
PBYL1625 series

FEATURES

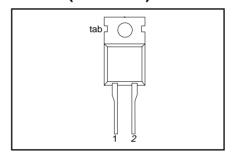
- Low forward volt drop
- Fast switching
- Reverse surge capability
- High thermal cycling performance
- Low thermal resistance

SYMBOL

QUICK REFERENCE DATA

$$V_R = 20 \text{ V}/25 \text{ V}$$
 $I_{F(AV)} = 16 \text{ A}$
 $V_F \le 0.46 \text{ V}$

GENERAL DESCRIPTION


Schottky rectifier diodes intended for use as output rectifiers in low voltage, high frequency switched mode power supplies.

The PBYL1625 series is supplied in the SOD59 (TO220AC) conventional leaded package.

PINNING

PIN	DESCRIPTION	
1	cathode	
2	anode	
tab	cathode	

SOD59 (TO220AC)

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER CONDITIONS		MIN.	MAX.		UNIT
		PBYL16		20	25	
V_{RRM}	Peak repetitive reverse voltage		-	20	25	V
V_{RWM}	Working peak reverse voltage		-	20	25	V
V_R	Continuous reverse voltage	T _{mb} ≤ 120 °C	-	20	25	\ \ \
I _{F(AV)}	Average rectified forward current	square wave; $\delta = 0.5$; $T_{mb} \le 131$ °C	-	1	6	A
I _{FRM}	Repetitive peak forward current	square wave; $\delta = 0.5$; $T_{mb} \le 131$ °C	-	3	2	A
I _{FSM}	Non-repetitive peak forward current	t = 10 ms t = 8.3 ms sinusoidal; $T_j = 125 ^{\circ}\text{C}$ prior to surge; with reapplied $V_{\text{RRM}(\text{max})}$	-		35 50	A A
I _{RRM}	Peak repetitive reverse	pulse width and repetition rate limited by T _{i max}	-	,	I	Α
T _j	surge current Operating junction temperature	Intilited by I j max	-	15	50	°C
T _{stg}	Storage temperature		- 65	17	75	°C

PBYL1625 series

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
R _{th j-mb}	Thermal resistance junction		-	-	2	K/W
R _{th i-a}	to mounting base Thermal resistance junction to ambient	in free air	-	60	-	K/W

ELECTRICAL CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{F}	Forward voltage	I _F = 16 A; T _i = 125°C	-	0.42	0.46	٧
		$I_{\rm F} = 32 \text{A}, T_{\rm i} = 125 ^{\circ} \text{C}$	-	0.57	0.61	V
		$I_{\rm F} = 32 {\rm A}^{-1}$	-	0.55	0.68	V
I _R	Reverse current	$ \dot{V}_{R} = V_{RWM} $	-	1	5	mΑ
		$V_R = V_{RWM}$; $T_j = 100$ °C $V_R = 5$ V; $f = 1$ MHz, $T_i = 25$ °C to 125°C	-	22	40	mΑ
C _d	Junction capacitance	$V_R = 5 \text{ V}$; f = '1 MHz, $T_j = 25 ^{\circ}\text{C}$ to 125 $^{\circ}\text{C}$	-	700	-	pF

PBYL1625 series

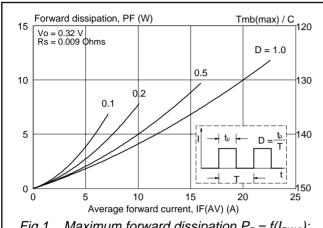


Fig.1. Maximum forward dissipation $P_F = f(I_{F(AV)})$; square current waveform where $I_{F(AV)} = I_{F(RMS)} \times \sqrt{D}$.

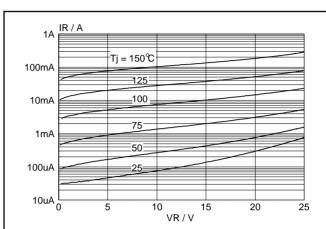


Fig.4. Typical reverse leakage current; $I_R = f(V_R)$; parameter T_i

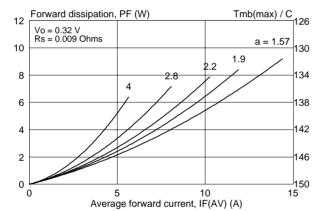
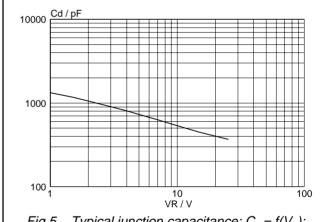



Fig.2. Maximum forward dissipation $P_F = f(I_{F(AV)})$; square current waveform where $I_{F(AV)} = I_{F(RMS)} \times \sqrt{D}$.

Typical junction capacitance; $C_d = f(V_R)$; f = 1 MHz; $T_j = 25^{\circ}\text{C}$ to 125°C .

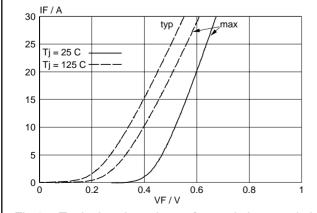


Fig.3. Typical and maximum forward characteristic $I_F = f(V_F)$; parameter T_i

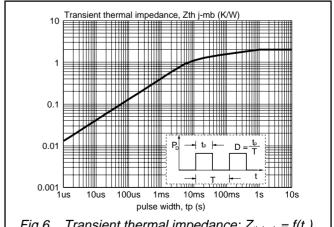
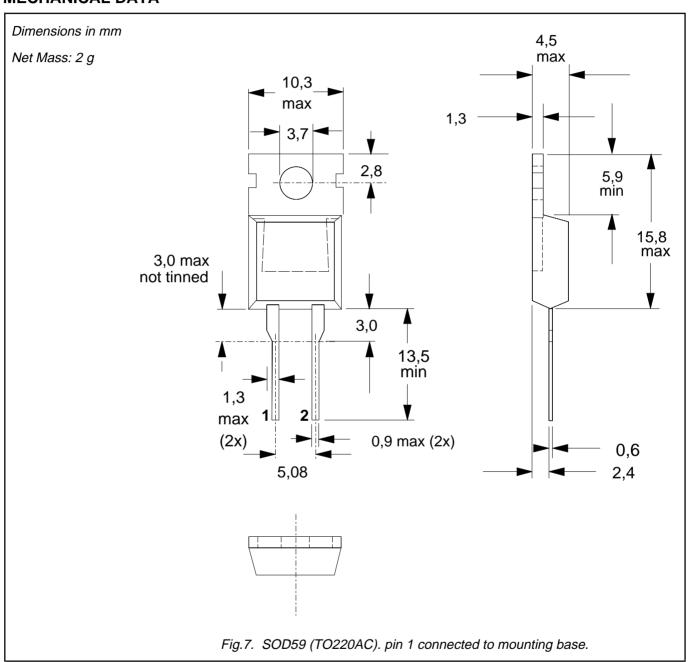



Fig.6. Transient thermal impedance; $Z_{th j-mb} = f(t_p)$.

PBYL1625 series

MECHANICAL DATA

- Refer to mounting instructions for TO220 envelopes.
 Epoxy meets UL94 V0 at 1/8".

Philips Semiconductors Product specification

Rectifier diodes	PBYL1625 series
Schottky barrier	

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of

this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

© Philips Electronics N.V. 1998

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.