

FEATURES

- ♦ 18 GHz to 40 GHz Frequency Band
- ♦ 4.5 dB Noise Figure
- ♦ 12dB Gain
- ♦ 14 dBm Output Power at Saturation
- ♦ +3 V Single Bias Supply

DESCRIPTION AND APPLICATIONS

The Filtronic Solid State LMA406 is a low noise PHEMT amplifier that operates from 18 to 40GHz. This 2-stage amplifier provides 12dB nominal gain with 4.5dB typical noise figure and 1-dB gain compression power output of +10dBm that is designed for commercial mmW (millimeter-wave) applications. Ground is provided to the circuitry through vias to the backside PCN/PCS metallization.

ELECTRICAL SPECIFICATIONS @ T_{Ambient} = 25°C

 $(V_{DD} = +3.0V, Z_{IN} = Z_{OUT} = 50\Omega)$

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
Frequency Band	F		18		40	GHz
Small Signal Gain	S ₂₁	30% I _{DSS} (Pad B&D Ground)	9	11.5		dB
		30% I _{DSS} (Pad A&C Ground)	9	12.5		dB
Saturated Drain Current	I_{DSS}	$R_S = 0/0\Omega$	40	80	120	mA
Small Signal Gain Flatness	ΔS_{21}			±1	±2.5	dB
Noise Figure	NF	50% I _{DSS}		4.5	6.0	dB
Input Return Loss	S ₁₁			-12		dB
Output Return Loss	S ₂₂			-14		dB
Reverse Isolation	S ₁₂		-32	-38		dB

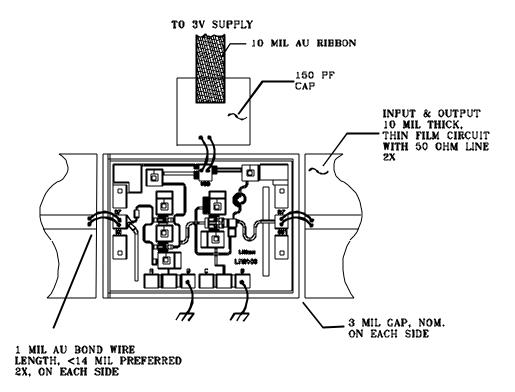
Email: sales@filss.com

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Min	Max	Units
Drain Voltage	$V_{\rm D}$	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		4	V
Operating Current	I_{OP}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		120	mA
RF Input Power	P_{IN}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		10	dBm
Total Power Dissipation	P _{TOT}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$.48	W
Channel Operating Temperature	T_{CH}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		150	°C
Storage Temperature	T_{STG}	_	-65	165	°C
Maximum Assembly Temperature (1 min. max.)	T_{MAX}	_		300	°C

Notes:

- Operating conditions that exceed the Absolute Maximum Ratings could result in permanent damage to the device.
- Recommended Continuous Operating Limits should be observed for reliable device operation.
- Power Dissipation defined as: $P_{TOT} = (P_{DC} + P_{IN}) P_{OUT}$, where

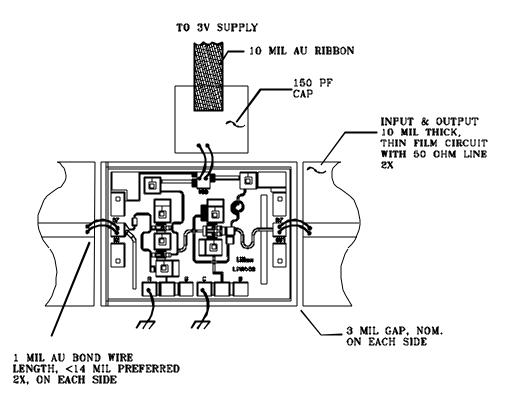

P_{DC}: DC Bias Power P_{IN}: RF Input Power P_{OUT}: RF Output Power

• This GaAs MMIC is susceptible to damage from Electrostatic Discharge. Proper precautions should be used when handling these devices.

ASSEMBLY DRAWING

LOW NOISE BIAS: PAD B & D TO GND

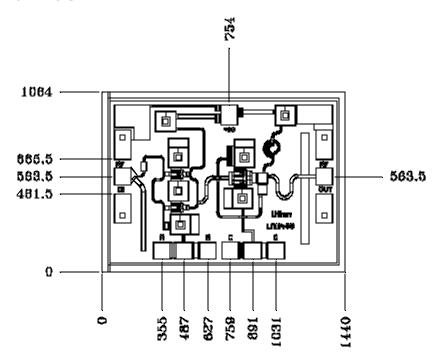
Notes:


- Recommended lead bond technique is thermocompression wedge bonding with 0.001" (25µm) diameter wire. The bond tool force shall be 35-38 gram. Bonding stage temperature shall be 230-240°C, heated tool (150-160°C) is recommended. Ultrasonic bonding is not recommended.
- The recommended die attach is Ablebond silver epoxy, the stabilize bake temperature is set at 150°C for 45 minutes.
- Bond on bond or stitch bond acceptable.
- Conductor over conductor acceptable. Conductors must not short.

Fax: (408) 970-9950 Email: sales@filss.com

ASSEMBLY DRAWING

HIGH GAIN BIAS: PAD A & C TO GND



Notes:

- Recommended lead bond technique is thermocompression wedge bonding with 0.001" ($25\mu m$) diameter wire. The bond tool force shall be 35-38 gram. Bonding stage temperature shall be 230-240°C, heated tool (150-160°C) is recommended. Ultrasonic bonding is not recommended.
- The recommended die attach is Ablebond silver epoxy, the stabilize bake temperature is set at 150°C for 45 minutes.
- Bond on bond or stitch bond acceptable.
- Conductor over conductor acceptable. Conductors must not short.

MECHANICAL OUTLINE

Notes:

- All units are in microns (µm).
- All bond pads are $100 \times 100 \, \mu \text{m}^2$.
- Bias pad (V_{DD}) size is 100 X 121.5 μ m².
- Unless otherwise specified.

HANDLING PRECAUTIONS

To avoid damage to the devices care should be exercised during handling. Proper Electrostatic Discharge (ESD) precautions should be observed at all stages of storage, handling, assembly, and testing. These devices should be treated as Class 1A (0-500 V). Further information on ESD control measures can be found in MIL-STD-1686 and MIL-HDBK-263.

All information and specifications are subject to change without notice.