

PI207MC-A4 200DPI CIS Module Engineering Data Sheet

Key Features

- · Light source, lens, and sensor are integrated into a single module
- 8 dpm resolution, 216 mm scanning length
- Dual LED light source, IR and Red, with a line scan time to 347 μsec @ 5 MHz
- Wide dynamic range
- Analog output
- Compact size \cong 14.5 mm x 19.5 mm x 232 mm
- Low power
- Light weight

General Description

The PI207MC-A4 is a CIS module containing contact image sensors, using MOS image sensor technology for high-speed performance and high sensitivity. The PI207MC-A4 is suitable for scanning A4 size (216 mm) documents with 8 dots per millimeter resolution. Applications include fax machines, game systems, variety of mark readers, and other automation equipment requiring document scanners.

Functional Description

The PI207MC-A4 imaging array consists of 27 PI3033B sensors, produced by Peripheral Imaging Corp, that are cascaded to provide 1728 photo-detectors with their associated multiplex switches, and a digital shift register that controls its sequential readout. Mounted in the module is a one-to-one graded indexed micro lens array that focuses on the image of the scanned documents then transfers it onto the sensors. The on-board amplifier processes the video signal to produce a sequential stream of video at the output pin of the PI207MC-A4 module.

Illumination is by means of integrated LED sources; Red (660nm) and IR (880nm). All components are housed in a small plastic housing which has a cover glass that acts as the focal point for the object being scanned. In addition, it protects the imaging array, micro lens assembly, and LED light source from dust. Inputs and Outputs (I/O) to and from the module are by a 10-pin connector, JAE 1L-Z-10P-S125L3-E, located on one end of the module. For pin 1 location, see Figure 4, Overall View of the Module Housing.

A cross section of the PI207MC-A4 Module is shown in Figure 1 and a block diagram in Figure 2.

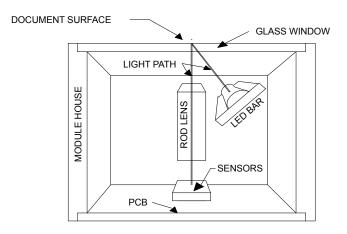


Figure 1. PI207MC-A4 Cross Section

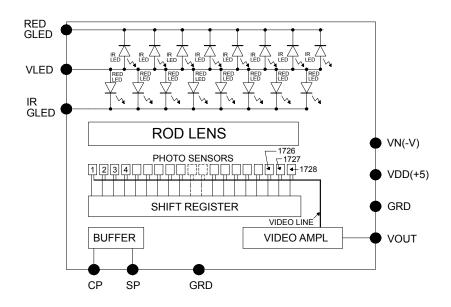


Figure 2. PI207MC-A4 Module Block Diagram

Connector Pinout Designation

Pin Number Names and Functions Symbol VOUT Analog Video Output 1 2 GND Ground; 0V 3 Vdd (+5V) Positive power supply Vn (-5V to -12V) Negative power supply 4 5 GLED RED Ground for the Red light source; 0V 6 SP Shift register start pulse 7 GND Ground; 0V 8 CP Sampling clock pulse 9 GLED IR Ground for the IR light source; 0V VLED Supply for the light source 10

Connector is JAE part number 1L-Z-S125L3-E.

Table 1. Pinout Configuration

Maximum Ratings

Parameter	Symbols	Maximum Rating	Units
Power supply voltage	Vdd	7	V
	ldd	80	mA
	Vn	-15	V
	In	7	mA
	VLED IR	5.5	V
	VLED RED	5.5	V
	ILED IR	500	mA
	ILED RED	600	mA
Input clock pulse (high level)	Vih	Vdd	V
Input clock pulse (low level)	Vil	-0.5	V

Table 2. Maximum Rating

Note. These are the maximum ratings and are not to be used in a prolonged condition.

Operating Environment

Parameter	Symbol	Range	Units
Operating temperature	Тор	0 to +50	οC
Operating humidity	Нор	+10 to +85	%
Storage temperature	Tstg	-25 to +75	°C
Storage humidity	Hstg	+5 to +95	%

Table 3. Operating Environment

Electro-Optical Characteristics

The tabled values are measured at 25° C

Parameter	Symbol	Typical	Units	Note
Number of photo detectors		1728	elements	
Pixel to pixel spacing		125	μm	
Line scanning rate ⁽¹⁾	Tint	347	μsec	@ 5.0 MHz clock frequency
Clock frequency ⁽²⁾	fclk	5.0	MHz	
Bright output voltage ⁽³⁾	Vpavg	1.1 +/- 0.1	Volts	
Bright output Non-uniformity ⁽⁴⁾	Up	< +/-30	%	
Adjacent pixel Non-uniformity ⁽⁵⁾	Uadj	<25	%	
Dark Non-uniformity (6)	Ud	<75	mV	
Dark output voltage (6)	Vd	<200	mV	
Modulation transfer function ⁽⁷⁾	MTF	>40	%	

Table 4. Electro-Optical Characteristics at 25° C

Notes.

- Tint is the line scanning rate or integration time. Tint is determined by the interval of two start pulses, SP. The integration time of 347μsec is set at the factory. For additional comments, see note (1) under Table 5, Recommended Operating Conditions.
- 2. fclk: main clock frequency.
- 3. Vpavg = $\sum Vp(n)/1728$.
- Up = [(Vpmax Vpavg) / Vpavg] x 100% or [(Vpavg Vpmin) / Vpavg] x 100%, Where Vpmax = maximum pixel amplitude in the line scan and Vpmin = minimum pixel amplitude in the line scan.
- Upadj = MAX[| (Vp(n) Vp(n+l) | / Vp(n)) x 100% Upadj is the non-uniformity in percent between adjacent pixels, Where Vp(n) is the nth pixel in the line scan.
- Ud = Vdmax Vdmin.
 Vd = the average dark output level.
 Vdmin is the minimum output voltage on a black document (LED is turned off).
 Vdmax is the maximum output voltage on a black document (LED is turned off).
- MTF = [(Vmax Vmin) / (Vmax + Vmin)] x 100 [%] Vmax: maximum output voltage at 50 lp/in and Vmin: minimum output voltage at 50 lp/in, where lp/in is the line pairs per inch.

Recommended Operating Conditions

The tabled values are measured at 25° C.

Parameter	Symbol	Min	Mean	Max	Units
Power Supply	Vdd	4.5	5.0	5.5	V
	Vn	-4.5	-5	-12	
	VLED IR	4.5	5	5.5	V
	VLED RED	4.5	5	5.5	V
	ILED IR	200	300	500	mA
	ILED RED	250	350	600	mA
	ldd	55	60	70	mA
	lvn	4.0	5.0	5.5	mA
Input voltage at digital high	Vih	Vdd-1.0	Vdd-0.5	Vdd	V
Input voltage at digital low	Vil	0		0.8	V
Clock frequency ⁽¹⁾	fclk			5.5	MHz
Clock pulse high duty cycle		25			%
Clock pulse high duration		45.5			ns
Integration time ⁽¹⁾	Tint	316		10000	μs
Operating temperature	Тор		25	50	°C

Table 5. Recommended Operating Conditions at 25°C

Note.

 Electrically, including the image sensors, the circuits will operate above 5.5 MHz with Tint at 316 μs. However the light power is fixed, hence with the shorter integration time, the exposure is reduced. This reduction limits the specification call out to integration time of 0.347 ms at 5.0MHz for 1.0 V output.

Timing Characteristics

The Timing characteristics for the I/O clocks are shown in Figure 3. See timing symbol definitions in Table 6. The listed values are measured at \sim 25° C.

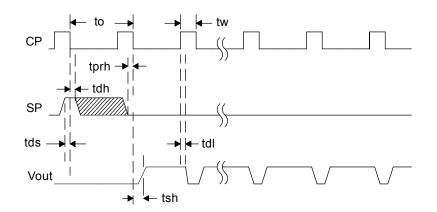


Figure 3. Timing Diagram

Parameters	Symbol	Min.	Typical	Max.	Units
Clock cycle time	to	0.333		5.8	μs
Clock pulse width	tw	82			ns
Clock duty cycle		25		75	%
Prohibit crossing time of Start Pulse	tprh	15			ns
Data setup time	tds	20			ns
Data hold time	tdh	20			ns
Signal delay time	tdl	50			ns
Signal settling time	tsh	120			ns

Table 6. Timing Symbol Definitions for Figure 3 Timing Diagram

PI207MC-A4 Module and Its Mechanical Dimensions

This is an overview drawing of the module. A full size drawing is available upon request.

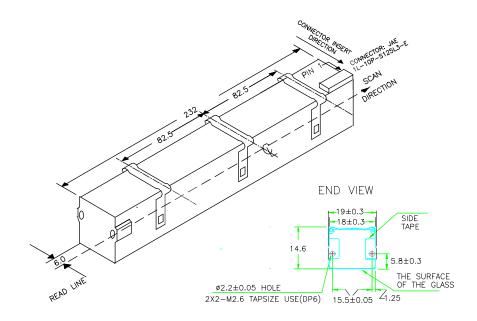


Figure 4. Overall View of the Module Housing

^{©2003} Peripheral Imaging Corporation. Printed in USA. All rights reserved. Specifications are subject to change without notice. Contents may not be reproduced in whole or in part without the express prior written permission of Peripheral Imaging Corporation. Information furnished herein is believed to be accurate and reliable. However, no responsibility is assumed by Peripheral Imaging Corporation for its use nor for any infringement of patents or other rights granted by implication or otherwise under any patent or patent rights of Peripheral Imaging Corporation