MOS INTEGRATED CIRCUIT μ PD7564A, 7564A(A)

4-BIT SINGLE-CHIP MICROCOMPUTER

DESCRIPTION

The μ PD7564A is a 4-bit single-chip microcomputer with a small number of ports in a small package, which is of low-order models, μ PD7554 and 7564 sub-series in the μ PD7500 series. With an on-chip serial interface, it performs efficient dispersion processing of a system as a sub-CPU for the 75X series or 78k series.

The μ PD7564A has outputs to directly drive a triac and LEDs and allows selection among many types of input/ output circuits using their respective mask options, sharply reducing the number of external circuits required.

Details of functions are described in the User's Manual shown below. Be sure to read in design. μ PD7554, 7564 User's Manual: IEM-1111D

FEATURES

- 47 types of instructions
(Subset of μ PD7500H SET B)
- Instruction cycle

Ceramic oscillation : $2.86 \mu \mathrm{~s}$
(in operation at $700 \mathrm{kHz}, 5 \mathrm{~V}$)

- Program memory (ROM) capacity: 1024×8 bits
- Data memory (RAM) capacity: 64×4 bits
- Test source: One external source and two internal sources
- 8-bit timer/event counter
- 15 I/O lines (Total output current of all pins: 100 mA)
- Can directly drive a triac and a LED: P80 to P82
- Can directly drive LEDs: P100 to P103 and P110 to P113
- Mask option function provided for every port

APPLICATIONS

```
\muPD7564A : PPCs, printers,VCRs,audio equipments, etc.
\(\mu\) PD7564A(A) : Automotive and transportation equipments, etc.
```

- 8-bit serial interface
- Standby (STOP/HALT) function
- Low supply voltage data retaining function for data memory
- Built-in ceramic oscillator for system clock
- Low power dissipation
- Single power supply (2.7 to 6.0 V)

PIN CONFIGURATION (TOP VIEW)

The quality grade and absolute maximum ratings of the μ PD7564A and the μ PD7564A(A) differ. Except where specifically noted, explanations here concern the μ PD7564A as a representative product. If you are using the μ PD7564A(A), use the information presented here after the checking the functional differences.

[^0]
ORDERING INFORMATION

Ordering Code Package Quality Grade

μ PD7564ACS $-x \times x$	20-pin plastic shrink DIP $(300$ mil $)$	Standard
μ PD7564AG $-x \times x$	20-pin plastic SOP $(300$ mil $)$	Standard
μ PD7564ACS(A)- $-x \times$	20-pin plastic shrink DIP $(300$ mil $)$	Special
μ PD7564AG(A) $-x \times x$	20-pin plastic SOP $(300$ mil $)$	Special

Caution Be sure to specify a mask option when ordering this device.

Remarks " $X X X$ " is a ROM code number.

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

CONTENTS

1. PIN FUNCTIONS 6
1.1 PORT FUNCTIONS 6
1.2 OTHER THAN PORTS 6
1.3 PIN MASK OPTION 7
1.4 CAUTION ON USE OF POO/INTO PIN AND RESET PIN 7
1.5 PIN INPUT/OUTPUT CIRCUITS 8
1.6 RECOMMENDED CONNECTION OF UNUSED μ PD7564A PINS 11
1.7 OPERATION OF INPUT/OUTPUT PORTS 11
2. INTERNAL BLOCK FUNCTIONS 13
2.1 PROGRAM COUNTER (PC): 10 BITS 13
2.2 STACK POINTER (SP): 6 BITS 14
2.3 PROGRAM MEMORY (ROM): 1024 WORDS $\times 8$ BITS 15
2.4 GENERAL REGISTER 15
2.5 DATA MEMORY (RAM): 64×4 BITS 16
2.6 ACCUMULATOR (A): 4 BITS 17
2.7 ARITHMETIC LOGIC UNIT (ALU): 4 BITS 17
2.8 PROGRAM STATUS WORD (PSW): 4 BITS 17
2.9 SYSTEM CLOCK GENERATOR 18
2.10 CLOCK CONTROL CIRCUIT 19
2.11 TIMER/EVENT COUNTER 20
2.12 SERIAL INTERFACE 21
2.13 TEST CONTROL CIRCUIT 23
3. STANDBY FUNCTIONS 25
3.1 STOP MODE 25
3.2 CANCELLING THE HALT MODE 25
3.3 CANCELLING STOP MODE BY RESET INPUT 26
3.4 CANCELLING HALT MODE BY TEST REQUEST FLAG 26
3.5 CANCELLING HALT MODE BY RESET INPUT 26
4. RESET FUNCTIONS 27
4.1 DETAILS OF INITIALIZATION 27
5. μ PD7564A INSTRUCTION SET 28
6. ELECTRICAL SPECIFICATIONS 33
7. CHARACTERISTICS CURVES 40
8. μ PD7564A APPLIED CIRCUITS 43
9. PACKAGE INFORMATION 45
10. RECOMMENDED PACKAGING PATTERN OF SOP (REFERENCE) 49
11. RECOMMENDED SOLDERING CONDITIONS 50
APPENDIX A. COMPARISON BETWEEN SUB-SERIES PRODUCT FUNCTIONS 51
APPENDIX B. DEVELOPMENT TOOLS 52
APPENDIX C. RELATED DOCUMENTS 54

1. PIN FUNCTIONS

1.1 PORT FUNCTIONS

Pin Name	Input/Output	Dual-Function Pin	Function	After RESET	Input/Output Circuit
P00	Input	INTO	4-bit input port (Port 0) P00 serves also as a count clock (event pulse) input.	Input	S
P01	Input/output	SCK			X
P02		SO			W
P03	Input	SI			S
P80 to P82	Output	-	3-bit output port (Port 8) High current (15 mA), middle-high voltage (9 V) output	High impedance	0
P100 to P103	Input/output	-	4-bit I/O port (Port 10) Middle-high current (10 mA), middle-high voltage (9 V) input/output	High impedance	P
P110 to P113	Input/output	-	4-bit I/O port (Port 11) Middle-high current (10 mA), middle-high voltage (9 V) input/output	high-level output	

1.2 OTHER THAN PORTS

Pin Name	Input/Output	Dual-Function Pin	Function	After RESET	Input/Output Circuit
INT0	Input	P00	Edge detection testable input pin (Rising edge)		S
$\overline{\text { SCK }}$	Input/output	P01	Serial clock Input/output pin	Input	X
SO	Output	P02	Serial data output pin	Input	W
SI	Input	P03	Serial data input pin	Input	S
CL1			Connection pin for ceramic oscillation ceramic resonator		-
CL2			System reset input pin (high-level active) A pull-down resistor can be incorporated using the mask option.		R
RESET				Positive power supply pin	
VDD			GND potential pin		
VSs					

1.3 PIN MASK OPTION

Each pin is provided with the following mask options which can be selected for each bit according to the purpose:

Pin Name	Mask Options
P00	(1) No internally provided resistor (2) Pull-down resistor internally provided (3) Pull-up resistor internally provided
P01	(1) No internally provided resistor (2) Pull-down resistor internally provided ©3 Pull-up resistor internally provided
P02	(1) No internally provided resistor (2) Pull-down resistor internally provided (3) Pull-up resistor internally provided
P03	(1) No internally provided resistor (2) Pull-down resistor internally provided (3) Pull-up resistor internally provided
P80	(1) N-ch open-drain output (2) CMOS (push-pull) output
P81	(1) N-ch open-drain output (2) CMOS (push-pull) output
P82	(1) N-ch open-drain output (2) CMOS (push-pull) output
P100	(1) N-ch open-drain input/output (2) Push-pull input/output (3) N-ch open-drain + pull-up resistor built-in input/output
P101	(1) N-ch open-drain input/output (2) Push-pull input/output (3) N-ch open-drain + pull-up resistor built-in input/output
P102	(1) N-ch open-drain input/output (2) Push-pull input/output (3) N-ch open-drain + pull-up resistor built-in input/output
P103	(1) N-ch open-drain input/output (2) Push-pull input/output (3) N-ch open-drain + pull-up resistor built-in input/output
P110	(1) N-ch open-drain input/output (2) Push-pull input/output (3) N-ch open-drain + pull-up resistor built-in input/output
P111	(1) N-ch open-drain input/output (2) Push-pull input/output (3) N-ch open-drain + pull-up resistor built-in input/output
P112	(1) N-ch open-drain input/output (2) Push-pull input/output (3) N-ch open-drain + pull-up resistor built-in input/output
P113	(1) N-ch open-drain input/output (2) Push-pull input/output (3) N-ch open-drain + pull-up resistor built-in input/output
RESET	(1) Incorporating no pull-down resistor (2) Incorporating a pull-down resistor

There is no mask option for PROM products. For more information, see the μ PD75P64 Data Sheet (IC-2838).

1.4 CAUTION ON USE OF P00/INTO PIN AND RESET PIN

In addition to the functions shown in 1.1, 1.2 and 1.3 , the P00/INT0 pin and RESET pin have a function for setting the test mode in which the internal operation of the μ PD7564A is tested (IC test only).

When a potential greater than Vss is applied to either of these pins, the test mode is set. As a result, if noise exceeding V ss is applied during normal operation, the test mode will be entered and normal operation may be impeded.

If, for example, the routing of the wiring between the POO/INTO pin and RESET pin is long, the above problem may occur as the result of inter-wiring noise between these pins.

Therefore, wiring should be carried out so as to suppress inter-wiring noise as far as possible. If it is not possible to suppress noise, anti-noise measures should be taken using external parts as shown in the figures below.

- Connection of diode with small V_{F} between P00/ INT4/RESET pin and Vss

- Connection of capacitor between P00/INTO/ RESET pin and Vss

1.5 PIN INPUT/OUTPUT CIRCUITS

This section presents the input/output circuit for each pin of the μ PD7564A in a partly simplified format:
(1) Type A (for Type W)

Forming an input buffer conformable to the CMOS specification
(2) Type D (for Types W and X)

Forming a push-pull output which becomes high impedance (with both P -ch and N -ch off) in response to RESET input
(3) Type O

(4) Type P

(5) Type R

(6) Type S

(7) Type W

(8) Type X

1.6 RECOMMENDED CONNECTION OF UNUSED μ PD7564A PINS

Pin	Recommended Connection
P00/INT0	Connect to Vss.
P01 to P03	Connect to Vss or VdD.
P80 to P82	Leave open.
P100 to P103	Input state $:$ Connect to Vss or VdD. Output state: Leave open.
P110 to P113	P1

1.7 OPERATION OF INPUT/OUTPUT PORTS

(1) P00 to P03 (Port 0)

The port 0 is a 4-bit input port consisting of 4-bit input pins P 00 to P 03 . In addition to being used for port input, P00 serves as a count clock input or testable input (INTO), each of P01 to P03 serves as a serial interface input/output.

To use P00 as a count clock input, set bits 2 (CM2) and 1 (CM1) of the clock mode register to 01. (See 2.10 "CLOCK CONTROL CIRCUIT" for details.)

To use POO as a INT0, set bit 3 (SM3) of the shift mode register to 1.
The serial interface function to use P01 to P03 as a serial interface I/O port is determined by bits 2 and 1 (SM2 and SM1) of the shift mode register. See $\mathbf{2 . 1 2}$ "SERIAL INTERFACE" for details.

Even though this port operates using any function other than the port function, execution of the port input instruction (IPL) permits loading data on the P00 to P03 line to the accumulator (A0 to A3) at any time.

(2) P80 to P83 (Port 8)

The port 8 is a 4-bit output port with an output latch, which consists of 4-bit output pin.
The port output instruction (OPL) latches the content of the accumulator (A 0 to A 3) to the output latch and outputs it to pins P80 to P83.

The SPBL and RPBL instructions allow bit-by-bit setting and resetting of pins P80 to P82.
For these ports, mask options for the output format are available to select CMOS (push-pull) output or N-ch opendrain output.

The port specified as a N-ch open-drain output and provides an efficient interface to the circuit operating at a different supply voltage because the output buffer has a dielectric strength of 9 V .

(3) P100 to P103 (Port 10) and P110 to P113 (Port 11): Quasi-bidirectional input/output

P100 to P103 are 4-bit I/O pins which form the port 10 (4-bit I/O port with an output latch). P110 to P113 are 4bit I/O pins which form the port 11 (4-bit I/O port with an output latch).

The port output instruction (OPL) latches the content of the accumulator to the output latch and outputs it to the 4-bit pins.

The data written once in the output latch and the output buffer state are retained until the output instruction to operate the port 10 or 11 is executed or the RESET signal is input. Even though an input instruction is executed for the port 10 or 11, the states of both the output latch and output buffer do not change.

The SPBL and RPBL instructions allow bit-by-bit setting and resetting of pins P100 to P103 and P110 to P113.
The input/output format of each of the ports 10 and 11 can be selected from among the N-ch open-drain input/ output, N-ch open-drain + pull-up resistor built-in input/output, and CMOS (push-pull) input/output by their respective mask options.

When the CMOS (push-pull) input/output is selected, the port cannot return to the input mode once the output instruction is executed. However, the states of the pins of the port can be checked by reading via the port input instruction (IPL).

When one of the other two formats is selected, the port can enter the input mode to load the data on the 4-bit line to the accumulator (as a quasi-bidirectional port) when the port receives high level output. Select each type of the input/output format to meet the use of the port:

(1) CMOS input/output

i) Uses all 4 bits of the port as input ports.
ii) Uses pins of the port as output pins not requiring middle withstand voltage output.
(2) N-ch open-drain input/output
i) Uses pins of the port as I/O pins requiring a middle withstand voltage dielectric strength.
ii) Uses input pins of the port which also has output pins.
iii) Uses each pin of the port for both input and output by switching them over.
(3) N-ch open-drain + pull-up resistor built-in input/output
i) Uses input pins of the port which also has output pins, that require a pull-up resistor.
ii) Uses each pin of the port for both input and output by switching them over. This requires a pull-up resistor.

Caution Before using input pins in the case of (2) or (3) , write 1 in the output latch to turn the N-ch transistor off.

2. INTERNAL BLOCK FUNCTIONS

2.1 PROGRAM COUNTER (PC): $\mathbf{1 0}$ BITS

The program counter is a 10-bit binaryc ounter to retain program memory (ROM) address information.

Fig. 2-1 Program Counter Configuration

PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0

When one instruction is executed, usually the program counter is incremented by the number of bytes of the instruction.

When the call instruction is executed, the PC is loaded with a nkew call address after the stack memory saves the current contents (return address) of the PC. When the return instruction is executed, the content (return address) of the stack memory is loaded onto the PC. When the jump instruction is executed, the immediate data identifying the destination of the jump is loaded to all or some of bits of the PC.

When a skip occurs, the PC is incremented by 2 or 3 during the machine cycle depending on the number of bytes in the next instruction.

When the RESET signal is input, all the bits of the PC are cleared to zero.

2.2 STACK POINTER (SP): 6 BITS

The stack pointer is a 6-bit register which retains head address information of the stack memory (LIFO type) which is a part of the data memory.

Fig. 2-2 Stack Pointer Configuration

SP5	SP4	SP3	SP2	SP1	SP0

The stack pointer is decremented when the call instruction is executed. It is incremented when the return instruction is executed.

To determine the stack area, initialize the SP using the TAMSP instruction. Note that bit SP0 is loaded with 0 unconditionally when the TAMSP instruction is executed. Set the SP to the value of "the highest address of the stack area $+1^{\prime \prime}$ because the stack operation starts with decrementation of the SP.

When the highest address of the stack area is 3FH which is the highest address of the data memory, the initial value of SP5-0 must be 00H. For emulation using the μ PD7500H (EVAKIT-7500B), set the data to be used for AM when executing the TAMSP instruction.

Fig. 2-3 In Execution of TAMSP Instruction

Note that the contents of the SP cannot be read.

Caution Be sure to set the SP at the initial stage of the program execution because the SP becomes undefined when the RESET signal is input.

Example	LHLI	00 H	
	LAI	0	
	ST		
	LAI	4	
	TAMSP		$; \mathrm{SP}=40 \mathrm{H}$

2.3 PROGRAM MEMORY (ROM): 1024 WORDS $\times 8$ BITS

The program memory is a mask programmable ROM of 1024 word $\times 8$ bits configuration. It is addressed by the program counter.

The program memory stores programs.
Address 000 H is the reset start address.

Fig. 2-4 Program Memory Map

(0) 000 H	Reset Start
\square	
(1023) $3 F F H$	

2.4 GENERAL REGISTER

General registers H (with two bits) and L (with four bits) operate individually. They also form a pair register HL (H: high order and L: low order) to serve as a data pointer for addressing the data memory.

Fig. 2-5 General Register Configuration

The L register is also used to specify I/O ports and the mode register when an input/output instruction (IPL or OPL) is executed. It also used to specify the bits of a port when the SPBL or RPBL instruction is executed.

2.5 DATA MEMORY (RAM): 64×4 BITS

The data memory is a static RAM of 64 word $\times 4$ bits configuration. It is used as the area to store or stack processed data. The data memory may be processed in 8-bit units when paired with the accumulator.

Fig. 2-6 Data Memory Map

The data memory is addressed in the following three ways:

- Direct: Direct addressing based on immediate data of an instruction
- Register indirect: Indirect addressing according to the contents of the pair register HL (including automatic incrementation and decrementation)
- Stack: Indirect addressing according to the contents of the stack pointer (SP)

An arbitrary space of the data memory is available as stack memory. The boundary of the stack area is specified when the TAMSP instruction initializes the SP. After that, the stack area is accessed automatically by the call or return instruction.

After the call instruction is executed, the content of the PC and PSW is stored in the order shown in the following diagram:

Stack Area

When the return instruction is executed, the content of the PSW is not restored while those of the PC are restored. Data in the data memory is retained at a low supply voltage in the STOP mode.

2.6 ACCUMULATOR (A): 4 BITS

The accumulator is a 4-bit register which plays a major role in many types of arithmetic operations. The accumulator may be processed in 8-bit units when paired with the data memory addressed by the pair register HL.

Fig. 2-7 Accumulator Configuration

A3	A2	A1	A0
A			

2.7 ARITHMETIC LOGIC UNIT (ALU): 4 BITS

The arithmetic logic unit is a 4-bit arithmetic circuit to perform arithmetic and bit processing such as binary addition, logical operation, incrementation, decrementation, and comparison.

2.8 PROGRAM STATUS WORD (PSW): 4 BITS

The program status word consists of skip flags (SK1 and SK0) and a carry flag (C). Bit 1 of the PSW is fixed at 0.

Fig. 2-8 Program Status Word Configuration

| 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| SK1 | SK0 | 0 | C |

(1) Skip flags (SK1 and SK0)

Skip flags store the following skip status:

- Stacking by the LAI instruction
- Stacking by the LHLI instruction
- Skip condition establishment by any instruction other than stack instructions

The skip flags are set and reset automatically when respective instructions are executed.

(2) Carry flag (C)

The carry flag is set to 1 when a carry from bit 3 of the ALU occurs when the add instruction (ACSC) is executed. The flag is reset to 0 when the carry does not occur. The SC and RC instructions respectively set and reset the carry flag. The SKC instruction tests the contents of the flag.

The content of the PSW are automatically stored in the stack area when the call instruction is executed. It cannot be restored by the return inhstruction.

When the RESET signal is input, SK1 and SK0 are both cleared to zero and C becomes undefined.

2.9 SYSTEM CLOCK GENERATOR

The system clock generator contains an ceramic oscillator, $1 / 2$ divider, and standby (STOP/HALT) mode control circuit.

Fig. 2-9 System Clock Generator

The ceramic oscillator oscillates with a ceramic resonator R connected to pins CL1 and CL2.
The ceramic oscillator outputs the system clock (CL) which is $1 / 2$ divided to the CPU clock (ϕ).
The control circuit in the standby mode consists mainly of STOP F/F and HALT F/F.
The STOP F/F is set by the STOP instruction to stop ceramic oscillation, blocking every clock from being supplied (STOP mode). The STOP F/F is reset by the RESET input (high level) to restart ceramic oscillation. When the RESET input returns to the low level after that, the oscillator once more supplys each clock.

The HALT F/F is set by the HALT instruction to disable the input to the $1 / 2$ divider which generates the CPU clock ϕ, stopping only the CPU clock ϕ (HALT mode).

The HALT F/F is reset at the fall of the HALT RELEASE signal (which goes active when even one test request flag is set) or the RESET input signal, causing the oscillator to start supplying the CPU clock ϕ.

The HALT F/F remains on for the same function of the HALT mode even while the RESET input is active (high).
When a power-on reset occurs, ceramic oscillation starts at rise of the RESET input signal. However, it takes a certain time for the oscillation output level to be stabilized after the start of oscillation. To prevent the CPU from malfunctioning by unstable clock pulses, the standby mode control circuit sets the HALT F/F while the RESET input remains high to suppress the CPU clock ϕ. Thus the high-level duration of the RESET input must be set so that it exceeds the stabilizing time required for the ceramic resonator to be used.

2.10 CLOCK CONTROL CIRCUIT

The clock control circuit consists of 2-bit clock mode registers (CM2 and CM1), prescalers 1, 2 and 3, and a multiplexer. The circuit inputs the system clock generator output (CL) and the event pulse (POO). It also selects a clock source and a prescaler according to the specifications of clock mode register and supplies a count pulse (CP) to the timer/event counter.

Fig. 2-10 Clock Control Circuit

Use the OPL instruction to set codes in the clock mode registers.

Fig. 2-11 Clock Mode Register Format

Caution When setting codes in the clock mode registers using the OPL instruction, be sure to set bit 0 of the accumulator to 0 . (Bit 0 corresponds to CM0 of the μ PD7500 of EVAKIT-7500B in emulation.)

2.11 TIMER/EVENT COUNTER

The timer/event counter is based on an 8-bit count register as shown in Fig. 2-12.

Fig. 2-12 Timer/Event Counter

The 8-bit count register is a binary 8-bit up-counter which is incremented whenever a count pulse (CP) is input. The register is cleared to 00 H when the TIMER instruction is executed, RESET signal is input, or an overflow occurs (FFH to 00H).

As the count pulse, the clock mode register can select one of the following four. See 2.10 "CLOCK CONTROL CIRCUIT".

$$
\mathrm{CP}: \mathrm{CL} \times \frac{1}{4}, \mathrm{CL} \times \frac{1}{32}, \mathrm{CL} \times \frac{1}{256}, \mathrm{P} 00
$$

The count register continues to be incremented as long as count pulses are input. The TIMER instruction clears the count register to 00 H and triggers the timer operation.

The count register is incremented in synchronization with the CP (or the rise of the P00 input when an external clock is used). On the count reaches 256 , the register returns the count value to 00 H from FFH , generates the overflow signal INTT, and sets the INTT test flag INTT RQF.

In this way, the count register counts over from 00 H .
To recognize the overflow, test the flag INTT RQF using the SKI instruction.
When the timer/event counter serves as a timer, the reference tiome is determined by the CP frequency. The precision is determined by the system clock oscillator frequency when the system clock system is selected and by the P00 input frequency when the P00 input is selected.

The content of the count register can be read at any time by the TCNTAM instruction. This function allows checking the current time of the timer and counting event pulses input to the P00 input. This enables the number of even pulses that have been generated so far (event counter function).

The count holding circuit ignores the change of the count pulse (CP) during execution of the TCNTAM instruction. This is to prevent reading undefined data in the count register using the TCNTAM instruction while the counter is being updated.

Since the timer/event counter operates the system clock system (CL) or the P00 input for count pulses, it is used to cancel the HALT mode which stops the CPU clock ϕ as well as the STOP mode which stops the system clock CL. (See 3. "STANDBY FUNCTIONS".)

2.12 SERIAL INTERFACE

The serial interface consists of an 8 -bit shift register, 3-bit shift mode register, and 3-bit counter. It is used for input/output of serial data.

Fig. 2-13 Serial Interface Block Diagram

* Instruction execution

Remarks 1. ϕ indicates the internal clock signal (system clock).
2. SM3 and INT0 go to the test control circuit.

Input/output of serial data is controlled by the serial clock. The highest bit (bit 7) of the shift register is output from the SO line at rise of the serial clock ($\overline{S C K}$ pin signal). At its fall, the contents of the shift register is shifted by one bit (bit $\mathrm{n} \rightarrow$ bit $\mathrm{n}+1$) and data on the SI line is loaded to the lowest bit (bit 0) of the shift register.

The 3-bit counter (octal counter) counts serial clock pulses. Wthenever it counts eight clock pulses (on completion of 1-byte serial data transfer), the counter generates an internal test request signal INTS to set the test request flag (INTO/S ROF).

Fig. 2-14 Shift Timing

Remarks 1. DI: Serial data input
2. DO: Serial data output

The serial interface sets serial data for transmission in the shift register using the TAMSIO instruction and starts the transfer using the SIO instruction. To recognize the termination of one-byte transfer, check the test request flag INTO/S RQF using the corresponding instruction.

The serial interface starts serial data reception, using the SIO instruction, checks the termination of one-byte transfer using the instruction, and then receives data from the shift register by executing the TSIOAM instruction.

Two types of serial clock sources are available: one is the system clock ϕ and the other is the external clock ($\overline{\mathrm{SCK}}$ input). They are selected respectively by bits 2 and 1 (SM2 and SM1) of the shift mode register.

When the system clock ϕ is selected and the SIO instruction is executed, the clock pulse is supplied to the serial interface as a serial clock to control serial data input/output and is output from the $\overline{\text { SCK }}$ pin.

When the system clock ϕ pulse is supplied eight times, the supply to the serial interface is automatically stopped and the $\overline{\mathrm{SCK}}$ output remains high. Since serial data input/output stops automatically after transfer of one byte. The programmer does not need to control the serial clock. In this case, the transfer speed is determined by the system clock frequency.

In this mode, it is possible to read receive data (by the TSIOAM instruction) and write data (by the TAMSIO instruction) from and to the shift register only by waiting for 6 machine cycles after execution of the SIO instrucction on the program without waiting until the INTO/S RQF is set.

Fig. 2-15 TAMSIO/TSIOAM Instruction Execution Timing

When the external clock ($\overline{\text { SCK }}$ input) is selected, the interface inputs serial clock pulses from the $\overline{\text { SCK }}$ input. When an external serial clock pulse is input eight times, the INTO/S RQF is set and the termination of one-byte transfer can be recognized. However, the eight serial clocks to be input must be counted on the side of the external clock source because serial clock disable control is not performed internally. The transfer speed is determined by the external serial clock within the range from DC to the maximum value limited by the standard.

When the external clock is used, the SIO, TAMSIO, or TSIOAM instruction the execution must be executed while the serial clock pulse $\overline{\text { SCK }}$ is high. If such an instruction is executed while the $\overline{\text { SCK }}$ is rising or falling or is low, the function of the instruction is not guaranteed.

Fig. 2-16 Shift Mode Register Format

Caution When setting a code in the shift mode register using the OPL instruction, be sure to set bit 0 of the

 accumulator to 0 (Bit 0 corresponds to CM0 of the μ PD7500H of EVAKIT-7500B in emulation).In the system which does not require serial interface, the 8-bit shift register can be used as a simple register and data can be read or writtene by the TSIOAM or TAMSIO instruction when serial operation is off.

2.13 TEST CONTROL CIRCUIT

The μ PD7564A is provided with the following three types of test sources (one external source and two internal sources):

Test Sources	Internal/External	Request Flag
INTT (Overflow from timer/event counter)	Internal	INTT RQF
INT0 (Test request signal from P00 pin)	External	INT 0/S RQF
INTS (Transfer end signal from serial interface)	Internal	

The test control circuit checks consist mainly of test request flags (INTT RQF and INTO/S RQF) which are set by three different test sources and the test request flag control circuit which checks the content of test request flags using the SKI instruction and controls resetting the checked flags.

The INTO and INTS are common in the request flag. Which one is selected is determined by bit 3 (SM3) of the shift mode register.

SM3	Test Sources
0	INTS
1	INT0

The INTT RQF is set when a timer overflow occurs and is reset by the SKI or TIMER instruction.
The INTO/S request flag functions in the following two ways according to the setting of the SM3:
(1) $\mathrm{SM} 3=0$

The INTS is validated. The request flag INTO/S ROF is set when the INTS signal to indicate the termination of 8bit serial data transfer is issued. The flag is reset when the SKI or SIO instruction is executed.
(2) $\mathrm{SM} 3=1$

The INO is validated. The request flag INTO/S ROF is set when the leading edge signal enters the INT0/P00 pin. The flag is reset when the SKI instruction is executed.

The OR output of each test request flag is used to cancel the HALT mode. If one or more request flags are set in the HALT mode, the standby mode is cancelled.

The RESET signal cancels every request flag and the SM3. In the reset initial status, the INTS is selected and the INT0 input is disabled.

Fig. 2-17 Test Control Circuit Block Diagram

* Instruction execution

Remarks SM3 is bit 3 of the shift mode register.

3. STANDBY FUNCTIONS

The μ PD7564A provides two types of standby modes (STOP and HALT modes) to save power while the program is on standby. The STOP and HALT modes are set by the STOP and HALT instructions, respectively. The STOP mode stops every clock and the HALT mode stops only the CPU clock ϕ. The HALT mode halts program execution, however, it holds the contents of all the internal registers and data memory that have been stored.

The serial interface and timer/event counter can operate even in the HALT mode.
The STOP mode is cancelled only by RESET input. The HALT mode is cancelled when the test request flag (INTT RQF or INTO/S RQF) is set or by RESET input. Note that if even one test request flag is set, the device cannot enter either the STOP or HALT mode even though the STOP or HALT instruction is executed. Before setting the STOP or HALT mode at a point where a test request flag may be set, execute the SKI instruction to reset the test request flag.

3.1 STOP MODE

When the STOP instruction is executed, the device can enter the STOP mode at any time unless any request flag is set.

In the STOP mode, the contents of the data memory are retained and the RESET input used to cancel the STOP mode is valid. In the STOP mode, however, any other functions are turned off to minimize power consumption.

Caution In the STOP mode, the CL1 input is internally connected to Vdo (high level) to prevent a leak in the ceramic oscillator.

3.2 CANCELLING THE HALT MODE

The HALT mode stops only the $1 / 2$ divider in the system clock generator (allowing operation of the system clock CL and stopping the CPU clock ϕ). Therefore, the operations of the CPU requiring the ϕ signal and the serial interface using ϕ as a serial clock are stopped in the HALT mode.

Since the HALT mode allows operation of the clock control circuit, the circuit inputs the CL signal from the clock generator and the event pulse from the (POO) pin to supply the count pulses (CP) for both subsystems selectively to the timer event counter. Thus, the timer event counter can operate depending on the both-system count pulses and continue counting time.

The serial interface operates in this mode when the external clock ($\overline{\mathrm{SCK}}$ input) is selected as a serial clock.

3.3 CANCELLING STOP MODE BY RESET INPUT

When the RESET input goes high from low in the STOP mode, the standby mode returns to the HALT mode to start ceramic oscillation.

When the RESET input returns to low, the HALT mode is cancelled and the CPU starts the program from address 0 after normal reset operation. The STOP mode is cancelled in this way.

Note that the content of the data memory is retained even during the cancelling operation, however, the content of the other registers becomes undefined on cancellation.

Fig. 3-1 STOP Mode Cancel Timing

Caution The STOP mode does not result from setting the test request flag.

3.4 CANCELLING HALT MODE BY TEST REQUEST FLAG

When the test request flat (INTT RQF or INTO/S RQF) is set in the HALT mode, the mode is cancelled and the program stars executing the instruction that follows the HALT instruction.

Cancellation of the HALT mode does not affect the content of any register or the data memory, that is retained in the mode.

3.5 CANCELLING HALT MODE BY RESET INPUT

RESET input cancels the HALT mode unconditionally.
Fig. 3-2 shows the HALT mode unconditionally.
Fig. 3-2 HALT mode cancel timing by RESET input

The HALT mode is maintained while the RESET input is being active (high). When the RESET input goes low, the HALT mode is cancelled and the CPU starts to execute the program from address 0 after a normal reset operation.

Note that RESET input does not affect the content of the data memory that is retained in the HALT mode, however, the contents of the other registers become undefined on cancellation of the mode.

4. RESET FUNCTIONS

The μ PD7564A is reset and initialized when the RESET pin inputs a high or active RESET signal as follows:

4.1 DETAILS OF INITIALIZATION

(1) The program counter (PC9-PC0) is cleared to zero.
(2) The skip flags (SK1 and SK0) in the program status word are reset to zero.
(3) The count register in the timer-event counter is cleared to 00 H .
(4) The clock control circuit becomes as follows:

- Clock mode registers (CM2 and CM1) $=0$

$$
\rightarrow C P=C L \times \frac{1}{256}
$$

- Prescalers 1, 2, and $3=0$
(5) The shift mode register (SM3 to SM1) is cleared to zero.
\rightarrow Shifting of the serial interface is stopped.
\rightarrow The port 0 enters the input mode (high impedance).
\rightarrow INTO/S, INTS is selected.
(6) The test request flag (INTT ROF or INTO/S RQF) is reset to zero.
(7) The contents of the data memory and the following registers become undefined:

Stack pointer (SP)
Accumulator (A)
Carry flag (C)
General registers (H and L)
Output latch of each port
(8) The output buffer of every port goes off and has high impedance. The I/O port enters the input mode.

Caution When the STANDBY mode is cancelled by the RESET signal, the content of the data memory is retained without becoming undefined.

When the RESET input is cancelled, the program is executed starting with address 000 H . The content of each register shall either be initialized in the process of the program or reinitialized depending on conditions.

5. μ PD7564A INSTRUCTION SET

(1) Operand representation and description

addr	10-bit immediate data or label
caddr caddr1	10-bit immediate data or label IC0H to $107 \mathrm{H}, 140 \mathrm{H}$ to $147 \mathrm{H}, 180 \mathrm{H}$ to 187 H, mem n5 n4 n2
bit	5-bit immediate data or label
pr	4-bit immediata or label

(2) Mnemonics for operation descriptions

A : Accumulator
H : H register
L : L register
HL : Pair register HL
pr : Pair register HL-, HL+, or HL
SP : Stack pointer
PC : Program counter
C : Carry flag
PSW : Program status word
SIO : Shift register
CT : Count register
In : Immediate data to n5, n4 or n2
Pn : Immediate data to addr, caddr, or caddr1
Bn : Immediate data to bit
Dn : Immediate data to mem
Rn : Immediate data to pr
$(x x)$: Content addressed by $x x$
$\times \mathrm{H}$: Hexadecimal data
(3) Port/mode register selection

IPL Instruction

L	Port
0	Port 0
AH	Port 10
BH	Port 11

OPL Instruction

L	Port/mode register
8	Port 8
AH	Port 10
BH	Port 11
CH	Clock mode register
FH	Shift mode register

RPBL/SPBL Instruction

L	FH	EH	DH	CH	BH	AH	9	8	2	1	0
Bit	3	2	1	0	3	2	1	0	2	1	0
Port	Port 11				Port 10				Port 8		

(4) Selection of pair register addressing

pr	R_{1}	R_{0}
$\mathrm{HL}-$	0	0
$\mathrm{HL}+$	0	1
HL	1	0

Note	Mnemonic	Operands	Operation Code									Operation		Skip Condition
							B1				B2			
	LAI	n4	0	0	0	1	13	I_{2}	11			$\mathrm{A} \leftarrow \mathrm{n} 4$	Loads n 4 to the accumulator.	Stack LAI
	LHI	n2	0	0	1	0	1	0	I_{1}			$\mathrm{H} \leftarrow \mathrm{n} 2$	Loads n 2 to H register.	
	LAM	pr	0	1	0	1	0	0	R1	Ro		$\mathrm{A} \leftarrow(\mathrm{pr}) \mathrm{pr}=\mathrm{HL}-, \mathrm{HL}+, \mathrm{HL}$	Loads the contents of the memory address by pr to the accumulator.	$\begin{aligned} & \mathrm{L}=\mathrm{FH}(\mathrm{HL}-) \\ & \mathrm{L}=0 \quad(\mathrm{HL}+) \end{aligned}$
	LHLI	n5	1	1	0	14	13	12	l_{1}	10		$\mathrm{H} \leftarrow \mathrm{O} \mathrm{I}_{4}, \mathrm{~L} \leftarrow \mathrm{I}_{3}-0$	Loads n 5 to the pair register HL.	Stack LHLI
	ST		0	1	0	1	0	1	1	1		$(\mathrm{HL}) \leftarrow \mathrm{A}$	Stores the contents of the accumulator in the memory addressed by HL.	
	STII	n4	0	1	0	0	13	I_{2}	l_{1}			$(\mathrm{HL}) \leftarrow \mathrm{n} 4, \mathrm{~L} \leftarrow \mathrm{~L}+1$	Stores n 4 in the memory addressed by HL and increments the L register.	
	XAL		0	1	1	1	1	0	1	1		$A \leftrightarrow L$	Exchanges the contents of the accumulator and the L register.	
	XAM	pr	0	1	0	1	0	1	R1			$\mathrm{A} \leftrightarrow$ (pr) $\mathrm{pr}=\mathrm{HL}-, \mathrm{HL}+, \mathrm{HL}$	Exchanges the contents of the accumulator and the memory addressed by pr.	$\begin{aligned} & \mathrm{L}=\mathrm{FH}(\mathrm{HL}-) \\ & \mathrm{L}=0 \quad(\mathrm{HL}+) \end{aligned}$
	AISC	n4	0	0	0	0	13	I_{2}	11	10		$\mathrm{A} \leftarrow \mathrm{A}+\mathrm{n} 4$	Adds the accumulator to n4.	Carry
	ASC		0	1	1	1	1	1	0	1		$A \leftarrow A+(H L)$	Adds the contents of the accumulator and the memory addressed by HL.	Carry
	ACSC		0	1	1	1	1	1	0	0		$A, C \leftarrow A+(H L)+C$	Adds the contents of the accumulator, the memory addressed by HL, and of the carry flag.	Carry
	EXL		0	1	1	1	1	1	1	0		$A \leftarrow A \forall(H L)$	Calculate the exclusive OR of the contents of the accumulator and the memory addressed by HL.	
	CMA		0	1	1	1	1	1	1	1		$\mathrm{A} \leftarrow \overline{\mathrm{A}}$	Complements the accumulator.	
	RC		0	1	1	1	1	0	0	0		$\mathrm{C} \leftarrow 0$	Resets the carry flag.	
	SC		0	1	1	1	1	0		1		$\mathrm{C} \leftarrow 1$	Sets the carry flag.	
	ILS		0	1	0	1	1	0	0	1		$\mathrm{L} \leftarrow \mathrm{L}+1$	Increments the L register.	$\mathrm{L}=0$
	IDRS	mem	0	0	1	1	1	1		1		$($ mem $) \leftarrow($ mem $)+1$	Increments the contents of the memory addressed by mem.	$(\mathrm{mem})=0$
	DLS		0	1	0	1	1	0	0	0		$\mathrm{L} \leftarrow \mathrm{L}-1$	Decrements the L register.	$\mathrm{L}=\mathrm{FH}$
	DDRS	mem	0	0	1	1	1	1	0	0		$($ mem $) \leftarrow($ mem $)-1$	Decrements the contents of the memory addressed by mem.	$(\mathrm{mem})=\mathrm{FH}$
	RMB	bit	0	1	1	0	1		B1			$(\mathrm{HL})_{\text {bit }} \leftarrow 0$	Resets the bits specified by B_{1-0}, of the memory addressed by HL.	
	SMB	bit	0	1	1	0	1			Bo		$(\mathrm{HL})_{\text {bit }}$ ¢ 1	Sets the bits specified by B_{1-0}, of the memory addressed by HL.	

Note Instruction Group

	Mne- monic JMP	Ope- rands addr	Operation Code																Operation			Skip Condition
			B1								B2											
			0	0	1	0	0	0	P9	P_{8}	P_{7}	P6	P_{5}	P_{4}	P_{3}	P_{2}	P_{1}			$\mathrm{PC} 9-0 \leftarrow \mathrm{~Pa}_{9-0}$	Jumps to the address specified by P9-0.	
	JCP	addr	1	0	P5	P_{4}	P3	P_{2}	P1											PC 5 -0 $\leftarrow \mathrm{P}_{5-0}$	Jumps to the address specified by replacing PC_{5-0} with P_{5-0}.	
	CALL	caddr	0	0	1	1	0	0	P9	P_{8}	P_{7}		P5		P3		P1	Po		$\begin{aligned} & (\mathrm{SP}-1)(\mathrm{SP}-2)(\mathrm{SP}-4) \leftarrow \mathrm{PC} 9-0 \\ & (\mathrm{SP}-3) \leftarrow \mathrm{PSW}, \mathrm{SP} \leftarrow \mathrm{SP}-4 \\ & \mathrm{PC} 9-0 \leftarrow \mathrm{Pg} 9-0 \end{aligned}$	Saves the contents of PC and PSW to the stacxk memory, decrements SP by 4, and calls the address specified by caddr.	
	CAL	caddr1	1	1	1	P4	P3		P1	Po										$(S P-1)(S P-2)(S P-4) \leftarrow P C 9-0$ $(S P-3) \leftarrow P S W, S P \leftarrow S P-4$ $\mathrm{PC}_{9-0} \leftarrow 01 \mathrm{P}_{4} \mathrm{P}_{3} 000 \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}$	Saves the contents of PC and PSW to the stacxk memory, decrements SP by 4, and calls the address specified by caddr1.	
	RT		0	1	0	1	0	0	1	1										$\begin{aligned} & P C 9-0 \leftarrow(S P)(S P+2)(S P+3) \\ & S P \leftarrow S P+4 \end{aligned}$	Restores the contents of the stack memory to PC, and increments SP by 4.	
	RTS		0	1	0	1	1	0	1	1										$\begin{aligned} & \mathrm{PC} 9-0 \leftarrow(\mathrm{SP})(\mathrm{SP}+2)(\mathrm{SP}+3) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+4 \\ & \text { then skip unconditionally } \end{aligned}$	Restores the contents of the stack memory to PC, increments SP by 4, and causes unconditional skipping.	Unconditionally
	TAMSP		0	0	1	1	1	1	1	1	0	0			0		0	1		$\begin{aligned} & \mathrm{PC}_{5-4 \leftarrow \mathrm{~A}_{1-0}} \\ & \mathrm{SP}_{3-1} \leftarrow(\mathrm{HL})_{3-1}, \mathrm{SP}_{0} \leftarrow 0 \end{aligned}$	Transfers the two low-order bits of the accumulator to SP_{5-4} and the three highorder bits of the memory addressed by HL to SP_{3-1}.	
	SKC			1	0	1	1	0	1	0										Skip if $\mathrm{C}=1$	Causes skipping if the carry flag is 1.	$C=1$
	SKABT	bit	0	1	1	1	0	1	B1	Bo										Skip if $\mathrm{Abit}_{\text {b }}=1$	Causes skipping of the bit of the accumulator, which is specified by B_{1-0} is 1 .	$A_{\text {bit }}=1$
	SKMBT	bit	0	1	1	0	0	1	B_{1}	Bo										Skip if (HL) bit $^{\text {a }} 1$	Causes skipping of the bit of the memory addressed by HL, which is specified by B_{1-0} is 1 .	$(\mathrm{HL})_{\text {bit }}=1$
	SKMBF	bit	0	1	1	0	0	0	B1	Bo										Skip if (HL) bit $^{\text {a }} 0$	Causes skipping of the bit of the memory addressed by HL, which is specified by B_{1-0} is 0 .	$(\mathrm{HL})_{\text {bit }}=0$
	SKAEM		0	1	0	1	1	1	1	1										Skip if $\mathrm{A}=(\mathrm{HL})$	Causes skipping if the contents are the same between the accumulator and the memory addressed by HL.	A $=(\mathrm{HL})$
	SKAEI	n4	0	0	1	1	1	1	1	1	0	1	1	0	13	I_{2}	11	10		Skip if $\mathrm{A}=\mathrm{n} 4$	Skips if the accumulator is equal to n 4 .	$\mathrm{A}=\mathrm{n} 4$
	SKI	n2	0	0	1	1	1	1	1	1	0	1	0	0	0		11	10		Skip if INT RQF = 1 Then reset INT RQF	Skips if INT RQF is 1 , and then sets INT RQF to 0.	INT ROF = 1

Note Instruction Group

			Operation Code																Operation		Skip Condition
	monic	rands	B1								B2										
	TAMSIO		0	0	1	1	1	1	1	1	0	0	1		1	1	1	0	$\begin{aligned} & \mathrm{SIO}_{7-4 \leftarrow \mathrm{~A}} \\ & \mathrm{SIO}_{3-0 \leftarrow(\mathrm{HL})} \end{aligned}$	Transfers the contents of the accumulator to the four high-order bits of the shift register and the contents of the memory addressed by HL to the four low-order bits.	
	TSIOAM		0	0	1	1	1	1	1	1	0	0	1		1	0	1	0	$\begin{aligned} & \mathrm{A} \leftarrow \mathrm{SIO}_{7-4} \\ & (\mathrm{HL}) \leftarrow \mathrm{SIO}_{3-0} \end{aligned}$	Transfers the four high-order bits of the shift register to the accumulator and the four low-order bits to the memory addressed by HL.	
	SIO		0	0	1	,	,	1	,	1	0	0	1	1	0	0	1	1	Start SIO	Starts shifting.	
	TIMER		0	0	1	1	1	1	1	1	0	0	1	1	0	0	1	0	Start Timer	Starts timer operation.	
	TCNTAM		0	0	1	1	1	1	1	1	0	0	1	1	1	0	1	1	$\begin{aligned} & \mathrm{A} \leftarrow \mathrm{CT}_{7-4} \\ & (\mathrm{HL}) \leftarrow \mathrm{CT}_{3-0} \end{aligned}$	Transfers the four high-order bits of the count register to the accumulator and the four low-order bits to the memory addressed by HL.	
	IPL		0	1	1	1	0	0	0	0									A \leftarrow Port (L)	Loads the contents of the port specified by the L register to the accumulator.	
	OPL		0	1	1	1	0	0	1	0									Port/Mode reg. (L) $\leftarrow A$ register or the mode register	Outputs the contents of the accumulator to the port specified by the L	
	RPBL*		0	1	0	1	1	1	0										Port bit $(\mathrm{L}) \leftarrow 0$	Resets the bits of ports 8, 10, and 11, that are specified by the L register.	
	SPBL*		0	1	0	1	1	1	0										Port bit $(\mathrm{L}) \leftarrow 1$	Sets the bits of ports 8,10 , and 11 , that are specified by the L register.	
	HALT		0	0	1	1	1	1	1	1	0	0	1	1	0	1	1	0	Set Halt Mode	Sets the HALT mode.	
	STOP		0	0	1	1	1	1	1	1	0	0	1	1	0	1	1	1	Set Stop Mode	Sets the STOP mode.	
	NOP		0	0	0	0	0	0	0	0									No operation	Performs no operation for one machine cycle.	

* SPBL and RPBL are bit-wise set/reset instructions. They perform output to each 4-bit port including the specified bits as well as set and reset operation (They output the contents of the output latch to bits other than the specified bits.). Before executing these instructions, intialize the contents of the output latch using the OPL instruction.

Note Instruction Group

6. ELECTRICAL SPECIFICATIONS

μ PD7564A: ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions		Rating	Unit
Supply voltage	VdD			-0.3 to +7.0	V
Input voltage	V	Except ports 10 and 11		-0.3 to VDD +0.3	V
		Ports 10 and 11	*1	-0.3 to VDD +0.3	V
			*2	-0.3 to +11	V
Output voltage	Vo	Except ports 8, 10, 11		-0.3 to VDD +0.3	V
		Ports 8, 10 and 11	*1	-0.3 to VDD +0.3	V
			*2	-0.3 to +11	V
Output current high	Іон	1 pin		-5	mA
		All pins in total		-15	mA
Output current low	lot	1 pin	P01, P02	5	mA
			Port 8	30	mA
			Others	15	mA
		All pins in total		100	mA
Operating temperature	Topt			-10 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	T stg			-65 to +150	${ }^{\circ} \mathrm{C}$
Power consumption	$\mathrm{Pd}_{\text {d }}$	$\mathrm{Ta}=70^{\circ} \mathrm{C}$	Shrink DIP	480	mW
			Mini flat	250	

* 1. CMOS input/output or N-ch open-drain output + pull-up resistor built-in input/output

2. N-ch open-drain input/output

Caution Even if one of the parameters exceeds its absolute maximum rating even momentarily, the quality of the product may be degraded. The absolute maximum rating therefore specifies the upper or lower limit of the value at which the product can be used without physical damages. Be sure not to exceed or fall below this value when using the product.
μ PD7564A(A): ABSOLUTE MAXIMUM RATINGS ($\mathrm{Ta}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions		Rating	Unit
Supply voltage	VdD			-0.3 to +7.0	V
Input voltage	V	Except ports 10 and 11		-0.3 to VDD +0.3	V
		Ports 10 and 11	*1	-0.3 to $V_{D D}+0.3$	V
			*2	-0.3 to +11	V
Output voltage	Vo	Except ports 8, 10, 11		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
		Ports 8, 10 and 11	*1	-0.3 to VDD +0.3	V
			*2	-0.3 to +11	V
Output current high	Іон	1 pin		-5	mA
		All pins in total		-15	mA
Output current low	lot	1 pin	P01, P02	5	mA
			Port 8	30	mA
			Others	15	mA
		All pins in total		100	mA
Operating temperature	Topt			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$
Power consumption	Pd	$\mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C}$	Shrink DIP	350	mW
			Mini flat	195	

* 1. CMOS input/output or N-ch open-drain output + pull-up resistor built-in input/output

2. N-ch open-drain input/output

Caution Even if one of the parameters exceeds its absolute maximum rating even momentarily, the quality of the product may be degraded. The absolute maximum rating therefore specifies the upper or lower limit of the value at which the product can be used without physical damages. Be sure not to exceed or fall below this value when using the product.

CAPACITY ($\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{VDD}=0 \mathrm{~V}$)

Parameter	Symbol	Test Co	ditions	MN.	TYP.	MAX.	Unit
Input capacity	Cin	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .	P00, P03			15	pF
Output capacity	Cout		Port 8			35	pF
I/O capacity	Cıo		P01, P02			15	pF
			Ports 10 and 11			35	pF

RESONATOR CHARACTERISTICS $\left(\begin{array}{ll}\mu \text { PD7564A } & : \mathrm{T}_{\mathrm{a}}=-10 \text { to }+70^{\circ} \mathrm{C}, \mathrm{VdD}=2.7 \text { to } 6.0 \mathrm{~V} \\ \mu \mathrm{PD} 7564 \mathrm{~A}(\mathrm{~A}) & : \mathrm{T}_{\mathrm{a}}=-40 \text { to }+85^{\circ} \mathrm{C}, \mathrm{VdD}=2.7 \text { to } 6.0 \mathrm{~V}\end{array}\right)$

Resonator	External Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator *		Oscillator frequency (fcc)	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V	290	700	710	kHz
			VDD $=4.0$ to 6.0 V	290	500	510	kHz
			$\mathrm{V}_{\mathrm{DD}}=3.5$ to 6.0 V	290	400	410	kHz
			$V_{\text {DD }}=2.7$ to 6.0 V	290	300	310	kHz
		Oscillation stabilization time (tos)	After reaching MIN. of operating voltage range	20			ms

* The following ceramic resonators are recommended.

Manufacturer	Product Name	Recommended Constant			Operating Voltage Range [V]	
		C1 [pF]	C2 [pF]	R2 [k Ω]	MIN.	MAX.
Murata Mfg.	CSB300D	330	330	6.8	2.7	6.0
	CSB400P	220	220	6.8	3.5	6.0
	CSB500E	100	100	6.8	4.0	6.0
	CSB700A	100	100	6.8	4.5	6.0
Kyocera	KBR-300B	470	470	0	2.7	6.0
	KBR-400B	330	330	0	3.5	6.0
	KBR-500B	220	220	0	4.0	6.0
	KBR-680B	220	220	0	4.5	6.0
Toko	CRK-400	120	120	12	3.5	6.0
	CRK-500	100	100	12	4.0	6.0
	CRK-680	82	82	12	4.5	6.0

Caution 1. Install the oscillation circuit as close to CL1 and CL2 pins as possible.
2. Do not allow other signal lines to pass through the area enclosed by dotted lines.

DC CHARACTERISTICS $\left(\begin{array}{ll}\mu \text { PD7564A } & : T_{a}=-10 \text { to }+70^{\circ} \mathrm{C}, \mathrm{VdD}=2.7 \text { to } 6.0 \mathrm{~V} \\ \mu \mathrm{PD} 7564 \mathrm{~A}(\mathrm{~A}) & : \mathrm{T}_{\mathrm{a}}=-40 \text { to }+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7 \text { to } 6.0 \mathrm{~V}\end{array}\right)$

* 1. For N-ch open-drain input/output selection

2. The current flowing in built-in pull-up and pull-down resistors is excluded.

AC CHARACTERISTICS $\left(\begin{array}{ll}\mu \text { PD7564A } & : \mathrm{T}_{\mathrm{a}}=-10 \text { to }+70^{\circ} \mathrm{C}, \mathrm{VdD}=2.7 \text { to } 6.0 \mathrm{~V} \\ \mu \mathrm{PD} 7564 \mathrm{~A}(\mathrm{~A}) & : \mathrm{T}_{\mathrm{a}}=-40 \text { to }+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7 \text { to } 6.0 \mathrm{~V}\end{array}\right)$

* $\quad \mathrm{tcy}=2 / \mathrm{fcc}$ (See the characteristics curves for the power supply conditions specified above.)

AC Timing Test Point (Except CL1 Input)

CHARACTERISTICS OF DATA MEMORY DATA RETENTION AT LOW SUPPLY VOLTAGE IN STOP MODE
$\left(\begin{array}{ll}\mu \text { PD7564A } & : \mathrm{T}_{\mathrm{a}}=-10 \text { to }+70^{\circ} \mathrm{C} \\ \mu \text { PD7564A(A) } & : \mathrm{T}_{\mathrm{a}}=-40 \text { to }+85^{\circ} \mathrm{C}\end{array}\right)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		2.0		6.0	V
Data retention supply current	IDDDR	VDDDR $=2.0 \mathrm{~V}$		0.1	5	$\mu \mathrm{~A}$
RESET setup time	tsRS		0			$\mu \mathrm{~s}$
Oscillation stabilization time	tos	After VDD reaches 4.5 V	20			ms

Data Retention Timing

P00 Input Timing

Serial Transfer Timing

Test Input Timing

RESET Input Timing

7. CHARACTERISTIC CURVES

Iol vs. Vol Characteristic Example (Port 8) (Reference Value)

$\begin{array}{ll}\text { Caution } \quad \text { The absolute maximum rating is } \mathbf{3 0} \\ & \mathrm{mA} \text { per pin. }\end{array}$

Іон vs. Vон Characteristic Example (Reference Value)

Caution
The absolute maximum rating is 15 mA per pin.

Caution

The absolute maximum rating is $\mathbf{- 5} \mathrm{mA}$ per pin.
8. μ PD7564A APPLIED CIRCUITS
(1) Remote control reception + key entry + LED display

(2) Remote control transmission

9. PACKAGE INFORMATION

DRAWINGS OF MASS-PRODUCTION PRODUCT PACKAGES

20PIN PLASTIC SHRINK DIP (300 mil)

P20C-70-3008

NOTES

1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
2) Item " K " to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	19.57 MAX.	0.771 MAX.
B	1.78 MAX.	0.070 MAX.
C	1.778 (T.P.)	0.070 (T.P.)
D	$0.50^{ \pm 0.10}$	$0.020^{ \pm 0.006}$
F	0.85 MIN.	0.033 MIN.
G	$3.2^{ \pm 0.3}$	$0.126^{ \pm 0.012}$
H	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	7.62 (T.P.)	0.300 (T.P.)
L	6.5	0.256
M	$0.25^{ \pm 0.10}$	$0.010^{ \pm 0.008}$
N	0.17	0.007

Caution Dimensions of ES products are different from those of mass-production products. Refer to DRAWINGS OF ES PRODUCT PACKAGES (1/2).

20 PIN PLASTIC SOP (300 mil)

detail of lead end

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	13.00 MAX.	0.512 MAX.
B	0.78 MAX.	0.031 MAX.
C	1.27 (T.P.)	0.050 (T.P.)
D	$0.40_{-0.05}^{+0.10}$	$0.016_{-0.003}^{+0.004}$
E	0.1 ± 0.1	0.004 ± 0.004
F	1.8 MAX.	0.071 MAX.
G	1.55	0.061
H	7.7 ± 0.3	0.303 ± 0.012
I	5.6	0.220
J	1.1	0.043
K	$0.20_{-0.05}^{+0.10}$	$0.008_{-0.002}^{+0.004}$
L	0.6 ± 0.2	$0.024_{-0.009}^{+0.008}$
M	0.12	0.005
N	0.10	0.004
P	$3^{\circ+3^{\circ}}$	$3^{\circ}{ }_{-3^{\circ}}^{\circ}$
		P20GM-50-300B, C-4

\star Caution Dimensions of ES products are different from those of mass-production products. Refer to DRAWINGS OF ES PRODUCT PACKAGES (2/2).

DRAWINGS OF ES PRODUCT PACKAGES (1/2)

20-Pin Shrink DIP for ES (Reference) (Unit: mm)

DRAWINGS OF ES PRODUCT PACKAGES (2/2)

20-Pin Ceramic SOP for ES (Reference) (Unit: mm)

20B-50B
10. RECOMMENDED PACKAGING PATTERN OF SOP (REFERENCE) (UNIT: mm)

- This recommended pattern conforms to the General Rules for Integrated Citrcuit Outer Shape (IC-74-2) specified by the Electronic Industries Association of Japan (EIAJ).
- The above pattern dimensions are applicable to all the products designated as EIAJ flat DIP (mini flat) of "Form A 300 mil type".
- If there is any possibility of causing a solder bridge, adjust the width (0.76) of each pad while maintaining the same length (1.27).

11. RECOMMENDED SOLDERING CONDITIONS

Solder μ PD7564A on the following recommended conditions.
For details of recommended soldering conditions, refer to the information document "Surface Mount Technology Manual" (IE-1207).

For details on the soldering method and soldering conditions other than the recommended conditions, call the NEC salesman.

Table 11-1 Surface Mounting Type Conditions

```
\(\mu\) PD7564AG- \(\times \times \times\) : 20-pin plastic SOP ( 300 mil)
```

μ PD7564AG(A)- $x \times x$: 20-pin plastic SOP (300 mil)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $230^{\circ} \mathrm{C}$, Duration: 30 sec. max. (at $210^{\circ} \mathrm{C}$ or above), Number of times: Once	IR30-00-1
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Duration: 40 sec. max. (at $200^{\circ} \mathrm{C}$ or above), Number of times: Once	VP15-00-1
Wave soldering	Solder both temperature: $260^{\circ} \mathrm{C}$ or below, Duration: 10 sec. max., Number of times: Once, Preheat temperature: $120^{\circ} \mathrm{C}$ max. (Package surface temperature)	WS60-00-1
Pin part heating	Pin temperature: $300^{\circ} \mathrm{C}$ or below, Duration: 3 sec. max. (per device side)	-

Caution Use of more than one soldering method should be avoided (except in the case of pin part heating).

Table 11-2 Insertion Type Soldering Conditions
μ PD7564ACS- $\Varangle \times \times$: 20-pin plastic shrink DIP (300 mil)
μ PD7564ACS(A)- $\times \times \times$: 20-pin plastic shrink SOP (300 mil)

Soldering Method	Soldering Conditions
Wave soldering (Pin only)	Solder bath temperatures: $260^{\circ} \mathrm{C}$ or below, Duration: 10 sec. max.
Pin part heating	Pin temperature: $300^{\circ} \mathrm{C}$ or below, Duration: 3 sec. max. (per pin)

Caution Ensure that the application of wave soldering is limited to the pins and no solder touches the main unit directly.

APPENDIX A. COMPARISON BETWEEN SUB-SERIES PRODUCT FUNCTIONS

Product Name Item			μ PD7554	μ PD75P54	μ PD7554A	$\mu \mathrm{PD} 7554 \mathrm{~A}(\mathrm{~A})$	$\mu \mathrm{PD} 7564$	μ PD75P64	μ PD7564A	$\mu \mathrm{PD} 7564 \mathrm{~A}(\mathrm{~A})$
Instruction cycle/system clock (5 V)		RC	$4 \mu \mathrm{~s} / 500 \mathrm{kHz}$				-			
		Outside	$2.86 \mu \mathrm{~s} / 700 \mathrm{kHz}$				--			
		Ceramic	--				$2.86 \mu \mathrm{~s} / 700 \mathrm{kHz}$			
Instruction set			47 types (SET B)							
ROM			1024×8							
RAM			64×4							
$\begin{aligned} & \text { l/O } \\ & \text { port } \end{aligned}$	Total number		16				15			
	Port 0		P00 to P03							
	Port 8		P80 to P82, P83 (CL2)				P80 to P82			
	Withstand voltage		12 V		9 V		12 V		9 V	
	Ports 10 and 11		P100 to P103, P110 to P113							
	Withstand voltage		12 V		9 V		12 V		9 V	
Timer/event counter			8 bits							
Serial interface			8 bits							
Power voltage range			2.5 to 6.0 V	4.5 to 6.0 V	2.0 to 6.0 V	2.7 to 6.0 V	2.7 to 6.0 V	4.5 to 6.0 V	2.7 to 6.0 V	2.7 to 6.0 V
Package			20-pin plastic shrink DIP 20-pin plastic SOP							

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are available for developing systems that use μ PD7564A.

Language Processor

μ PD7550/7560 series absolute assembler	This program is used to convert the program written with mnemonic codes to the program written with object codes so that the program can be executed by the microcomputer. The function for automatic optimization of branch instruction and so on is also provided.			
	Host Machine	OS	Supply Medium	Ordering Code (Product Name)
	PC-9800 series	MS-DOS ${ }^{\text {TM }}$ (Ver.3.10 to Ver.5.00A*)	$3.5-\mathrm{inch} 2 \mathrm{HD}$	μ S5A13AS7554
			5 -inch 2HD	μ S5A10AS7554
	IBM PC/AT ${ }^{\text {TM }}$	$\begin{aligned} & \text { PC DOS™ } \\ & \text { (Ver. 3.1) } \end{aligned}$	5-inch 2HC	μ S7B10AS7554

PROM Write Tools

	PG-1500	PROM programmer which allows programming of single-chip microcomputer with typical PROM of 256 K to 4 M bits by stand-alone or from a host machine by connecting the accessory board and optional programmer adapter.			
	PA-75P54CS	μ PD75P54/75P64 PROM programmer adapter. Used by connecting it to the PG-1500.			
0303000	PG-1500 controller	Connects the PG-1500 and host machine by serial and parallel interface and controls the PG-1500 on the host machine.			
		Host Machine	OS	Supply Medium	Ordering Code (Product Name)
		PC-9800 series	MS-DOS (Ver.3.10 to Ver.5.00A*)	3.5-inch 2HD	μ S5A13PG1500
				5 -inch 2HD	μ S5A10PG1500
		IBM PC/AT	PC DOS (Ver.3.1)	5-inch 2HC	μ S7B10PG1500

* A task swap function is provided in Ver. 5.00/5.00A, but the task swap function cannot be used with this software.

Remarks Operation of the assembler and PG-1500 controller is only guaranteed on the host machines and OSs shown above.

Debugging Tools

	EVAKIT-7500B	EVAKIT-7500B is an evaluation board that can be used for μ PD7500 series models. For μ PD7564A, EVAKIT-7500B and option board EV-7554A are combined and used for system development. EVAKIT-7500B can operate alone. EVAKIT-7500B has a built-in serial interface on the board, so it enables debugging when it is connected to a RS-232-C interfaced console. EVAKIT-7500B works as is a real-time tracer and traces state of the program counter and output port in real time. EVAKIT-7500B has a built-in PROM writer and improves debugging efficiency considerably.			
	EV-7554A	EV-7554A is an adapter board which is connected to EVAKIT-7500B and evaluates μ PD7564A.			
	SE-7554A	SE-7554A is a simulation board that has the programs developed by EVAKIT-7500B. SE-7554A evaluates a system in place of μ PD7564A.			
$\begin{aligned} & 0 \\ & 0 \\ & 0.0 \\ & 30 \\ & 0 \\ & 0 \\ & i \end{aligned}$	EVAKIT-7500 control program (EVAKIT controller)	EVAKIT-7500 Control Program connects EVAKIT-7500B and the host machine with RC-232-C and controls EVAKIT-7500B on the host machine.			
		Host Machine	OS	Supply Medium	Ordering Code (Product Name)
		PC-9800 series	MS-DOS (Ver.3.10 to Ver.5.00A*)	3.5-inch 2HD	μ S5A13EV7500-P01
				5-inch 2HD	μ S5A10EV7500-P01
		IBM PC series	PC DOS (Ver.3.1)	5-inch 2HC	μ S7B11EV7500-P01

* A task swap function is provided in Ver. 5.00/5.00A, but the task swap function cannot be used with this software.

Caution It is not possible to internally mount a pull-up resistor in a port in the EVAKIT-7500B. When evaluating, arrange to have a pull-up resistor mounted in the user system.

Remarks Operation of the EVAKIT controller is only guaranteed on the host machines and OSs shown above.

\star APPENDIX C. RELATED DOCUMENTS

Document Related to Device

Document Name	Document No.
User's Manual	IEU-1111D
μ PD7500 Series Selection Guide	IF-1027G

Document Related to Development Tool

Document Name		Document No.
Hardware	EVAKIT-7500B User's Manual	EEU-1017C
	EV-7554A User's Manual	EEU-1034A
	PG-1500 User's Manual	EEU-1335B
	μ PD7550, 7560 Series Absolute Assembler User's Manual EEM-1006	
	EVAKIT-7500 Control Program User's Manual	MS-DOS base
		PC-DOS base
	PG-1500 Controller User's Manual	EEM-1049

Other Related Document

Document Name	Document No.
Package Manual	IEI-1213
Semiconductor Device Mounting Technology Manual	IEI-1207
Quality Grade on NEC Semiconductor Devices	IEI-1209A
NEC Semiconductor Device Reliability/Quality Control System	IEI-1203A
Static Electricity Discharge (ESD) Test	IEI-1201
Semiconductor Device Quality Guarantee Guide	MEI-1202
Microcomputer Related Product Guide - Third Party Product -	Note

Remarks These documents above are subject to change without notice. Be sure to use the latest document for designing.

Note To be published.

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

The application circuits and their parameters are for references only and are not intended for use in actual design-in's.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.
Application examples recommended by NEC Corporation
Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.
Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

MS-DOS is a trademark of MicroSoft Corporation.
PC DOS and PC/AT are trademarks of IBM Corporation.

[^0]: The information in this document is subject to change without notice.

