encoding is shown
in Figure 7 Short Word Response Message.

The message consists of one 8-bit data byte and the calculated 4-bit
CRC.

Long words are always sent in response to long word commands and
short words are always sent in response to short word commands. When
the word format changes between successive commands, the first
response sent during the new format will be invalid since it will not have
the proper number of bits.

Error Checking The master and slaves calculate a CRC on the information portion of their
received messages. The message is valid only if the calculated CRC
matches the CRC sent as part of the message. An error bit is set in the
master when it receives an invalid message. The slaves discard and ignore
all invalid received messages and in addition do not respond to them.

Slave Device
Addressing

Each slave device on the bus must be given a unique 4-bit address (from
1 (0001) to 15 (1111)) and assigned to one of four groups. Address 0
(0000) is used to address all 15 slave nodes at once.

Programmable
Devices

After system power up the master must set the address of all daisy chain
slave devices with programmable addresses before network
communications can commence. These devices have a bus switch on
the power/signal line. At power up the programmable device bus
switches are open and only close once an initialisation message has
been received.

With the first bus switch open, the bus only goes as far as the first slave.
When the master sends a slave initialisation command, the first slave
device stores its address information and closes its bus switch. The
second daisy chain slave is now connected to the network. When the
master initialises the second slave’s address, the first device responds
with an initialisation response message. The response message echoes
the programming information back to the master so that it knows that the
address was successfully established. Each slave sends the
initialisation response message only once after receiving a program
address command message.

DATA CRC

D7 D6 D5 D4 D3 D2 D1 D0 X3 X2 X1 X0

Figure 7 Short Word Response Message
AN1816

6
For More Information On This Product,

 Go to: www.freescale.com

HARDWARE DESIGN

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

An advantage of having programmable devices present in the system is
that they may be replaced and/or the system may be reconfigured by
adding nodes to the bus and the system will automatically reconfigure
itself at the next power up.

Pre-programmed
Devices

Slaves with pre-programmed addresses do not require a bus switch. On
power-up the stored pre-programmed address becomes the slave
address. However, pre-programmed devices must still receive an
Initialisation Command and reply with an Initialisation Response before
responding to any other bus commands.

HARDWARE DESIGN

Figure 8 Top Level DSI System Connections

Several ICs are used in the development of the system :

• Master board
– HC912B32
– MC68HC55 SPI Peripheral
– MC33790 Bus Transceiver

• Slave board
– evaluation slave device, the BEM IC

DSI0O

DSI1O

GND

GND

MC33790 Bus Transceiver

CLK

DI

DO

CS*

SCLK
CH.0

CH.1

MC68HC55 SPI Peripheral

PWM pin

SCK

MOSI

MISO

I/O PIN

SPI
(master)

HC912B32 MCU

DSI0F

DSI0S

DSI0R

DSI1F

DSI1S

DSI1R

TWO-WIRE BUS

Signal

Return

G
N
D

B
U
S
I
N

B
U
S
O
U
T

Slav

Master Board
AN1816

7

For More Information On This Product,
 Go to: www.freescale.com

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Master Board Figure 8 Top Level DSI System Connections shows how the ICs are
connected together. It should be noted that the diagram shows a daisy
chain connected slave but slave nodes can also be connected onto the
bus in parallel. The parallel configuration is used for slave nodes that
have pre-programmed addresses. The SPI of the HC912B32 is set up
such that it acts as the master and all communication from the
HC912B32 to the MC68HC55 is via the SPI. The MC33790, the physical
layer interface to the DSI bus, sends commands to and receives
responses from the slave devices.

Software required to control the system can be programmed into the
HC912B32’s 32k of FLASH memory. It also has 768 bytes of EEPROM
and 1k of RAM. The PWM is used to provide the MC68HC55 with a
system clock. It is set up such that PWM channel 0 is output on port P
pin 0 (PP0) and connected to the SCLK pin of the MC68HC55 SPI
Peripheral. The HC912B32’s on board SPI is a key element in the DSI
communication protocol and is set up as follows. The MOSI, MISO and
SCLK pins on the HC912B32 are connected to the MC68HC55’s DI, DO,
CLK pins respectively. Port S pin 7 (PS7) is connected to the CS pin on
the MC68HC55. It should then be defined in the software as a
general-purpose I/O pin and set up to drive CS on the MC68HC55. CS
is an active low signal that is controlled by the HC912B32. When driven
low it indicates the start of message transmission from the HC912B32 to
the MC68HC55 and in turn to the MC33790 and then to the slave nodes.
This is the start of what is termed a SPI burst transfer (refer to the sub
section: ‘Initialisation of the PWM and SPI’ in the Software Design
section of this Application Note). The end of a SPI burst transfer is
signalled by the HC912B32 pulling CS high. Commands are sent to and
responses are received from the slave nodes via the SPI during a burst
transfer. The data written to the SPI data register is transferred into the
MC68HC55’s data register, which transmits the message to the slave
nodes via the MC33790 Bus Transceiver.

The MC68HC55 is the protocol controller of the system and controls all
the digital functions of the DSI. It contains 2 independent DSI channels,
each capable of interfacing to up to 15 slave nodes. The MC68HC55 SPI
Peripheral uses 3 pins to transmit a message to the MC33790 Bus
Transceiver. Pin DSIxS (signal) on the MC68HC55 transmits the data
output signal to the MC33790. Data bits on this signal line are pulse
length encoded voltage levels. A logic zero starts with a falling edge on
DSIxS and is low for two thirds of the bit time and then high for one third
of the bit time. A logic one starts with a falling edge on DSIxS and is low
for one third of the bit time and then high for two thirds of the bit time.
DSIxF (frame) output pin idles high and is driven low during each
transfer frame. DSIxR is the data input signal from the MC33790. The
MC68HC55 samples the CMOS level on this pin at the end of a bit time.
This level corresponds to the current sensed by the MC33790.
AN1816

8
For More Information On This Product,

 Go to: www.freescale.com

HARDWARE DESIGN

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

The MC33790 Bus Transceiver is an analogue SmartMOS™ device,
which serves as the physical interface to the two-wire DSI bus. It uses a
combination of pulse length encoded voltage levels for transmit data to
slave nodes and current return signals for receive data at the same time.

Figure 9 MC68HC55 frame and output signals with respect to MC33790 DSIx0 signal

When the MC33790 receives data for transmission to the slave nodes
from the MC68HC55, its bus transmitter circuit converts the 0 to 5 volt
inputs from the MC68HC55’s DSIxF (frame) and DSIxS (signal) to a
voltage level on the output DSIxO which connects to BUS_IN of the first
slave node. The value output on DSIxO of the MC33790 depends on the
values of DSIxF and DSIxS as shown in Table 1 DSIxO Truth Table.
See also Figure 9 MC68HC55 frame and output signals with respect to
MC33790 DSIx0 signal.

When the MC33790 is receiving data from the slave nodes, it samples
the current responses on the rising edge of the final third of bit time. The
current response is then compared against a reference point, which
determines whether a low or high has been returned.

DSIxF (frame)
from MC68HC55

DSIxS (signal)
from MC68HC55

DSIxO
from MC33790

Idle Idle

High

Low

DSIxF DSIxS DSIxR DSIxO

0 0 Return Data Low (1.5V)

0 1 Return Data High (4.5V)

1 0 0 High Impedance

1 1 0 Idle

Table 1 DSIxO Truth Table
AN1816

9

For More Information On This Product,
 Go to: www.freescale.com

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Schematics and
Layout
Considerations -
Master Board

Figure 10 Master Board Schematic

Figure 10 Master Board Schematic shows the schematic for the master
board. The board was based on an existing HC912B32 Evaluation
Board (EVB) with the addition of the required DSI circuitry. The
HC912B32 EVB circuitry allows the board to be used to evaluate
prototype hardware and software. When laying out the DSI circuitry on
the master board, the bus traces out of the MC33790 were made as wide
as possible to deal with the presence of the higher voltage (the DSI bus
maximum idle voltage is 25V). All components were positioned where
clock and bus trace lengths could be kept to a minimum. 0.1µF
capacitors were used to filter the bus supply voltage and to decouple the
power supplies to the MC68HC55 and MC33790. These capacitors were
placed as close to the ICs as possible.

SCLK

CLK

DI

DO

CS

RESET

INT

Gnd

Vdd

DSI0F

DSI0S

DSI0R

n.c.

DSI1F

DSI1S

DSI1R

DSI0F

DSI0S

DSI0R

DSI1F

DSI1S

DSI1R

n.c.

CPCAP

Vdd

Gnd0

DSI0O

Vsup

DSI1O

Gnd1

n.c.

n.c.

C22
0.1µF

1 16

2 15

3 14

4 13

5 12

6 11

7 10

8 9

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

U9 - DSID

U11 - DSIP

W19 - TP2
DSI Ch.1 Rx Data

DSI Ch.0 Rx Data
W17 - TP1

C23
0.1µF

Vdd

C24
0.1µF

Vdd

W18 R15
100Ω

PP0/PW0

PS6/SCK

PS5/MOSI

PS4/MISO

PS7/SS

PS3

PE1/IRQ

1

1

C26
10µF

+

W21
n.c.

no pin
25v

Gnd

Bus Power

W20

W22

D
S

I0
D

S
I1

M
C

U
 P

IN
S

AN1816

10
For More Information On This Product,

 Go to: www.freescale.com

HARDWARE DESIGN

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Slave Board The slave board discussed in this application note is one that was
designed as part of a DSI evaluation tool kit. It contains the Bus
Evaluation Module (BEM) IC, which is a slave DSI interface evaluation
device. It provides bi-directional communications from the DSI bus. The
slave board contains an on board potentiometer which can be used to
vary the voltage input to the BEM IC. This voltage is converted by the
BEM IC to a digital signal that is then transmitted over the DSI bus.
Alternatively, an accelerometer or other analogue output device could be
connected using the wire wrap area of the slave board and the jumper
setting changed such that the output of the accelerometer is input to the
BEM IC. Multiple slave nodes can be attached to one DSI bus by daisy
chaining them together.

Schematics and
Layout
Considerations -
Slave Board

Figure 11 Slave Board Schematic

Date: August 10, 1999 Sheet 1 of 1

Size Document Number REV

B SLAVE.SCH

Title

SLAVE BOARD

 OCCUPANT SAFETY SYSTEMS

DATEDESCRIPTIONREV

R E V I S I O N S

SLAVE BOARD

Bus signals from ECU

GND

VR1

1

2

3

J1

D1

DIODE ZN1

GND

BUS_IN 1

GND 2

BUS_OUT 3

U3

CON3WAY

VREG

BUSOUT
BUSIN
SIGIN

TP1

TEST POINT
TP2

TEST POINT
TP3

TEST POINT
TP4

TEST POINT

C2
4.7uF

BUS_OUT 16

VREG 10

N/C 9

N/C 8

BUS_IN 14

BUS_GND 1

BUS_GND 12

AGND 5

AGND 6

 2
 4

SIG_IN 7

FILT_CAP 11

N/C 3

N/C 15N/C 13

U4

BEM IC

D2
DIODE ZN1

1

2

R2
10K

GND

1

2

R1
10K

GND

1

2
C3
0.1uF

GND

GND

C1
1.0uF

GND

COMPUTER GENERATED DRAWING : DO NOT REVISE MANUALLY
AN1816

11

For More Information On This Product,
 Go to: www.freescale.com

rxzb30
Rectangle

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11 Slave Board Schematic shows the schematic for the slave
board. A benefit of the DSI architecture is that the slave board requires
only a few additional components. Zener diodes are used to protect
against ESD damage to signals BusIn and BusOut. C1 (filt_cap)
supplies the power to the BEM IC during signalling. When laying out the
slave board, the pads for capacitor, C1 were enlarged so that they could
accommodate various values of capacitor from 1µF up to 4.7µF
depending on what was required of the evaluation system. For the slave
node described in this Application Note a 1µF capacitor was selected as
being capable of storing enough charge to power the BEM IC during
signalling. All components were positioned where signal trace lengths
could be kept to a minimum and signal traces were made as wide as
possible. Also, analogue and digital grounds were connected together
as close to the BEM IC as possible.

SOFTWARE DESIGN

The initialisation software can be divided into 3 sections - initialisation of
the PWM and SPI, initialisation of the MC68HC55 SPI peripheral’s
registers and initialisation of the slave nodes.

Initialisation of
the PWM and
SPI

The PWM on the HC912B32 provides the system clock (SCLK) for the
MC68HC55 SPI Peripheral. The system software must initialise the
PWM so that it supplies a clock signal to the MC68HC55 SPI Peripheral
with the appropriate duty cycle and period. An example of possible C
source code that can be used to perform this set-up is shown in function
InitPWM in Appendix 1 - Source Code. The PWM registers, in this
example, are set up to generate a clock signal with a duty cycle of 50%
and a period of 3.5µs (frequency of 285kHz).

The SPI is set up such that the slave select (SS) pin on the HC912B32
(connected to chip select (CS) on the MC68HC55 SPI Peripheral) is
configured as a general purpose I/O pin allowing the software to control
it. This is necessary for SPI Burst Transfers, thus enabling the
HC912B32 to communicate with the slave nodes via the MC68HC55
and the MC33790. Figure 12 SPI Burst Transfer Example shows an
example of an SPI burst transfer.
AN1816

12
For More Information On This Product,

 Go to: www.freescale.com

SOFTWARE DESIGN

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.
 Figure 12 SPI Burst Transfer Example

When CS is driven low by the HC912B32, the MC68HC55 SPI
Peripheral is enabled and the first SPI transfer after this is a command
transfer. Bit7 of this command determines if it is a read (0) or a write (1)
command. Bits[2:0] specify the address of one of the eight MC68HC55
registers and an internal pointer is established. Data sent back to the
HC912B32 from the MC68HC55 during a command transfer is read data
from the adress previously pointed to (this would be all zeros for the first
transfer after reset). Any additional transfers result in a write-to or
read-from successive registers in the MC68HC55. The internal register
pointer is incremented at the end of the transfer and will roll over from 7
(111) to 0(000). CS remains low throughout the whole burst sequence
and is driven high at the end by the HC912B32. Possible software
routines to perform the SPI set-up and to control the transfer of data in
SPI burst mode are shown in the source code detailed in functions
InitSpi and SpiBurst in Appendix 1 - Source Code.

Initialisation of
the MC68HC55
SPI Peripheral’s
Registers

Table 2 DSI Registers shows the MC68HC55 registers. The HC912B32
can read-from or write-to the MC68HC55’s seven registers through the
SPI interface. Data to be transferred to the slave nodes is written into the

CLK

DI

DO

CS*

COMMAND – WRT (000) WRITE DSI0L (001)WRITE DSI0H (000)

ZEROS (1ST transfer after reset) READ DSI0L (001)READ DSI0H (000)

DSI0H - Data Access for DSI/D Channel 0 (high byte) address - 000

Bit 7 6 5 4 3 2 1 Bit 0

Bit-15 Bit-14 Bit-13 Bit-12 Bit-11 Bit-10 Bit-9 Bit-8 High

DSI0L- Data Access for DSI/D Channel 0 (low byte) address - 001

Bit 7 6 5 4 3 2 1 Bit 0

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0 Low

Table 2 DSI Registers
AN1816

13

For More Information On This Product,
 Go to: www.freescale.com

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

DSIxH:DSIxL register pair for 16-bit messages; DSIxL for 8-bit. The
transfer begins once DSIxL has been written to. Similarly, responses
from the slave nodes are written into these registers. The DSISTAT
register provides status information and should be checked before and
after transfers. It contains an error flag, ERx, which indicates if the
master received an invalid CRC value. Also, transmit and receive status
information, TFEx, TFNFx and RFNEx, is available through this register.
The DSIxCTRL register is written to before data is sent over the DSI bus.
This register is used to specify an additional divider between the SCLK
input and the bit timing circuitry, CDIVx[B:A], as well as defining the

DSI1H - Data Access for DSI/D Channel 1(high byte) address - 010

Bit 7 6 5 4 3 2 1 Bit 0

Bit-15 Bit-14 Bit-13 Bit-12 Bit-11 Bit-10 Bit-9 Bit-8 High

DSI1L- Data Access for DSI/D Channel 1(low byte) address - 011

Bit 7 6 5 4 3 2 1 Bit 0

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0 Low

DSISTAT- DSI Status Register address - 100

Bit 7 6 5 4 3 2 1 Bit 0

ER1 TFE1 TFNF1 RFNE1 ER0 TFE0 TFNF0 RFNE0

DSI0CTRL- DSI Channel 0 Control Register address - 101

Bit 7 6 5 4 3 2 1 Bit 0

CDIV0B CDIV0A DLY0B DLY0A RIE0 TIE0 0 MS0

DSI1CTRL- DSI Channel 1 Control Register address - 110

Bit 7 6 5 4 3 2 1 Bit 0

CDIV1B CDIV1A DLY1B DLY1A RIE1 TIE1 0 MS1

DSIENABL address - 111

Bit 7 6 5 4 3 2 1 Bit 0

0 0 0 0 0 0 EN1 EN0

Table 2 DSI Registers (Continued)
AN1816

14
For More Information On This Product,

 Go to: www.freescale.com

Summary

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

interframe delay, DLYx[B:A]. It is also used to enable interrupts, RIEx
and TIEx, and to select 12 -bit (8 data bits plus 4 CRC bits) or 20-bit (16
data bits plus 4 CRC bits) messages, MSx. This register is updated as
soon as new data is received over the SPI interface, however, the new
value does not take affect until the next DSI clock cycle after the
conclusion of the SPI write to this register. Finally, the DSIENABL
register is used to enable or disable each DSI channel. The function
SetupDSI shown in the source code in Appendix 1 - Source Code is an
example of how to set up the MC68HC55 SPI Peripheral’s registers. It
uses the SPI burst routine discussed in sub section: ‘Initialisation of the
PWM and SPI’ and sets up the registers for initialisation of the
programmable slave nodes.

Initialising the
Slave Nodes

Programmable
Devices

The source code shown in the main section of the program that calls
functions PgmAddr, PgmChk and ChkRsp in Appendix 1 - Source Code
details a very simple routine to program the addresses into slave nodes.
It programs 15 slave nodes sequentially starting with address 1 (0001)
and finishing with address 15 (1111). To ensure the response from the
slave node whose address is being set is captured, the MC68HC55’s
clock period is set to SCLK divided by 4 and the interframe delay is set
to 32 bit times. This is achieved by writing $B0 to the MC68HC55’s
DSIxCTRL register (refer to sub section: ‘Initialisation of the MC68HC55
SPI Peripheral’s Registers’).

Pre-programmed
Devices

When the network is configured with pre-programmed devices the
initialisation procedure is similar to that of programmable devices. An
initialisation command that contains the address of the slave node being
initialised is sent to that slave node. The slave node then responds to the
initialisation command to let the master know it is present in the network.

Summary

This Application Note has discussed a total system solution using a full
suite of Freescale ICs. Although the initial target application is automotive
airbag systems it could be used in other applications which require
remote sensors. The Distributed Systems Interface (DSI) has many
advantages in that it allows flexibility of system design, is easily
expandible and allows the central module size to decrease while the
system content grows.
AN1816

15

For More Information On This Product,
 Go to: www.freescale.com

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

References

1. DSI Specification; internal Freescale document

2. MC68HC55 SPI Peripheral Specification; data sheet, order
number MC68HC55/D

3. BEM Specification; only available with DSI Evaluation System
(contact sales office for more details)

4. MC33790 Physical Layer ASIC Specification; internal Freescale
document

5. MC68HC912B32 Advance Information; order number
MC68HC912B32/D
AN1816

16
For More Information On This Product,

 Go to: www.freescale.com

Appendix 1 - Source Code

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix 1 - Source Code

/**
FILE : B32DSI.h

Header file referenced in program InitB32DSI.c to define the register addresses of the
COP, PWM and SPI

***/

/* Define COP register */

#define COPBASE (volatile char *const)(0x16)
#define COPCTL (*(COPBASE+0))

/* Define PORTA for general purpose I/O */
#define PTABASE (volatile char *const) (0x00)
#define PORTA (*(PTABASE+0))
#define DDRA (*(PTABASE+2))

/* Define PWM registers */
#define PWMBASE (volatile char *const)(0x40)
#define PWCLK (*(PWMBASE+0))
#define PWPOL (*(PWMBASE+1))
#define PWEN (*(PWMBASE+2))
#define PWRES (*(PWMBASE+3))
#define PWPER0 (*(PWMBASE+0xc))
#define PWDTY0 (*(PWMBASE+0x10))
#define PWCTL (*(PWMBASE+0x14))
#define PORTPP (*(PWMBASE+0x16))
#define DDRP (*(PWMBASE+0x17))

/* Define SPI Registers */
#define SPIBASE (volatile char *const)(0xd0)
#define SP0CR1 (*(SPIBASE+0))
#define SP0CR2 (*(SPIBASE+1))
#define SP0BR (*(SPIBASE+2))
#define SP0SR (*(SPIBASE+3))
#define SP0DR (*(SPIBASE+5))
#define PORTS (*(SPIBASE+6))
#define DDRS (*(SPIBASE+7))
#define PURDS (*(SPIBASE+0xb))

/**
FILE : InitB32DSI.c

C code to be programmed into the FLASH of the HC912B32 which initialises the PWM and
SPI of the HC912B32 then sets up the DSI registers on the MC68HC55 SPI Peripheral
I.C. before programming the address into 15 programmable slave nodes
AN1816

17

For More Information On This Product,
 Go to: www.freescale.com

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

This source code is example code that could be used to perform initialisation.

Freescale reserves the right to make changes without further notice to any product
herein to improve reliability, function, or design. Freescale does not assume any
liability arising out of the application or use of any product, circuit or software
described herein; neither does it convey any licensed under its patent rights nor the
right of others. Freescale products are not designed, intended or authorised for use
as components intended for surgical implant into the body, or other applications
intended to support life, or any other application in which failure of the Freescale
product could create a situation where personal injury or death may occur. Should
Buyer purchase or use Freescale products for any such intended or unauthorised
application, Buyer shall indemnify and hold Freescale and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs,
damages, expenses and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorised
use, even if such a claim alleges that Freescale was negligent regarding the design
or manufacture of the part. Freescale and the Freescale logo are registered trademarks
of Freescale Semiconductor, Inc.

***/

#include <stdio.h>
#include “B32DSI.h”
#define ArraySize 0x0F /* (no. of slave nodes) */

short TBytes [ArraySize]; /* Array of bytes to be transmitted */
short RBytes [ArraySize]; /* Array of received bytes */
short ChkBytes [ArraySize]; /* Array of check bytes to check
received data is correct */
short ErrorCode [ArraySize]; /* Array of Error codes */

/* This function sets up the PWM of the HC912B32 */
void InitPWM(void)
{
 PWCLK = 0x00; /* Don’t divide A clock */
 PWPOL = 0x00; /* Use A clock and polarity is low until duty
count is reached */
 PWPER0 = 0x1b; /* Period of 3.5µs (frequency of 285.71 kHz) */
 PWDTY0 = 0x0d; /* Duty cycle is 50% */
 DDRP = 0x01; /* Set up PTP0 as output */
 PWCTL = 0x00; /* Left aligned mode as CENTR=0 */
 PWEN = 0x01; /* Enable the PWM */
}

/* This function sets up the SPI of the HC912B32 */
void InitSPI(void)
{
 PURDS = 0x00; /* Leave as normal conditions */
 SP0BR = 0x00; /* SPI clock frequency is 4 MHz */
 SP0CR1 = 0x00; /* CPOL = CPHA = 0 */
 DDRS = 0xe0; /* Set up PTS[7:5] as outputs (SS, SCLK and
MOSI) */
AN1816

18
For More Information On This Product,

 Go to: www.freescale.com

Appendix 1 - Source Code

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

 SP0CR1 = 0x10; /* Enable master mode and SSOE=0, therefore SS
is GP I/O */
 SP0CR1 = 0x50; /* Enable SPI system now */
}

/* This function is called by the SpiBurst function. It writes information into the
SPI data register and when the SPI transfer complete flag is set it sends back the
information received by the SPI */

short TransmitReceive(short SendByte)
{
 int dummy=0;
 short result;

 SP0DR = SendByte;
 while ((SP0SR & 0x80) == 0) /* Wait until SPI transfer
complete flag is set */
 {
 dummy++;
 }
 result = SP0DR;
 return (result);
}

/* This function sets up the SPI Burst transfer routine. It enables the MC68HC55 SPI
Peripheral by driving CS low and then transfers the required no. of bytes of data to
complete the burst transfer. It finishes by driving CS high and disabling the MC68HC55
SPI Peripheral */

void SpiBurst(int ByteCount)
{
 int count;

 /* CS to go LOW */
 PORTS = 0x00;

 /* Transmit bytes */
 for (count=0; count<ByteCount; count++)
 {
 RBytes[count] = TransmitReceive(TBytes[count]);
 }

 /* CS to go HIGH */
 PORTS = 0x80;
}

/* This function sets up the DSI registers */
int SetupDSI(void)
{
 int ErrCnt=0;
 int ChkCnt;

 /* Set up DSI/D Registers */
 TBytes[0] = 0x85; /* Send 85 (write cmd to reg.
addr. 5) */
AN1816

19

For More Information On This Product,
 Go to: www.freescale.com

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

 TBytes[1] = 0xb0; /* Rec./Transmit Interrupts
disabled, Msg size 20Bits (16 + 4CRC) */
 TBytes[2] = 0x00; /* Set up ch. 1 ctrl reg to be
the same */
 TBytes[3] = 0x01; /* Only ENABLE ch. 0 (0x03 to
enable ch. 0 & 1, 0x02 to enable ch.1 only) */

 SpiBurst(4); /* Transmits the info. set up
by TBytes to the DSI/D */

 TBytes[0] = 0x05; /* Cmd. to read DSI/D registers
starting address 5 */
 SpiBurst(4); /* RBytes[x] will return
the contents of DSI/D registers 5 to 7 */

 ChkBytes[1] = 0xb0; /* should match RBytes[1]
contents of DSI0CTRL reg. */
 ChkBytes[2] = 0x00; /* should match RBytes[2]
contents of DSI1CTRL reg. */
 ChkBytes[3] = 0x01; /* should match RBytes[3]
contents of DSIENABL reg. */

/* Compare RBytes[1 to 3] to ChkBytes[1 to 3] if not equal ErrCnt is incremented &
returned to main */

 for (ChkCnt=1; ChkCnt<4; ChkCnt ++)
 if ((RBytes[ChkCnt] & 0x00ff) != (ChkBytes[ChkCnt] &
0x00ff)) ErrCnt++;

 return (ErrCnt);
}

/* This function is here to allow visibility of failures when using debugger tool */
void FlagError(int Err, int Adr)
{
 ErrorCode[Err]=Adr;
}

/* This function checks that the TFNF0 flag is set */
void TFFlag(int Address)
{
 TBytes[0] = 0x04;
 SpiBurst(2);
 if (!(RBytes[1] & 0x02)) {
 FlagError(2,Address);
 for (;;); /* error - loop until device is reset */
 }
}

/* This function waits in a loop until the RFNE0 flag is set */
/* & therefore data has been written into the DSI data registers */

void RFFlag(void)
{
 TBytes[0] = 0x04;
AN1816

20
For More Information On This Product,

 Go to: www.freescale.com

Appendix 1 - Source Code

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

 SpiBurst(2);
 while ((RBytes[1] & 0x01) == 0)
 {
 SpiBurst(2);
 }
}

/* This function programs the address into the first slave node (no response is
expected) */

void PgmAddr(int Addr)
{
 TFFlag(Addr); /* Check TFNF0 flag is set */
 TBytes[0] = 0x80; /* send 80 (write cmd to DSI0H) receive
00 */
 TBytes[1] = Addr; /* Pgm Addr cmd into DSI0H then TBytes[2]
is DSI0L */
 TBytes[2] = 0x00;
 SpiBurst(3);
 RFFlag();
}

/* This function programs the addresses into slave nodes 2 through to 15 and checks
the responses from slave nodes 1 to 14 */

void PgmChk(int Addr, int LastAddr)
{
 unsigned short DsiDat;
 unsigned short DsiChk;
 int dummy=0;

 TFFlag(Addr); /* Check TFNF0 flag is set */
 TBytes[0] = 0x80; /* send 80 (write cmd to DSI0H) */
 TBytes[1] = Addr; /* Pgm Addr cmd written into DSI0H &
DSI0L */
 TBytes[2] = 0x00;
 SpiBurst(3);
 RFFlag();
 /* CRC Check */
 if (RBytes[1] & 0x08) {
 FlagError(4,LastAddr);
 for (;;); /* error - loop until device is reset */
 }
 TBytes[0] = 0x00; /* Read DSI0H and DSI0L */
 SpiBurst(3);
 DsiDat = RBytes[1] | 0x0000;
 /* Now shift DsiDat 8 times */
 DsiDat <<= 8;
 DsiDat = DsiDat+RBytes[2];

/* Now need to check the response ie that bits[15:12] = Prev.
Slave Addr */
 DsiDat >>= 12;
 DsiChk = LastAddr | 0x0000;
 if (DsiDat != DsiChk) {
AN1816

21

For More Information On This Product,
 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 FlagError(6,LastAddr);
 for (;;); /* error - loop until device is reset */
 }

/* This function checks the response to the program address command of the last slave
node (number 15) */

void ChkRsp(int Addr, int ADCcmd))
{
 unsigned short DsiDat;
 unsigned short DsiChk;
 int dummy=0;

 TFFlag(Addr); /* Check TFNF0 flag is set */
 TBytes[0] = 0x80; /* send 80 (write cmd to DSI0H) */
 TBytes[1] = 0x00; /* cmd written into DSI0H & DSI0L */
 TBytes[2] = 0xADCcmd; /*dummy command to allow response from
final pgm addr cmd to be captured */
 SpiBurst(3);
 RFFlag();
 /* CRC Check */
 if (RBytes[1] & 0x08) {
 FlagError(4, Addr);
 for (;;); /*error - loop until device is reset */
 }
 TBytes[0] = 0x00; /* Read DSI0H and DSI0L */
 SpiBurst(3);
 DsiDat = RBytes[1] | 0x0000;
 /* Now shift DsiDat 8 times */
 DsiDat <<= 8;
 DsiDat = DsiDat+RBytes[2];

/* Now need to check the response ie that bits[15:12] = Slave
Addr */
 DsiDat >>= 12;
 DsiChk = Addr | 0x0000;
 if (DsiDat != DsiChk) {
 FlagError(6,Addr);
 for (;;); /* error - loop until device is reset */
 }

int main (int argc, char* argv[])
{
 int Result=-1;
 short SlaveNum; /* the address of the slave node to be
programmed */
 short PrevAddr; /* the address of the previous slave node
whose response requires to be checked */

 COPCTL = 0x00; /* Disable COP resets */
 InitPWM(); /* Set up PWM */
 InitSPI(); /* Set up SPI */

 Result = SetupDSI(); /* Set up DSI ctrl and enable
AN1816

22
For More Information On This Product,

 Go to: www.freescale.com

Appendix 1 - Source Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

registers (Result=0) if all OK*/
 if (Result != 0) {
 FlagError(1,1); /* need to stop program as well */
 for (;;); /* error - loop until device is reset */
 }

 /* Program the address into each slave node and check response */
 /* For this version no. of slave nodes is 15 (the maximum) */

 PgmAddr(0x01);
 for (SlaveNum=0x02, PrevAddr=0x01; SlaveNum<0x10; SlaveNum++,
PrevAddr++)
 {
 PgmChk(SlaveNum, PrevAddr);
 }
 ChkRsp(0x0F, 0x02);

 return;
}

AN1816

23

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For More Information On This Product,
 Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

