

NTE1635 Integrated Circuit Speaker Protector/Voltage/Temperature/Overload

Description:

The NTE1635 is a monolithic integrated circuit in an 8–Lead SIP type package designed for use in protecting power amplifiers and speakers in various amplifier and receiver applications.

Features:

- Built-In Relay Driver
- Single Power Source
- Wide Operating Supply Range: 25V to 60V
- Plus and Minus Voltage using One Pin (Both Pin3 and Pin4 Posses the Same Functions and Detect Plus and Minus Voltage)
- AC Voltage Detector (Pin5)
- Circuit Protection by Plus Voltage Detection is Provided by Connecting D1 Diode Externally (Pin6)
- Relay-On Lag Time Adjustable by External Applications
- Short Relay-Off Time (25ms Typ Under the Standard External Applications)

Typical Applications:

- For Speaker Protection, use Pin3 (or Pin4) to Detect Setoff of Quiescent Output DC Voltage and to Turn the Relay Off
- For Power Amplifier Protection, use Pin3 (or Pin4) with an External Thermo—Sensitive Device to Detect the Temperature Increase and to Turn the Relay Off
- Power Amplifier can be Protected by Detecting Overload and Turning the Relay Off with Pin6
- In case of Overload Detection by Constant-Current or by Constant-Voltage Drive using an External Diode D1, the Latch Mechanism keeps the Relay On until the Power is Switched Off
- For Prevention of Pop Noise at Power Off use Pin5. AC Voltage Disappeance is Immediately Detected when the Amp's Switch has been Off. This Minimizes the Relay-Off Time and thus can Prevent Pop Noise Generated by Mute-Off Time Lag

Absolute Maximum Ratings: $(T_A = +25^{\circ}C)$ unless otherwise specified)	
Total Power Disipation ($T_A = +70^{\circ}C$), P_T	400mW
Operating Temperature Range, Topr	–20° to +70°C
Storage Temperature Range, T _{stg}	. −55° to +125°C
Supply Voltage (Pin1), V _{CC(max)}	60V
Supply Current (Pin1), I ₁ (max)	

Absolute Maximum Ratings (Cont'd): $(T_A = +25^{\circ}C)$ unless otherwise specified)
Supply Current (Pin3, Note 1), I _{3(max)} ±3mA
Supply Current (Pin4, Note 1), I _{4(max)} ±3mA
Supply Voltage (Pin5), V _{5(max)} –10V
Supply Current (Pin6), I _{6(max)}
Supply Voltage (Pin7, Note 2), V _{7(max)}
Supply Current (Pin7, Note 2), I _{7(max)}
Supply Voltage (Pin8), V _{8(max)} Less than Pin7
Supply Current (Peak, Pin8), Í _{8(max)} 50mA

Note 1. Positive current denotes input current at Pin3 and Pin4, Negative current denotes output current

Note 2. $V_{7(max)} = 8V$ is derived when driven by a constant voltage source without any resistance. When applying current to V_7 throught a resistance V_{CC} the maximum value of input current to Pin7 should be used instead of the above values.

<u>Electrical Characteristics:</u> (V_{CC} = +45V unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Threshold Voltage at Pin3, Positive Side	+V _{th(3)}	Apply positive voltage to Pin3 through an external resistance ($56k\Omega$). Measure Pin3 voltage while Pin1 voltage changes from low (1V) to high (45V) during the above process.	0.89	1.20	1.61	V
Threshold Voltage at Pin3, Negative Side	-V _{th(3)}	Apply negative voltage to Pin3 through an external resistance ($56k\Omega$). Measure Pin3 voltage while Pin1 voltage changes from low (1V) to high (45V) during the above process.	-1.86	-1.20	-0.84	V
Threshold Voltage at Pin4, Positive Side	+V _{th(4)}	Apply positive voltage to Pin4 through an external resistance ($56k\Omega$). Measure Pin4 voltage while Pin1 voltage changes from low (1V) to high (45V) during the above process.	0.89	1.20	1.61	V
Threshold Voltage at Pin4, Negative Side	-V _{th(4)}	Apply negative voltage to Pin4 through an external resistance ($56k\Omega$). Measure Pin4 voltage while Pin1 voltage changes from low (1V) to high (45V) during the above process.	-1.86	-1.20	-0.84	V
Threshold Voltage at Pin6	V _{th(6)}	Apply voltage to Pin6 through D1. Measure voltage on Pin6 while Pin1 voltage changes from low (1V) to high (45V) during the above process.	0.90	1.15	1.40	V
Threshold AC Voltage at Pin5	V _{AC(on)}	Apply AC voltage to Pin5 through D2. Measure AC voltage on Pin5 while Pin1 voltage changes from low (1V) to high (45V) during the above process.	-	2.5	-	V _{rms}
Threshold Voltage at Pin5	V _{th(5)}	Apply voltage to Pin5 directly. Measure voltage on Pin5 when Pin1 voltage change from low (1V) to High (45V) during the above process.	-1.8	-1.2	0	V
Current Drain at Pin7	I ₍₇₎	Measure Pin7 input current when turning relay on.	16.5	18.5	20.5	mA

