

Voltage Transducer LV 100

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$I_{PN} = 10 \text{ mA}$ $V_{PN} = 100..2500 \text{ V}$

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		10 0 ± 20 R _{Mmin}) R _{Mmax}	mA mA
	with ± 15 V	@ $\pm 10 \text{ mA}_{\text{max}}$ @ $\pm 20 \text{ mA}_{\text{max}}$	0	150 50	Ω
I _{SN} K _N V _C	Secondary nominal r.m.s. current Conversion ratio Supply voltage (±5%)		50 10000 : ± 15	2000	mA V
I _C V _d	Current consumption R.m.s. voltage for AC isola	ation test ¹⁾ , 50 Hz, 1 mn	10 + I _s		mA kV

Accuracy - Dynamic performance data

$\overset{\boldsymbol{X}_G}{\boldsymbol{e}_L}$	Overall Accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = Linearity	= 25°C	± 0.7 < 0.1		% %
I _o I _{o⊤}	Offset current @ $\mathbf{I}_{\mathrm{p}} = 0$, $\mathbf{T}_{\mathrm{A}} = \mathrm{Thermal\ drift\ of\ } \mathbf{I}_{\mathrm{O}}$	25°C 0°C + 70°C	Typ ± 0.2	Max ± 0.2 ± 0.3	mA mA
$\mathbf{t}_{_{\mathrm{r}}}$	Response time 2) @ 90 % of	f V _{PN}	20 1	00	μs

General data

T_A	Ambient operating temperature	0 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
R _P	Primary coil resistance @ T _A = 70°C	1900	Ω
R _s	Secondary coil resistance @ T _A = 70°C	60	Ω
m	Mass	460	g
	Standards	EN 50178	

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Principle of use

 For voltage measurements, a current proportional to the measured voltage must be passed through an external resistor R₁ which is selected by the user and installed in series with the primary circuit of the transducer.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- Low response time
- · High bandwidth
- High immunity to external interference
- Low disturbance in common mode.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

Notes: 1) Between primary and secondary

030131/6

 $^{^{2)}}$ R $_{_1}$ = 100 k $\!\Omega$ (L/R constant, produced by the resistance and inductance of the primary circuit).

Dimensions LV 100 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Transducer fastening

Fastening torque max

Connection of primary

Fastening torque max

• Connection of secondary

± 0.3 mm

2 holes Ø 6.5 mm M6 steel screws

5 Nm or 3.69 Lb - Ft.

M5 screw terminals

2.2 Nm or 1.62 Lb - Ft.

Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when V_P is applied on terminal +HT.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

Instructions for use of the voltage transducer model LV 100

Primary resistor \mathbf{R}_1 : the transducer's optimum accuracy is obtained at the nominal primary current. As far as possible, \mathbf{R}_1 should be calculated so that the nominal voltage to be measured corresponds to a primary current of 10 mA.

Example: Voltage to be measured $V_{PN} = 1000 \text{ V}$

a) $\mathbf{R}_{1} = 100 \text{ k}\Omega/40 \text{ W}, \mathbf{I}_{p} = 10 \text{ mA}$

Accuracy = \pm 0.7 % of \mathbf{V}_{PN} (@ \mathbf{T}_{A} = +25°C)

b) **R** = 40

b) $\mathbf{R}_{1} = 400 \text{ k}\Omega/5 \text{ W}, \mathbf{I}_{P} = 2.5 \text{ mA}$

Accuracy = ± 2.5 % of V_{PN} (@ $T_A = +25$ °C)

Operating range (recommended): taking into account the resistance of the primary windings (which must remain low compared to R_{\uparrow} , in order to keep thermal deviation as low as possible) and the isolation, this transducer is suitable for measuring nominal voltages from 100 to 2500 V.