

Current Transducers NNC-920.. 960A

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 2000 ... 6000 A$

Electrical data					
Primary nomina	al Primary current	Type			
r.m.s. current	measuring range				
I _{PN} (A)	I _P (A)				
2000	± 2200	NNC - 920	4		
3000	± 3300	NNC - 930	4		
4000	± 4400	NNC - 940	4		
5000	± 5500	NNC - 950	4		
6000	± 6600	NNC - 960A	4		
$V_{\rm C}$	Supply voltage (± 5 %)	± 15	V		
	Current consumption	$< \pm 25$	mΑ		
I _C V _d V _b	R.m.s. voltage for AC isolation test, 50/60Hz, 1 mn	2.5	kV		
V _b	R.m.s. rated voltage, safe separation		500		
V					
$R_{_{\rm IS}}$	Isolation resistance @ 500 VDC	> 1000	$M\Omega$		
V _{OUT}	Output voltage @ $\pm I_{PN}$, $\mathbf{R}_{L} = 10 \text{ k}\Omega$, $\mathbf{T}_{A} = 25^{\circ}\text{C}$	±	10 V		
R _{OUT}	Output internal resistance	100	Ω		
R	Load resistance	10	$k\Omega$		

Accuracy - Dynamic performance data					
X _G	Accuracy @ T _A = 25°C	< ± 1	% of I _{PN}		
X _G €∟	Linearity (0 ± I _{PN})	< ± 1	% of I _{PN}		
V _{OE} V _{OH}	Electrical offset voltage, $T_A = 25^{\circ}C$	$< \pm 50$	mV		
V _{OH}	Hysteresis offset voltage $\textcircled{0} \mathbf{I}_{P} = 0$;				
	after an excursion of 1 x I _{PN}	$< \pm 50$	mV		
V_{OT}	Thermal drift of V _{OE}	< ± 1	mV/°C		
V _{ot} TC € _G	Thermal drift of the gain (% of reading)	$< \pm 0.1$	%/°C		
t _r	Response time @ 90% of I_P	< 25	μs		

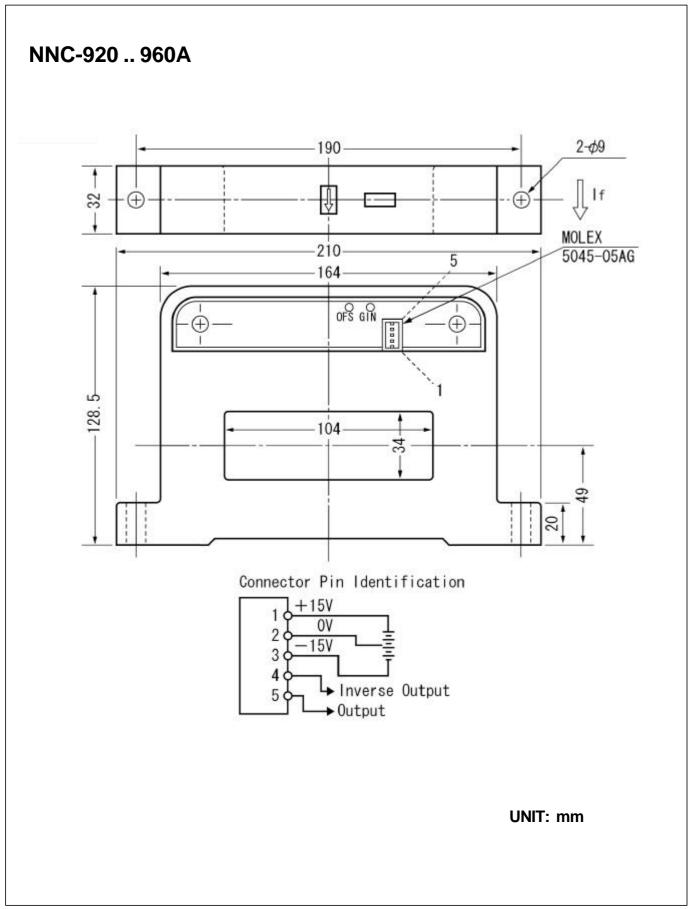
General data						
$T_{\scriptscriptstyle \Delta}$	Ambient operating temperature	- 10 + 60	°C			
T _s	Ambient storage temperature	- 15 + 65	°C			
m	Mass	1.4	kg			

Notes: Linearity data exclude the electrical offset.

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 3000 V~
- Low power consumption

Advantages


- Easy mounting
- Space saving
- High immunity to external interference.

Applications

- AC variable speed drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)

NANALEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.