Low Charge Injection 16-Channel High Voltage Analog Switch

Features

- HVCMOS technology for high performance
- 16 Channels of high voltage analog switch
- 3.3 V input logic level compatible
- 20 MHz data shift clock frequency
- Very low quiescent power dissipation -10 A
- Low parasitic capacitance

D DC to 10 MHz analog signal frequency

- -60dB typical off-isolation at 5 MHz
- CMOS logic circuitry for low power
- Excellent noise immunity
- Cascadable serial data register with latches
- Flexible operating supply voltages

Applications

. Medical ultrasound imaging

- NDT metal flaw detection
- Piezoelectric transducer drivers
- Optical MEMS modules

General Description

The Supertex HV2601 is a low charge injection 16-channel high voltage analog switch integrated circuit (IC) intended for use in applications requiring high voltage switching controlled by low voltage control signals, such as medical ultrasound imaging and other piezoelectric transducer drivers.

Input data is shifted into a 16-bit shift register that can then be retained in a 16-bit latch. To reduce any possible clock feed through noise, the latch enable bar should be left high until all bits are clocked in. Data are clocked in during the rising edge of the clock. Using HVCMOS technology, this device combines high voltage bilateral DMOS switches and low power CMOS logic to provide efficient control of high voltage analog signals.

The device is suitable for various combinations of high voltage supplies, e.g., $\mathrm{V}_{\mathrm{PP}} / \mathrm{V}_{\mathrm{NN}}:+40 \mathrm{~V} /-160 \mathrm{~V},+100 \mathrm{~V} /-100 \mathrm{~V}$, and $+160 \mathrm{~V} /-40 \mathrm{~V}$.

Block Diagram

Ordering Information

DEVICE	Package Options
	48-Lead TQFP
HV2601	HV2601FG-G

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

V_{DD} Logic supply	-0.5 V to +7 V
$\mathrm{~V}_{\mathrm{PP}}-\mathrm{V}_{\text {NN }}$ differential supply	220 V
$\mathrm{~V}_{\mathrm{PP}}$ Positive supply	-0.5 V to $\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{NN}}$ Negative supply	+0.5 V to -200 V
Logic input voltage	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog signal range	V_{NN} to V_{PP}
Peak analog signal current/channel	3.0 A
Storage temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power dissipation	48-Lead TQFP

*Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Operation Conditions

Symbol	Parameter	Value
V_{DD}	Logic power supply voltage	3.0 V to 5.5 V
$\mathrm{~V}_{\mathrm{PP}}$	Positive high voltage supply	40 V to $\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{NN}}$	Negative high voltage supply	-40 V to -160 V
$\mathrm{~V}_{\mathrm{IH}}$	High level input voltage	$0.9 \mathrm{~V}_{\mathrm{DD}}$ to V_{DD}
V_{IL}	Low level input voltage	0 V to $0.1 \mathrm{~V}_{\mathrm{DD}}$
$\mathrm{V}_{\mathrm{SIG}}$	Analog signal voltage peak-to-peak	$\mathrm{V}_{\mathrm{NN}}+10 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$
$\mathrm{~T}_{\mathrm{A}}$	Operating free air temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Notes:
1 Power up/down sequence is arbitrary except GND must be powered-up first and powered-down last.
$2 V_{S I G}$ must be within $V_{N N}$ and $V_{P P}$ or floating during power up/down transition.
3 Rise and fall times of power supplies $V_{D D}, V_{P P}$ and $V_{N N}$ should not be less than 1.0 msec .

DC Electrical Characteristics
(over recommended operating conditions unless otherwise noted)

Sym	Parameter	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions		
		Min	Max	Min	Typ	Max	Min	Max				
$\mathrm{R}_{\text {ONS }}$	Small Signal Switch On-Resistance		30		26	38		48	Ω	$\mathrm{I}_{\text {SIG }}=5 \mathrm{~mA}$	$\begin{aligned} & V_{P P}=+40 \mathrm{~V} \\ & V_{N N}=-160 \mathrm{~V} \end{aligned}$	
			25		22	27		32		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$		
			25		22	27		30		$\mathrm{I}_{\text {SIG }}=5 \mathrm{~mA}$	$\begin{aligned} & V_{P P}=+100 \mathrm{~V} \\ & V_{N N}=-100 \mathrm{~V} \end{aligned}$	
			18		18	24		27		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$		
			23		20	25		30		$\mathrm{I}_{\text {SIG }}=5 \mathrm{~mA}$	$\begin{aligned} & V_{P P}=+160 \mathrm{~V} \\ & V_{\mathrm{NN}}=-40 \mathrm{~V} \end{aligned}$	
			22		16	25		27		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$		
$\Delta \mathrm{R}_{\text {ONS }}$	Small Signal Switch On-Resistance Matching		20		5.0	20		20	\%	$\begin{aligned} & I_{S I G}=5 \mathrm{~mA}, V_{P P}=+100 \mathrm{~V}, \\ & V_{\mathrm{NN}}=-100 \mathrm{~V} \end{aligned}$		
$\mathrm{R}_{\text {ONL }}$	Large Signal Switch On-Resistance				15				Ω	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}, \mathrm{I}_{\text {SIG }}=1 \mathrm{~A}$		
$\mathrm{I}_{\text {soL }}$	Switch Off Leakage per Switch*		5.0		1.0	10		15	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$ and $\mathrm{V}_{\text {NN }}+10 \mathrm{~V}$		
$\mathrm{V}_{\text {os }}$	DC offset Switch off*		300		100	300		300	mV	$100 \mathrm{~K} \Omega$ Load		
	DC offset Switch on*		500		100	500		500	mV			
$\mathrm{I}_{\text {PPQ }}$	Quiescent $\mathrm{V}_{\text {PP }}$ supply current				10	50			$\mu \mathrm{A}$	All switches off		
$\mathrm{I}_{\mathrm{NNQ}}$	Quiescent V_{NN} supply current				-10	-50			$\mu \mathrm{A}$	All switches off		
$\mathrm{I}_{\text {PPQ }}$	Quiescent V_{Pp} supply current				10	50			$\mu \mathrm{A}$	All switches on, $\mathrm{I}_{\text {sw }}=5 \mathrm{~mA}$		
$\mathrm{I}_{\mathrm{NNQ}}$	Quiescent $\mathrm{V}_{\text {NN }}$ supply current				-10	-50			$\mu \mathrm{A}$	All switches on, $\mathrm{I}_{\text {sw }}=5 \mathrm{~mA}$		
$\mathrm{I}_{\text {sw }}$	Switch output peak current		3.0		3.0	2.0		2.0	A	$\mathrm{V}_{\text {SIG }}$ duty cycle $<0.1 \%$		
$\mathrm{f}_{\text {sw }}$	Output switching frequency					50			kHz	Duty cycle $=50 \%$		
I_{PP}	Average V_{Pp} supply current		6.5			7.0		8.0	mA	$\begin{aligned} & V_{P P}=+40 \mathrm{~V} \\ & V_{N N}=-160 \mathrm{~V} \\ & \hline V_{P P}=+100 \mathrm{~V} \\ & V_{N N}=-100 \mathrm{~V} \\ & V_{P P}=+160 \mathrm{~V} \\ & V_{N N}=-40 \mathrm{~V} \end{aligned}$	All output switches are turning On and Off at 50 KHz with no load.	
			4.0			5.5		5.5				
			4.0			5.0		5.5				
$\mathrm{I}_{\text {NN }}$	Average V_{NN} supply current		6.5			7.0		8.0	mA	$\begin{aligned} & V_{P P}=+40 \mathrm{~V} \\ & V_{N N}=-160 \mathrm{~V} \end{aligned}$		
			4.0			5.0		5.5		$\begin{aligned} & V_{P P}=+100 \mathrm{~V} \\ & V_{N N}=-100 \mathrm{~V} \end{aligned}$		
			4.0			5.0		5.5		$\begin{aligned} & V_{P P}=+160 \mathrm{~V} \\ & V_{N N}=-40 \mathrm{~V} \end{aligned}$		
I_{DD}	Average V_{DD} supply current		4.0			4.0		4.0	mA	$\mathrm{f}_{\text {CLK }}=5 \mathrm{MHz}, \mathrm{V}$	5.0 V	
$\mathrm{I}_{\text {DDQ }}$	Quiescent V_{DD} supply current		10			10		10	$\mu \mathrm{A}$	All logic input	e static	
$\mathrm{I}_{\text {SOR }}$	Data out source current	0.45		0.45	0.70		0.40		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}-0.7$		
$\mathrm{I}_{\text {SINK }}$	Data out sink current	0.45		0.45	0.70		0.40		mA	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}$		
$\mathrm{C}_{\text {IN }}$	Logic input capacitance		10			10		10	pF			

[^0]AC Electrical Characteristics
(over recommended operating conditions, $V_{D D}=5.0 \mathrm{~V}, t_{R}=t_{F} \leq 5 \mathrm{~ns}, 50 \%$ duty cycle, $C_{\text {LOAD }}=20 \mathrm{pF}$ unless otherwise noted)

Sym	Parameter	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Typ	Max	Min	Max		
$\mathrm{t}_{\text {SD }}$	Set Up Time Before LE Rises	25		25			25		ns	
$t_{\text {wLE }}$	Time Width of LE	56			56		56		ns	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$
		12			12		12			$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
t_{DO}	Clock Delay Time to Data out	50	100	50	78	100	50	100	ns	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$
		15	40	15	30	40	15	40		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
$\mathrm{t}_{\text {wCL }}$	Time Width of CL	55		55			55		ns	
$t_{s u}$	Set Up Time Data to Clock	21			21		21		ns	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$
		7			7		7			$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
t_{H}	Hold Time Data from Clock	2		2			2		ns	$\mathrm{V}_{\mathrm{DD}}=3.0$ or 5.0 V
$\mathrm{f}_{\text {CLK }}$	Clock Frequency		8			8		8	MHz	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$
			20			20		20		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Clock rise and fall Times		50			50		50	ns	
$\mathrm{T}_{\text {ON }}$	Turn on Time*		5.0			5.0		5.0	$\mu \mathrm{s}$	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=10 \mathrm{~K} \Omega$
$\mathrm{T}_{\text {OfF }}$	Turn off Time*		5.0			5.0		5.0	$\mu \mathrm{s}$	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=10 \mathrm{~K} \Omega$
$\mathrm{dv} / \mathrm{dt}$	Maximum $\mathrm{V}_{\text {SIG }}$ Slew Rate		20			20		20		$\mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V}$
			20			20		20		$\mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}$
			20			20		20		$\mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-40 \mathrm{~V}$
K	Off Isolation*	-30		-30	-33		-30		dB	$\mathrm{f}=5.0 \mathrm{MHz}, 1 \mathrm{~K} \Omega / / 15 \mathrm{pF}$ load
		-58		-58			-58			$f=5.0 \mathrm{MHz}, 50 \Omega$ load
K_{CR}	Switch Crosstalk*	-60		-60	-70		-60		dB	$\mathrm{f}=5.0 \mathrm{MHz}, 50 \Omega$ load
$1{ }_{\text {ID }}$	Output Switch Isolation Diode Current		300			300		300	mA	300ns pulse width, 2.0\% duty cycle
$\mathrm{C}_{\text {SG(OFF) }}$	Off Capacitance SW to GND	5.0	17	5.0	12	17	5.0	17	pF	$0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{SG}(\mathrm{ON})}$	On Capacitance SW to GND	25	50	25	38	50	25	50	pF	$\mathrm{OV}, \mathrm{f}=1.0 \mathrm{MHz}$
$+\mathrm{V}_{\text {SPK }}$ $-\mathrm{V}_{\text {SPK }}$	Output Voltage Spike*					150			mV	$\begin{aligned} & V_{P P}=+40 \mathrm{~V}, V_{N N}=-160 \mathrm{~V}, \\ & R_{\text {LOAD }}=50 \mathrm{ohm} \end{aligned}$
$+\mathrm{V}_{\text {SPK }}$ $-\mathrm{V}_{\text {SPK }}$						150				$\begin{aligned} & V_{P P}=+100 \mathrm{~V}, V_{N N}=-100 \mathrm{~V}, \\ & R_{\text {LOAD }}=50 o \mathrm{hm} \end{aligned}$
$+\mathrm{V}_{\text {SPK }}$ $-\mathrm{V}_{\text {SPK }}$						150				$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}, \\ & R_{\mathrm{LOAD}}=50 \mathrm{ohm} \end{aligned}$
QC	Charge Injection*				820				pC	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SIG}}=0 \mathrm{~V} \end{aligned}$
					600					$\mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{\text {SIG }}=0 \mathrm{~V}$
					350					$V_{P P}=+160 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-40 \mathrm{~V}, \mathrm{~V}_{\text {SIG }}=0 \mathrm{~V}$

[^1]
Test Circuits

Charge Injection

Output Voltage Spike

INPUT DATA							$\begin{gathered} \text { LATCH } \\ \text { ENABLE } \\ \hline \text { LE } \end{gathered}$	$\begin{array}{\|c} \hline \text { CLOCK } \\ \hline \text { CL } \end{array}$	OUTPUT SWITCH						
D0	D1	\ldots	D7	D8	\ldots	D15			SW0	SW1	\ldots	SW7	SW8	\ldots	SW15
L		\cdots			\ldots		L	L	OFF		\cdots				
H							L	L	ON					\ldots	
	L						L	L		OFF					
	H						L	L		ON					
							L	L							
							L	L							
			L				L	L				OFF			
			H				L	L				ON			
				L			L	L					OFF		
				H			L	L					ON		
							L	L							
							L	L							
							L	L							
							L	L							
						L	L	L							OFF
						H	L	L							ON
X	X	X	X	X	X	X	H	L			OLD	REVIO	STAT		
X	X	X	X	X	X	X	X	H			ALL	WITCH	OFF		

Notes: $1 . \quad$ Th 16 switches operate independently.
2. Serial data is clocked in on the L to H transition of the CLK
3. All 16 switches go to a state retaining their latched condition at the rising edge of LE. When LE is low the shift registers data flow through the latch. $D_{\text {OUT }}$ is high when data in the register 15 is high.
Shift registers clocking has no effect on the switch states if LE is high.
The CL clear input overrides all other inputs.

Logic Timing Waveforms

Pin Configuration and Package Outline - 48-Lead TQFP (1.4mm) (FG)

Pin Name
TQFP-48

SW4B	3
SW4A	4
SW3B	5
SW3A	6
SW2B	7
SW2A	8
SW1B	9
SW1A	10
SWOB	11
SWOA	12
V_{NN}	13
$V_{\text {PP }}$	15
GND	17
$V_{D D}$	18
$\mathrm{D}_{\text {IN }}$	19
CLK	20
LE	21
CLR	22
$\mathrm{D}_{\text {OUT }}$	23
NC	24
SW15B	25
SW15A	26
SW14B	27
SW14A	28
SW13B	29
SW13A	30
SW12B	31
SW12A	32
SW11B	33
SW11A	34
SW10B	37
SW10A	38
SW9B	39
SW9A	40
SW8B	41
SW8A	42
SW7B	43
SW7A	44
SW6B	45
SW6A	46
SW5B	47
SW5A	48
NC	1,2,14,16, 35,36

NC = No Internal Connection.

[^2]
[^0]: * See Test Circuits on page 5

[^1]: * See Test Circuits on page 5

[^2]:

 product specifications, refer to the Supertex website: http//www.supertex.com.

