WEIDA

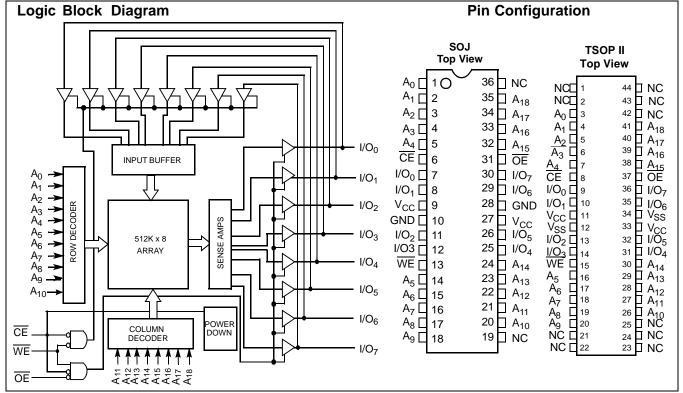
WCFS4008V1C

Features

- High speed
 - —t_{AA} = 12 ns
- 2.0V Data Retention
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features

Functional Description

The WCFS4008V1C is a high-performance CMOS Static RAM organized as 524K words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (\overline{CE}), an active LOW Output Enable (\overline{OE}), and three-state drivers. Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and


512K x 8 Static RAM

Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₈).

Reading from the device is accomplished by taking Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in <u>a</u> high-impedance state when the <u>device</u> is deselected (CE HIGH), the <u>outputs</u> are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The WCFS4008V1C is available in standard 400-mil-wide 36-pin SOJ package and 44-pin TSOP II package with center power and ground pinout.

Selection Guide

		WCFS4008V1C 12ns
Maximum Access Time (ns)		12
Maximum Operating Current (mA)	Comm'l	85
Maximum CMOS Standby Current (mA)	Comm'l	10

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)

Storage Temperature	.–65×C to +150×C
Ambient Temperature with Power Applied	.–55×C to +125×C
Supply Voltage on V_{CC} to Relative GND ^[1]	–0.5V to +4.6V
DC Voltage Applied to Outputs in High Z State ^[1] C	0.5V to V _{CC} + 0.5V

Electrical Characteristics Over the Operating Range

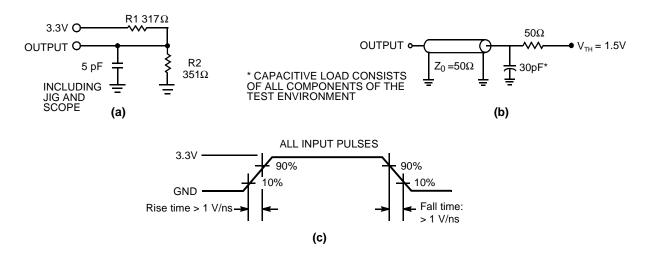
DC Input Voltage ^[1]	–0.5V to V _{CC} + 0.5V
Current into Outputs (LOW)	

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	$3.3 \text{V} \pm 0.3 \text{V}$

Parameter	Description	Description Test Conditions		WCFS400	3V1C 12ns	
				Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.,$ $I_{OH} = -4.0 \text{ mA}$	2.4		V	
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA			0.4	V
V _{IH}	Input HIGH Voltage		2.0	V _{CC} + 0.3	V	
V _{IL}	Input LOW Voltage ^[1]			-0.3	0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$		-1	+1	μA
I _{OZ}	Output Leakage Current	$GND \le V_{OUT} \le V_{CC},$ Output Disabled		-1	+1	μΑ
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ f = f _{MAX} = 1/t _{RC} Comm'l			85	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{array}{l} \text{Max. } V_{CC}, \ \overline{CE} \geq V_{IH} \\ V_{IN} \geq V_{IH} \text{ or} \\ V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{array}$			40	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\label{eq:linear_state} \begin{array}{ll} \underline{Max}. \ V_{CC}, & & Comm'll \\ \hline CE \geq V_{CC} - 0.3V, & \\ V_{IN} \geq V_{CC} - 0.3V, & \\ or \ V_{IN} \leq 0.3V, \ f = 0 & \end{array}$			10	mA

Capacitance^[2]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	I/O Capacitance	$V_{CC} = 3.3V$	8	pF

Note:

1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns 2. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

AC Switching Characteristics^[3] Over the Operating Range

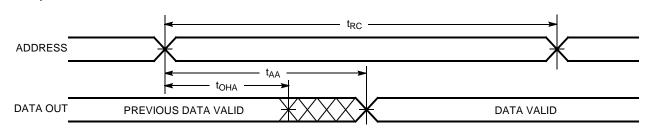
		WCFS400	8V1C 12ns	
Parameter	Description	Min.	Max.	Unit
READ CYCLE				ł
t _{power} ^[4]	V _{CC} (typical) to the first access	1		ns
t _{RC}	Read Cycle Time	12		ns
t _{AA}	Address to Data Valid		12	ns
t _{OHA}	Data Hold from Address Change	3		ns
t _{ACE}	CE LOW to Data Valid		12	ns
t _{DOE}	OE LOW to Data Valid		6	ns
t _{LZOE}	OE LOW to Low Z	0		ns
t _{HZOE}	OE HIGH to High Z ^[5, 6]		6	ns
t _{LZCE}	CE LOW to Low Z ^[6]	3		ns
t _{HZCE}	CE HIGH to High Z ^[5, 6]		6	ns
t _{PU}	CE LOW to Power-Up	0		ns
t _{PD} CE HIGH to Power-Down			12	ns
WRITE CYCLE ^{[7,}	8]			
t _{WC}	Write Cycle Time	12		ns
t _{SCE}	CE LOW to Write End	8		ns
t _{AW}	Address Set-Up to Write End	8		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	8		ns
t _{SD}	Data Set-Up to Write End	6		ns
t _{HD}	Data Hold from Write End	0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]	3		ns
t _{HZWE}	WE LOW to High Z ^[5, 6]		6	ns

Notes:

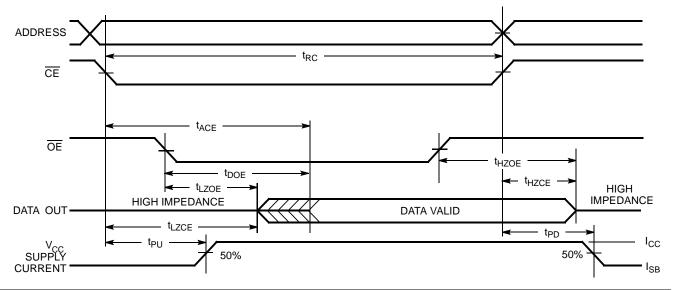
3. 4.

Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V. t_{POWER} gives the minimum amount of time that the power supply should be at stable, typical Vcc values until the first memory access can be performed. t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured \pm 500 mV from steady-state voltage. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZOE} , t_{HZOE} is less than t_{LZOE} , and t_{LZWE} for any given device. The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. The minimum write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD} . 5.

6.


7.

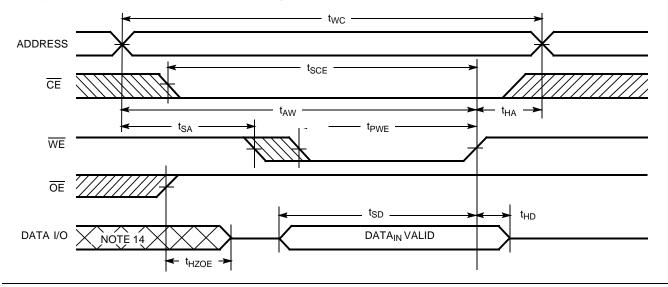
8.



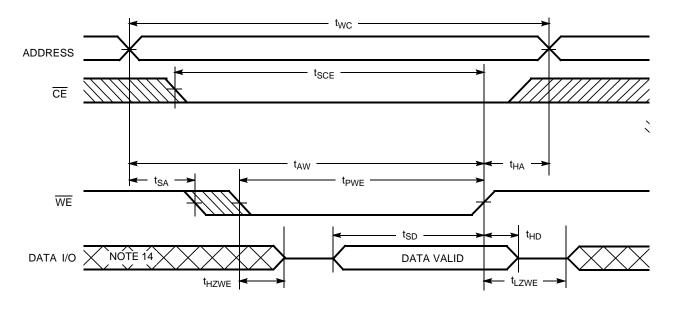
Switching Waveforms

Read Cycle No. 1^[9, 10]

Read Cycle No. 2 (OE Controlled)^[10, 11]


Notes:

Device is continuously selected. OE, CE = V_{IL}.
WE is HIGH for read cycle.
Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1(WE Controlled, OE HIGH During Write)^[12, 13]

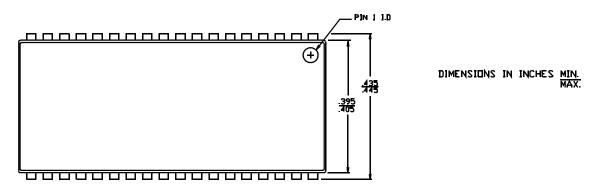
Write Cycle No. 2 (\overline{WE} Controlled, \overline{OE} LOW)^[13]

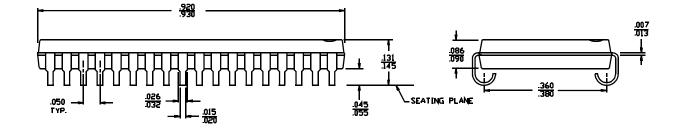
Truth Table

CE	OE	WE	1/0 ₀ – 1/0 ₇	Mode	Power
Н	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

Notes:

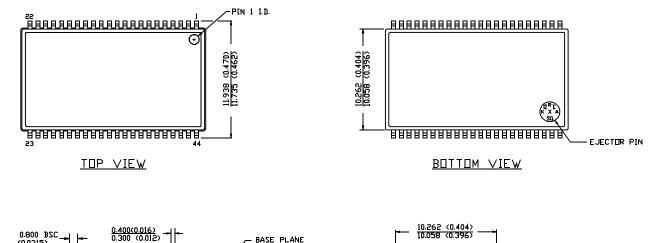
Data I/O is high-impedance if OE = V_{IH}.
If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
During this period the I/Os are in the output state and input signals should not be applied.

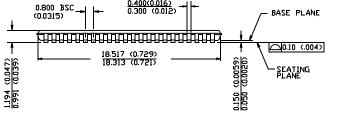



Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	WCFS4008V1C-JC12	J	36-Lead (400-Mil) Molded SOJ	Commercial
	WCFS4008V1C-TC12	Т	44-pin TSOP II	

Package Diagrams





Package Diagrams (continued)

DIMENSION IN MM (INCH) MAX MIN.

512K x 8 Static RAM

Revision History

Document Title: WCFS4008V1C 32K x 8 3.3V Static RAM				
REV.	ISSUE DATE ORIG. OF CHANGE DESCRIPTION OF CHANGE			
**	4/12/2002	XFL	New Datasheet	