Features

- Low Conversion Loss
- 1 dB Compression: +21 dBm
- LO Drive Level: +11 to +23 dBm
- DC - 100 MHz IF Bandwidth
- Lead-Free SOIC-8 Package
- 100\% Matte Tin Plating over Copper
- Halogen-Free "Green" Mold Compound
- $260^{\circ} \mathrm{C}$ Reflow Compatible
- RoHS* Compliant Version of MD54-0004

Description

M/A-COM's MAMXSS0011 is a passive mixer that achieves the performance of a double balanced diode mixer in a lead-free surface mount plastic SOIC-8 package. The MAMXSS0011 is ideally suited for use where high level RF signals and very wide dynamic range are required.

Typical applications include frequency up/down conversion, modulation, demodulation in systems such as cellular receivers and transmitters and 900 MHz ISM band applications.

The MAMXSS0011 uses FETs as mixing elements to achieve very wide dynamic range in a low cost plastic package. The mixer operates with LO drive levels of +11 dBm to +23 dBm . DC bias is not required.

M/A-COM's MAMXSS0011 is fabricated using a mature 1-micron GaAs process. The process features full IC passivation for increased performance and reliability.

Ordering Information

Part Number	Package
MAMXSS0011	Bulk Packaging
MAMXSS0011TR	1000 piece reel
MAMXSS0011SMB	Designer's Kit

[^0]Functional Diagram

External matching network on LO Port: $\mathrm{R}=470$ ohms, $\mathrm{L}=18 \mathrm{nH}, \mathrm{C}=4.7 \mathrm{pF}$

Pin Configuration

Pin No.	Function	Pin No.	Function
1	Ground	5	Ground
2	RF Port	6	LO Port
3	Ground	7	IF Port
4	Ground	8	Ground

Electrical Specifications:

Test Conditions: RF = $900 \mathrm{MHz}(-10 \mathrm{dBm}), \mathrm{LO}=840 \mathrm{MHz}(13 \mathrm{dBm})$, $\mathrm{IF}=60 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=\boldsymbol{+ 2 5}{ }^{\circ} \mathrm{C}$

Parameter	Test Conditions	Units	Min	Typ	Max
Conversion Loss	-	dB	-	7.5	9.5
Isolation	LO to RF	dB	-	38	-
	LO to IF	dB	-	22	-
RF to IF	dB	-	12	-	
VSWR	LO Port	Ratio	-	$2.5: 1$	-
	RF Port	Ratio	-	$2.0: 1$	-
Input 1 dB Compression	Ratio	-	$2.0: 1$	-	
Two-Tone IM Ratio ${ }^{1}$	RF Freq. $=900 \mathrm{MHz}, \mathrm{LO}=+13 \mathrm{dBm}$	dBm	-	+21	-

1. IMR vs RF drive level can be calculated by the formula: $I M R=45-(1.5 \times P \mathrm{IN})$

Absolute Maximum Ratings ${ }^{2,3}$

Parameter	Absolute Maximum
RF Input Power ${ }^{4}$	+22 dBm
LO Drive Power ${ }^{4}$	+23 dBm
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

2. Exceeding any one or combination of these limits may cause permanent damage to this device.
3. $M / A-C O M$ does not recommend sustained operation near these survivability limits.
4. Total combined power for RF and LO ports should not exceed +23 dBm .

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Spurious Table

	4x	$\begin{gathered} 8.9 \\ -1.1 \end{gathered}$	$\begin{aligned} & 40.1 \\ & 39.9 \end{aligned}$	$\begin{aligned} & 70.1 \\ & 61.6 \end{aligned}$	$\begin{aligned} & 69.9 \\ & 63.9 \end{aligned}$	$\begin{aligned} & 73.4 \\ & 64.4 \end{aligned}$
	3 x	$\begin{gathered} 2.2 \\ -7.7 \end{gathered}$	$\begin{aligned} & 34.2 \\ & 34.1 \end{aligned}$	$\begin{aligned} & 59.8 \\ & 63.8 \end{aligned}$	$\begin{aligned} & 67.3 \\ & 64.5 \end{aligned}$	$\begin{aligned} & 73 \\ & 63 \end{aligned}$
	2x	$\begin{array}{r} 2.9 \\ -7.1 \end{array}$	$\begin{aligned} & 23.7 \\ & 23.8 \end{aligned}$	$\begin{aligned} & 72.8 \\ & 64.7 \end{aligned}$	$\begin{aligned} & 72.9 \\ & 63.3 \end{aligned}$	$\begin{aligned} & 71.9 \\ & 61.9 \end{aligned}$
	1x	$\begin{gathered} \hline-2.2 \\ -12.2 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 61.4 \\ & 63.3 \end{aligned}$	$\begin{aligned} & 71.3 \\ & 61.8 \end{aligned}$	$\begin{aligned} & 71.1 \\ & 61.9 \end{aligned}$
	0x	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & 4.7 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 65.1 \\ & 61.3 \end{aligned}$	$\begin{aligned} & 71.5 \\ & 61.9 \end{aligned}$	$\begin{aligned} & 72.1 \\ & 62.3 \end{aligned}$
		0x	1x	2x	3 x	4x
	Harmonic of RF					

The spurious table shows the spurious signals resulting from the mixing of the RF and LO input signals, assuming down conversion. Mixing products are indicated by the number of dB below the conversion loss. The lower frequency mixing term is shown for two different RF input levels. The top number is for an $R F$ input power of -5 dBm , the lower number is for -15 dBm .
$\left|m F_{R F}-n F_{L O}\right|, R F=-5 d B m$
$\left|\mathrm{mF}_{\mathrm{RF}}-\mathrm{nF} \mathrm{Fo}_{\mathrm{LO}}\right|, \mathrm{RF}=-15 \mathrm{dBm}$
RF Frequency $=900 \mathrm{MHz}$
LO Frequency $=840 \mathrm{MHz}$

Typical Performance Curves

Conversion Loss

Input P1dB

Isolation

RF, LO and IF VSWR

Lead-Free SOIC-8 ${ }^{\dagger}$

[^1]- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

[^0]: Note: Reference Application Note M513 for reel size information.

[^1]: ${ }^{\dagger}$ Reference Application Note M538 for lead-free solder reflow recommendations.

