
SK 15 GD 126

SEMITOP[®] 2

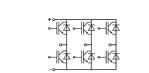
IGBT Module

SK 15 GD 126

Target Data

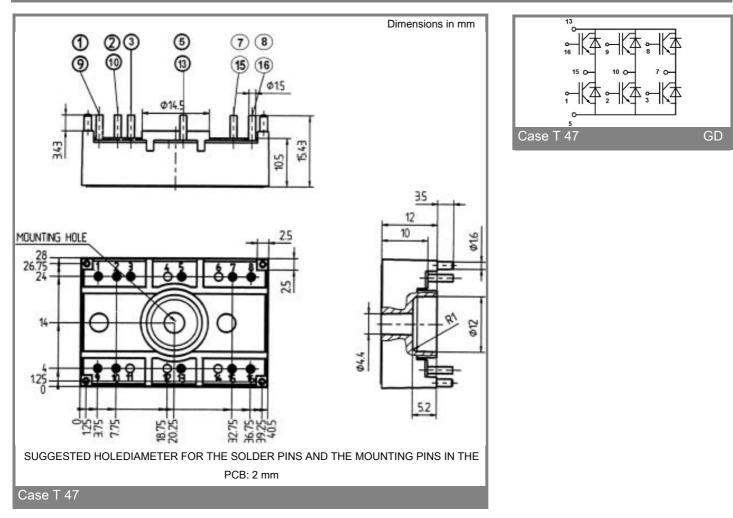
Features

- Fast Trench IGBTs
- Soft freewheeling diodes in
- CAL High Density technology


 Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Absolute Maximum Ratings		T _s = 25 °C	T_s = 25 °C, unless otherwise specified				
Symbol	Conditions		Values				
IGBT							
V _{CES}			1200		V		
V _{GES}			± 20		V		
I _C	T _s = 25 (80) °C;		22 (15)		А		
I _{CM}	t _p < 1 ms; T _s = 25 (80) °C;		44 (30)		А		
T _j			- 40 + 150		°C		
Inverse/F	Freewheeling CAL diode				•		
I _F	T _s = 25 (80) °C;		25 (17)		Α		
I _{FM} = - I _{CM}	t _p < 1 ms; T _s = 25 (80) °C;		50 (34)				
T _j			- 40 + 150		°C		
T _{stg}			- 40 + 125		°C		
T _{sol}	Terminals, 10 s		260				
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s		2500 / 3000				
		AF 00	//	•			
Characte	eristics	1 _s = 25 °C	$T_s = 25 \text{ °C}$, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units		
IGBT							
V _{CE(sat)}	I _C = 15 A, T _j = 25 (125) °C	_	1,7 (2)	2,1	V		

$\begin{array}{c c} \textbf{IGBT} \\ V_{CE(sat)} & I_{C} = 15 \text{ A}, T_{j} = 25 (125) \ ^{\circ}\text{C} \\ V_{GE(th)} & V_{CE} = V_{GE}; \ I_{C} = 0,0006 \text{ A} \\ C_{ies} & V_{CE} = 25 \text{ V}; \ V_{GE} = 0 \text{ V}; 1 \text{ MHz} \\ R_{th(j-s)} & \text{per IGBT} \\ per module \\ \hline & under following conditions: \\ \end{array}$	5	1,7 (2) 5,8 1,2	2,1 6,5 1,6	V V nF K/W
$ \begin{array}{lll} V_{GE(th)} & V_{CE} = V_{GE}; \ i_{C} = 0,0006 \ A \\ C_{ies} & V_{CE} = 25 \ V; \ V_{GE} = 0 \ V; \ 1 \ MHz \\ R_{th(j-s)} & per \ IGBT \\ per \ module \end{array} $	5	5,8	6,5	V nF K/W
$ \begin{array}{ll} V_{GE(th)} & V_{CE} = V_{GE}; \ I_{C} = 0,0006 \ A \\ C_{ies} & V_{CE} = 25 \ V; \ V_{GE} = 0 \ V; \ 1 \ MHz \\ R_{th(j-s)} & per \ IGBT \\ per \ module \end{array} $	5	,	,	nF K/W
$\begin{array}{ll} C_{ies} & V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; 1 \text{ MHz} \\ R_{th(j-s)} & \text{per IGBT} \\ & \text{per module} \end{array}$		1,2	1,6	K/W
R _{th(j-s)} per IGBT per module			1,6	-
per module				
under following conditions:				K/W
$t_{d(on)}$ V _{CC} = 600 V , V _{GE} = ± 15 V		35		ns
t _r I _C = 15 A, T _i = 125 °C		20		ns
$t_{d(off)}$ $R_{Gon} = R_{Goff} = 50 \ \Omega$		403		ns
t _f		192		ns
E _{on} + E _{off} Inductive load		3,56		mJ
Inverse/Freewheeling CAL diode				
V _F = V _{EC} I _F = 11 A; T _i = 25 (125) °C		1,6 (1,6)	1,8 (1,8)	V
$V_{(TO)}$ $T_j = (125) °C$		1 (0,8)	1,1	V
$r_{T} = (125) \ ^{\circ}C$		40 (53)	47	mΩ
R _{th(j-s)}			2,1	K/W
under following conditions:				
I _{RRM} I _F = 15 A; V _R = 600 V		21		Α
Q _{rr} dI _F /dt = 570 A/µs		3,5		μC
E_{off} V_{GE} = 0 V; T_j = 125 °C		1,4		mJ
Mechanical data				
M1 mounting torque			2	Nm
w		21		g
Case SEMITOP® 2		T 47		

GD

SK 15 GD 126

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.