

High Voltage Rectifiers

 $V_{\text{RRM}} = 8000 V$ $I_{\text{F(AV)M}} = 4.2 A$

V _{RRM}	Standard	Power Designation
V	Types	
8000	UGE 1112 AY4	Si-E 3000 / 1300-2.5

Symbol	Conditions		Rating	IS
I _{F(RMS)}			7	A
	air self cooling,	$T_{amb} = 45^{\circ}C$		
1 (27)	-	- without cooling plate	2.0	A
		- with colling plate	2.5	A
	forced air cooling	g:		
	v = 3 m/s,	$T_{amb} = 35^{\circ}C$		
		- without cooling plate	3.2	A
		- with cooling plate	4.1	A
	oil cooling,	$T_{amb} = 35^{\circ}C$		
	-	- without cooling plate	4.2	A
		- with cooling plate	4.2	A
P _{RSM}	$T_{(vj)} = 150^{\circ}C;$	t _p = 10 μs	2.5	kW
I _{FSM}	non repetitive, 50) c/s (for 60 c/s add 10%)		
	$T_{(vj)} = 45^{\circ}C;$	$t_p = 10 \text{ ms}$	120	A
	T _(vj) = 150°C;	t _p = 10 ms	100	A
T _{amb}			-40+150	°C
T _{sta}			-40+150	°C
T _(vj)			150	°C
Weight			122	q

Symbol	Conditions		Characteristic	Values
I _R	T _(vj) = 150°C;	$V_{\rm R} = V_{\rm RRM}$	≤ 1	mA
V _F	$I_{F} = 7 \text{ A}$ $T_{(vj)} = 25^{\circ}\text{C}$		6.25	V
V _{to} r _t	$T_{(vj)} = 150^{\circ}C$ $T_{(vj)} = 150^{\circ}C$		4.25 0.215	V mΩ
a	f = 50Hz		5 x 9,81	m/s²
M _d			8	Nm

Features

- · Hermetically sealed Epoxy
- Use in oil
- Avalanche characteristics

Applications

- X-Ray equipment
- · Electrostatic dust precipitators
- Electronic beam welding
- Lasers
- · Cable test equipment

Advantages

- · Simple mounting
- Improved temperature and power cycling
- Reduced protection circuits
- · Series and parallel operation

Dimensions in mm (1 mm = 0.0394")

1 - 2

Fig. 1: Forward characteristics

Instantaneous forward current I_F as a function of instantaneous forward voltage drop V_F for junction temperature T_(vj) = 25°C and T_(vj) = 150°C a = Mean value characteristic b = Limit value characteristic

Fig. 2: Characteristics of maximum permissible current The curves show the non repetitive peak one cycle surge forward current I_{FSM} as a function of time *t* and serve for rating protective devices.

 $\begin{array}{ll} a = \mbox{Initial state} & T_{(vj)} = \ 45^{\circ}\mbox{C} \\ b = \mbox{Initial state} & T_{(vj)} = \ 150^{\circ}\mbox{C} \end{array}$

Fig. 4: Load diagramm

Mean forward current I_{F(AV)} of <u>one</u> module for a sine half wave for various cooling modes as a function of the cooling medium temperature T_{amb} for a resistive load (horizontal mounting).

Cooling modes		
1 = air self cooling	without	cooling plate
2 = air self cooling	with	cooling plate
3 = forced air cooling	without	cooling plate
4 = forced air cooling	with	cooling plate
5 = oil cooling	without	cooling plate
6 = oil cooling	with	cooling plate

 P_{RSM} 10⁴ 10³ 10⁴ 10³ s 10² t

Fig. 3: Power loss

Non repetitive peak reverse power loss P_{RSM} as a function of time *t*, $T_{(vj)} = 150^{\circ}C$