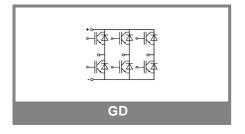


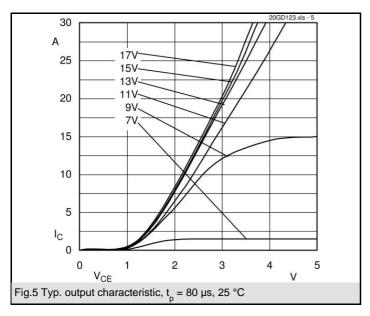
IGBT Module

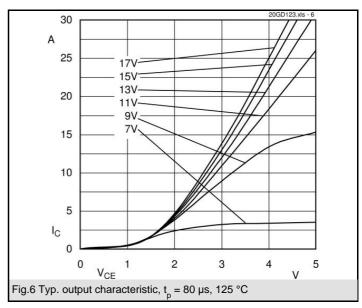
SK 20 GD 123

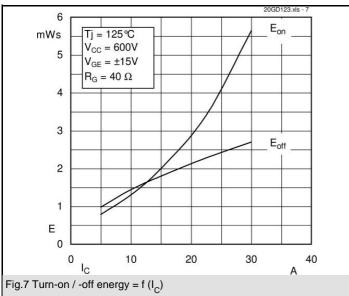
Preliminary Data

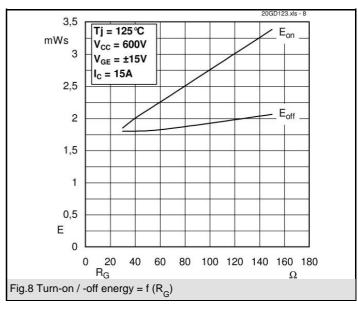
Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N channel, homogeneous Silicon structure (NPT-Non punchtrough IGBT)
- · High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E 63532

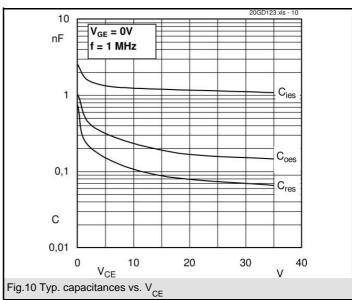

Typical Applications

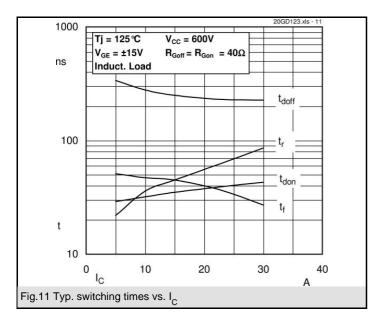

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

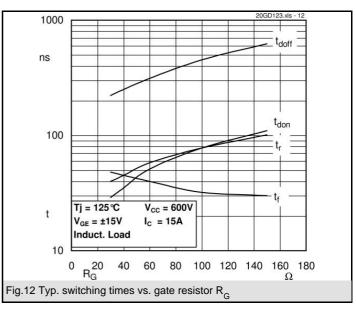

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise	T _s = 25 °C, unless otherwise specified				
Symbol	Conditions	Values	Units				
IGBT							
V_{CES}		1200	V				
V_{GES}		± 20	V				
I _C	T _s = 25 (80) °C;	23 (15)	Α				
I _{CM}	$t_p < 1 \text{ ms; } T_s = 25 (80) \text{ °C;}$	46 (30)	Α				
T _j		- 40 + 150	°C				
Inverse/Freewheeling CAL diode							
I _F	$T_s = 25 (80) ^{\circ}C;$	24 (17)	Α				
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms; } T_s = 25 (80) \text{ °C;}$	48 (34)	Α				
T _j		- 40 + 150	°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V				

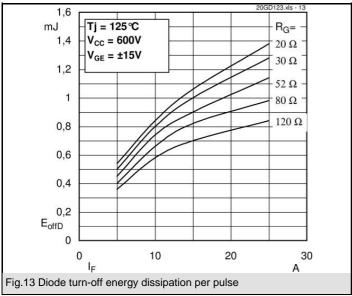

Characteristics		T _s = 25 °	T _s = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT					•	
$egin{array}{l} V_{\text{CE(sat)}} \ V_{\text{GE(th)}} \ C_{\text{ies}} \ R_{\text{th(j-s)}} \ \end{array}$	$\begin{split} & I_{C} = 15 \text{ A, } T_{j} = 25 \text{ (125) } ^{\circ}\text{C} \\ & V_{CE} = V_{GE}; I_{C} = 0,0006 \text{ A} \\ & V_{CE} = 25 \text{ V; } V_{GE} = 0 \text{ V; 1 MHz} \\ & \text{per IGBT} \\ & \text{per module} \end{split}$	4,5	2,5 (3,1) 5,5 1	3 (3,7) 6,5 1,4	V V nF K/W K/W	
$t_{d(on)}$ t_r $t_{d(off)}$ t_f $E_{on} + E_{off}$	under following conditions: $V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$ $I_{C} = 15 \text{ A}, T_{j} = 125 \text{ °C}$ $R_{Gon} = R_{Goff} = 40 \Omega$ Inductive load		35 45 250 70 3,8		ns ns ns ns mJ	
	reewheeling CAL diode				_1	
$V_F = V_{EC}$ $V_{(TO)}$ r_T $R_{th(j-s)}$			2 (1,8) (1) (53)	2,5 (2,3) (1,2) (73) 1,7	V V mΩ K/W	
I _{RRM} Q _{rr} E _{off}	under following conditions: $I_F = 15 \text{ A}; V_R = 600 \text{ V}$ $dI_F/dt = -200 \text{ A/}\mu\text{s}$ $V_{GE} = 0 \text{ V}; T_j = 125 ^{\circ}\text{C}$		16 2,7 0,6		Α μC mJ	
Mechanic						
M1 w	mounting torque		30	2,5	Nm g	
Case	SEMITOP® 3		T 12			

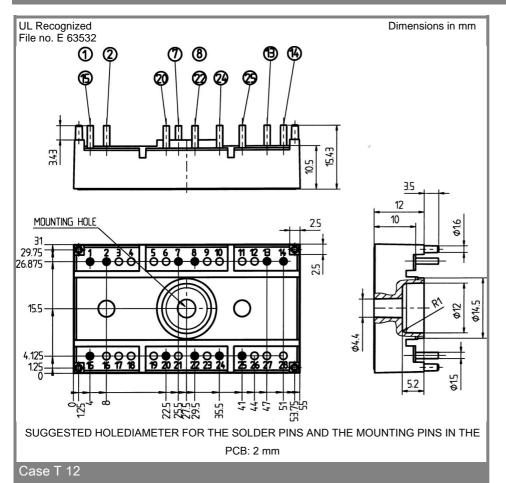


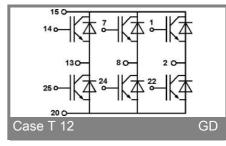












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.