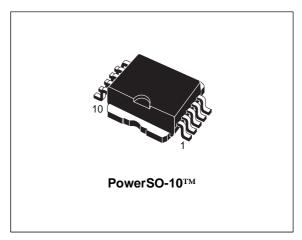
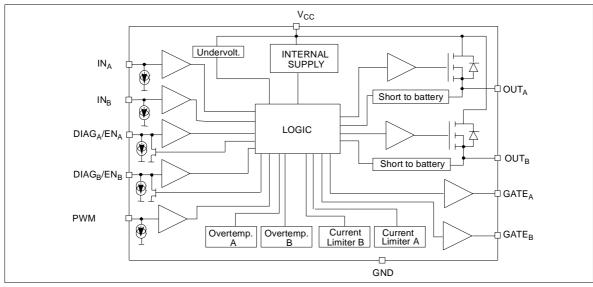


VND670SP


DUAL HIGH SIDE SWITCH WITH DUAL POWER MOS GATE DRIVER (BRIDGE CONFIGURATION)

TYPE	R _{DS(on)}	I _{OUT}	V _{DSS}
VND670SP	$30~\text{m}\Omega$	15 A	40 V

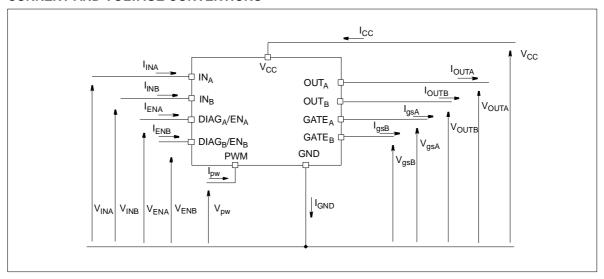
- OUTPUT CURRENT:15A PER CHANNEL
- 5V LOGIC LEVEL COMPATIBLE INPUTS
- GATE DRIVE FOR TWO EXTERNAL POWER MOS
- UNDERVOLTAGE AND OVERVOLTAGE SHUT-DOWN
- OVERVOLTAGE CLAMP
- THERMAL SHUT DOWN
- CROSS-CONDUCTION PROTECTION
- **CURRENT LIMITATION**
- VERY LOW STAND-BY POWER CONSUMPTION
- PWM OPERATION UP TO 10 KHz
- PROTECTION AGAINST: LOSS OF GROUND AND LOSS OF V_{CC}
- REVERSE BATTERY PROTECTION (*)



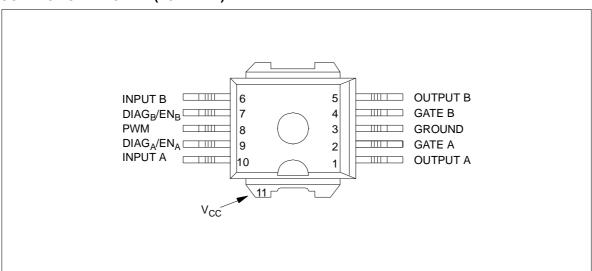
The VND670SP is a monolithic device made using STMicroelectronics VIPower technology M0-3, intended for driving motors in full bridge

configuration. The device integrates two 30 m Ω Power MOSFET in high side configuration, and provides gate drive for two external Power MOSFET used as low side switches. INA and INB allow to select clockwise or counter clockwise drive or brake; DIAGA/ENA, DIAGB/ENB allow to disable one half bridge and feedback diagnostic. Built-in thermal shut-down, combined with a current limiter, protects the chip in overtemperature and short circuit conditions. Short to battery protects the external connected low-side Power MOSFET.

BLOCK DIAGRAM


(*) See note at page 5

January 2003 1/14


ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	-0.3 40	V
I _{max1}	Maximum output current (continuous)	15	А
I _{max2}	Maximum output current (250 ms pulse duration)	20	Α
I _R	Reverse output current (continuous)	-15	Α
I _{IN}	Input current	+/- 10	mA
I _{EN}	Enable pin current	+/- 10	mA
I _{pw}	PWM pin current	+/- 10	mA
I _{gs}	Output gate current	+/- 20	mA
V _{ESD}	Electrostatic discharge (R=1.5kΩ, C=100pF)	2000	V
Tj	Junction operating temperature	-40 to 150	°C
T _{STG}	Storage temperature	-55 to 150	°C

CURRENT AND VOLTAGE CONVENTIONS

CONNECTION DIAGRAM (TOP VIEW)

THERMAL DATA

Symbol	Parameter		Value	Unit
R _{thj-case}	Thermal resistance junction-case (per channel)	(MAX)	1.4	°C/W
R _{thi-amb} (*)	Thermal resistance junction-ambient	(MAX)	50	°C/W

^(*) When mounted using the recommended pad size on FR-4 board (See AN515 Application Note).

ELECTRICAL CHARACTERISTICS (V_{CC} =9V up to 18V; -40°C< T_j <150°C; unless otherwise specified) POWER

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{CC}	Operating supply voltage		5.5		36	V
р.	On state resistance	I _{LOAD} =12A			50	mΩ
R _{ON}	On state resistance	I _{LOAD} =12A; Tj=25°C		26	30	mΩ
	Supply ourrent	ON state			15	mA
Is	Supply current	OFF state			40	μΑ
V _{gate}	Gate output voltage		5.0		8.5	V
$V_{gs,cl}$	Gate output clamp voltage	I _{gs} =-1 mA	6.0	6.8	8.0	V

SWITCHING (V_{CC} =13V, R_{LOAD} =1.1 Ω)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _{D(on)}	Turn-on delay time	Input rise time < 1μs (see fig. 1)		50	150	μs
t _{D(off)}	Turn-off delay time			45	135	μs
t _r	Output voltage rise time			50	150	μs
t _f	Output voltage fall time			40	120	μs
(dV _{OUT} /dt) _{on}	Turn-on voltage slope			160	500	V/ms
(dV _{OUT} /dt) _{off}	Turn-off voltage slope			230	1200	V/ms
t _{dong}	V _{gs} Turn-on delay time	C1=4.7nF		0.5	2	μs
t _{rg}	V _{gs} rise time	Break to ground configuration		2.6	10	μs
t _{doffg}	V _{gs} Turn-off delay time	- (see fig. 2)		1.0	5.0	μs
t _{fg}	V _{gs} fall time	(See lig. 2)		2.2	10	μs
t _{del}	External MOSFET turn-on dead time	(see fig. 3)	150	600	1800	μs

PROTECTION AND DIAGNOSTIC

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{USD}	Undervoltage shut-down				5.5	V
V _{OV}	Overvoltage shut-down		36	43		V
I _{LIM}	Current limitation		30	45		Α
T _{TSD}	Thermal shut-down temperature	V _{IN} = 3.25 V	150	170	200	°C
V _{ocl}	Output turn-off clamp voltage	I _{LOAD} =12A, L=6mH	V _{CC} -55		V _{CC} -41	V
V _{sat}	External MOSFET saturation voltage detection threshold		2.5	4.2	5.5	V

ELECTRICAL CHARACTERISTICS (continued) PWM

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
1/	PWM low level				1.5	V
V_{pwl}	voltage				1.5	V
I _{pwl}	PWM pin current	V _{pw} =1.5V	1			μΑ
V	PWM high level		3.25			V
V_{pwh}	voltage		3.23			V
I _{pwh}	PWM pin current	V _{pw} =3.25V			10	μΑ
V _{pwhhyst}	PWM hysteresis voltage		0.5			V
	PWM clamp voltage	$I_{pw} = 1 \text{ mA}$	V _{CC} +0.3	V _{CC} +0.7	V _{CC} +1.0	V
V_{pwcl}	1 WW clamp voltage	$I_{pw} = -1 \text{ mA}$	-5.0	-3.5	-2.0	V
V _{pwtest}	Test mode PWM pin voltage		-3.5	-2.0	-0.5	V
I _{pwtest}	Test mode PWM pin current	V _{pwtest} = -2.0 V	-2000	-500		μΑ

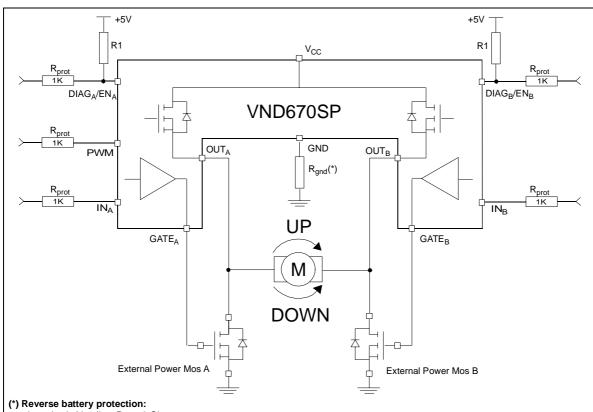
LOGIC INPUT (IN_A/IN_B)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{IL}	Input low level voltage				1.5	V
I _{INL}	Input current	V _{IN} =1.5 V	1			μΑ
V _{IH}	Input high level voltage		3.25			V
I _{INH}	Input current	V _{IN} =3.25 V			10	μΑ
V _{IHYST}	Input hysteresis voltage		0.5			V
V	Input clamp voltage	I _{IN} =1mA	6.0	6.8	8.0	V
V _{ICL}	input ciamp voltage	I _{IN} =-1mA	-1.0	-0.7	-0.3	V

ENABLE (LOGIC I/O PIN)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
		Normal operation				
V _{ENL}	Enable low level voltage	(DIAG _X /EN _X pin acts as an input pin)			1.5	V
I _{ENL}	Enable pin current	V _{EN} = 1.5 V	1			μΑ
		Normal operation				
V _{ENH}	Enable high level voltage	(DIAG _X /EN _X pin acts as an input pin)	3.25			V
I _{ENH}	Enable pin current	V _{EN} = 3.25 V			10	μΑ
		Normal operation				
V _{EHYST}	Enable hysteresis voltage	(DIAG _X /EN _X pin acts as an input pin)	0.5			V
V	Enable clamp voltage	I _{EN} =1mA	6.0	6.8	8.0	V
V _{ENCL}	Enable clamp voltage	I _{EN} =-1mA	-1.0	-0.7	-0.3	V
		Fault operation				
V _{DIAG}	Enable output low level voltage	(DIAG _X /EN _X pin acts as an input pin)			0.4	V
		I _{EN} =1.6 mA				

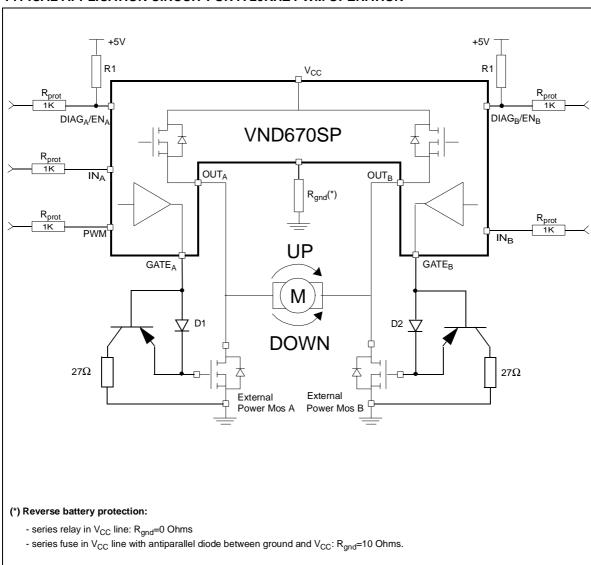
WAVEFORMS AND TRUTH TABLE


TRUTH TABLE IN NORMAL OPERATING CONDITIONS

In normal operating conditions the DIAG_X/EN_X pin is considered as an input pin by the device. This pin must be externally pulled high.

INA	IN _B	DIAG _A /EN _A	DIAG _B /EN _B	OUTA	OUTB	GATEA	GATEB	Comment
1	1	1	1	Н	Н	L	L	Brake to V _{CC}
1	0	1	1	Н	L	L	Н	Clockwise
0	1	1	1	L	Н	Н	L	Counter cw
0	0	1	1	L	L	Н	Н	Brake to GND
Х	Х	0	0	L	L	L	L	Stand by
1	Х	1	0	Н	L	L	L	HS _A only
0	Х	1	0	L	L	Н	L	MOS _A only
Х	1	0	1	L	Н	L	L	HS _B only
Х	0	0	1	L	L	L	Н	MOS _B only

In all cases, a "0" on the PWM pin will turn-off both GATE_A and GATE_B outputs. When PWM rises back to "1", GATE_A or GATE_B turn on again depending on the input pin state.


TYPICAL APPLICATION CIRCUIT FOR DC TO 10KHz PWM OPERATION

- series relay in V_{CC} line: R_{gnd} =0 Ohms - series fuse in V_{CC} line with antiparallel diode between ground and V_{CC} : R_{gnd} =10 Ohms.

Layout hints:

The connection between GND pin of the VN670SP and the Power MOSFET SOURCE connections should be kept short enough to ensure that the dynamic difference between these two points never exceed 1V for the bridge to operate properly.

TYPICAL APPLICATION CIRCUIT FOR A 20KHZ PWM OPERATION

WAVEFORMS AND TRUTH TABLE (CONTINUED)

In case of a fault condition the DIAG_X/EN_X pin is considered as an output pin by the device.

The fault conditions are:

- overtemperature on one or both high sides;
- short to battery condition on the output (saturation detection on the external connected Power MOSFET).

Possible origins of fault conditions may be:

OUT_A is shorted to ground ---> overtemperature detection on high side A.

 OUT_A is shorted to V_{CC} ---> external Power MOSFET saturation detection (driven by $GATE_A$). When a fault condition is detected, the user can know which power element is in fault by monitoring the IN_A , IN_B , $DIAG_A$ / ENA and DIAGB/ENB pins.

In any case, when a fault is detected, the faulty half bridge is latched off. To turn-on the respective output (GATE_X or OUT_X) again, the input signal must rise from low to high level.

TRUTH TABLE IN FAULT CONDITIONS (detected on OUT_A)

INA	IN _B	DIAG _A /EN _A	DIAG _B /EN _B	OUTA	OUTB	GATEA	GATE _B
1	1	0	1	OPEN	н	L	L
1	0	0	1	OPEN	OPEN	L	L
0	1	0	1	OPEN	Н	L	L
0	0	0	1	OPEN	OPEN	L	L
Х	Х	0	0	OPEN	OPEN	L	L
1	Х	0	0	OPEN	OPEN	L	L
0	Х	0	0	OPEN	OPEN	L	L
Х	1	0	1	OPEN	Н	L	L
Х	0	0	1	OPEN	OPEN	L	L

Fault Information

Protection Action

TEST MODE

The PWM pin allows to test the load connection between two half-bridges. In the test mode (V_{pwm} =-2V) the external Power Mos gate drivers are disabled. The IN_A or IN_B inputs allow to turn-on the High Side A or B, respectively, in order to connect one side of the load at V_{CC} voltage. The check of the voltage on the other side of the load allow to verify the continuity of the load connection. In case of load disconnection the DIAD $_X$ /EN $_X$ pin corresponding to the faulty output is pulled down.

ELECTRICAL TRANSIENT REQUIREMENTS

ISO T/R 7637/1 Test Pulse	Test Level	Test Level	Test Level	Test Level IV	Test Levels Delays and Impedance
1	-25V	-50V	-75V	-100V	2ms, 10Ω
2	+25V	+50V	+75V	+100V	0.2ms, 10Ω
3a	-25V	-50V	-100V	-150V	0.1μs, 50Ω
3b	+25V	+50V	+75V	+100V	0.1μs, 50Ω
4	-4V	-5V	-6V	-7V	100ms, 0.01Ω
5	+26.5V	+46.5V	+66.5V	+86.5V	400ms, 2Ω

ISO T/R 7637/1 Test Pulse	Test Levels Result	Test Levels Result II	Test Levels Result	Test Levels Result
1	С	С	С	С
2	С	С	С	С
3a	С	С	С	С
3b	С	С	С	С
4	С	С	С	С
5	С	Е	E	E

Class	Contents		
С	All functions of the device are performed as designed after exposure to disturbance.		
E	One or more functions of the device are not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.		

Figure 1: Test conditions for High Side switching times measurement.

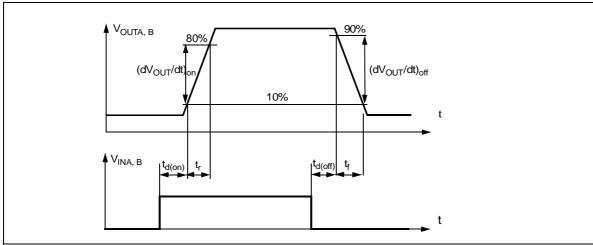
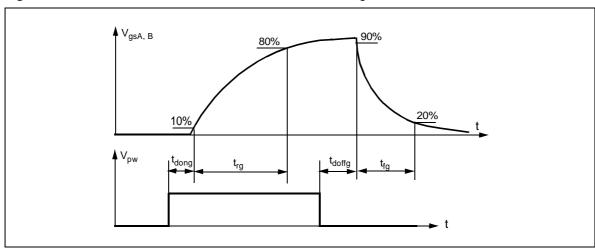
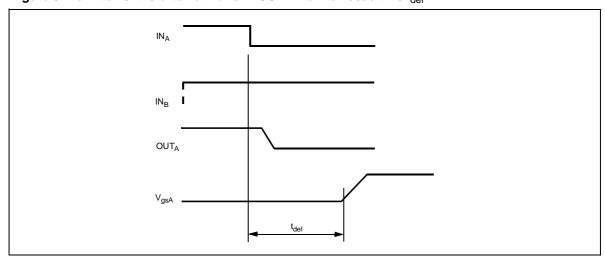
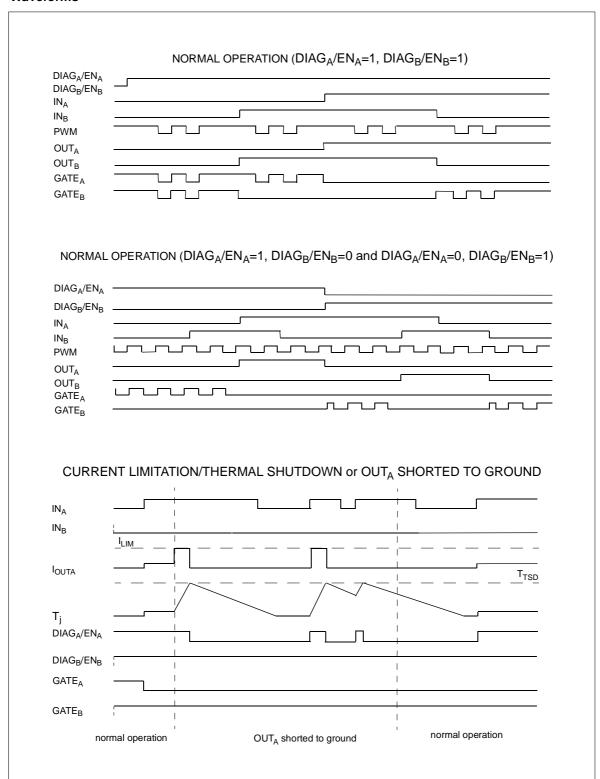
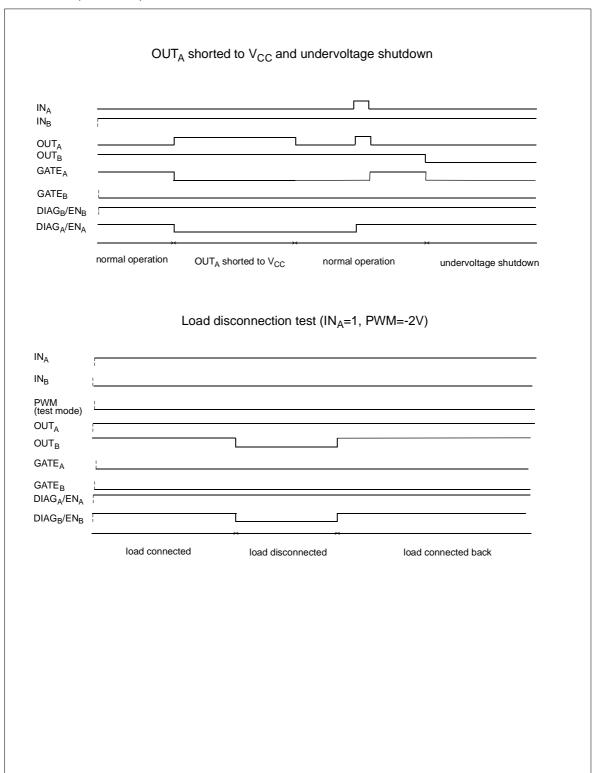
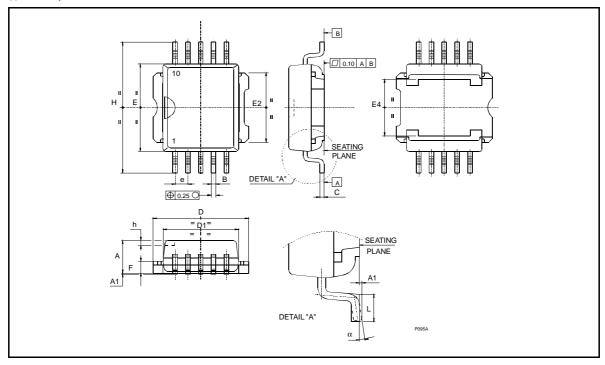


Figure 2: Test conditions for external Power MOSFET switching times measurement.

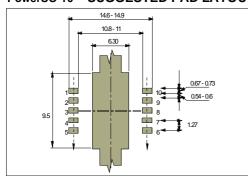




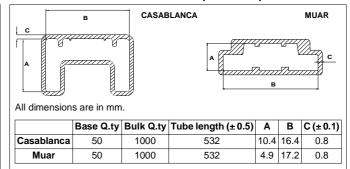

Figure 3: Definition of the external Power MOSFET turn-on dead time t_{del}

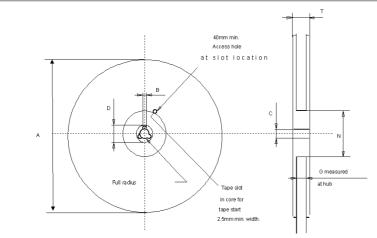
Waveforms


Waveforms (Continued)

PowerSO- 10^{TM} MECHANICAL DATA


DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	3.35		3.65	0.132		0.144
A (*)	3.4		3.6	0.134		0.142
A1	0.00		0.10	0.000		0.004
В	0.40		0.60	0.016		0.024
B (*)	0.37		0.53	0.014		0.021
Ċ	0.35		0.55	0.013		0.022
C (*)	0.23		0.32	0.009		0.0126
D	9.40		9.60	0.370		0.378
D1	7.40		7.60	0.291		0.300
E	9.30		9.50	0.366		0.374
E2	7.20		7.60	0.283		300
E2 (*)	7.30		7.50	0.287		0.295
E4	5.90		6.10	0.232		0.240
E4 (*)	5.90		6.30	0.232		0.248
е		1.27			0.050	
F	1.25		1.35	0.049		0.053
F (*)	1.20		1.40	0.047		0.055
Ĥ	13.80		14.40	0.543		0.567
H (*)	13.85		14.35	0.545		0.565
h		0.50			0.002	
L	1.20		1.80	0.047		0.070
L (*)	0.80		1.10	0.031		0.043
α	00		8º	00		8º
α (*)	2º		80	2º		8°

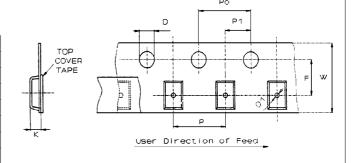

(*) Muar only POA P013P


PowerSO-10TM SUGGESTED PAD LAYOUT

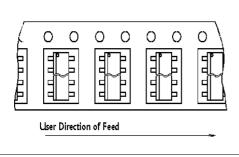
TUBE SHIPMENT (no suffix)

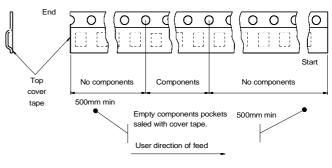
TAPE AND REEL SHIPMENT (suffix "13TR")

REEL DIMENSIONS


600	
600	
330	
1.5	
13	
20.2	
24.4	
60	
30.4	

All dimensions are in mm.


TAPE DIMENSIONS


According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb. 1986

Tape width	W	24
Tape Hole Spacing	P0 (± 0.1)	4
Component Spacing	Р	24
Hole Diameter	D (± 0.1/-0)	1.5
Hole Diameter	D1 (min)	1.5
Hole Position	F (± 0.05)	11.5
Compartment Depth	K (max)	6.5
Hole Spacing	P1 (± 0.1)	2

All dimensions are in mm.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

 $\ensuremath{\texttt{©}}$ 2002 STMicroelectronics - Printed in ITALY- All Rights Reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com