

SEMICONDUCTOR®

FDU6676AS N-Channel PowerTrench[®] SyncFET[™] 30V, 90A, 5.8mΩ

General Description

The FDU6676AS is designed to replace a single MOSFET and Schottky diode in synchronous DC/DC power supplies. This 30V MOSFET is designed to maximize power conversion efficiency, providing a low $R_{DS(ON)}$ and low gate charge. The FDU6676AS includes a patented combination of a MOSFET monolithically integrated with a Schottky diode using Fairchild's monolithic SyncFET technology.

Applications

DC/DC converter

Features

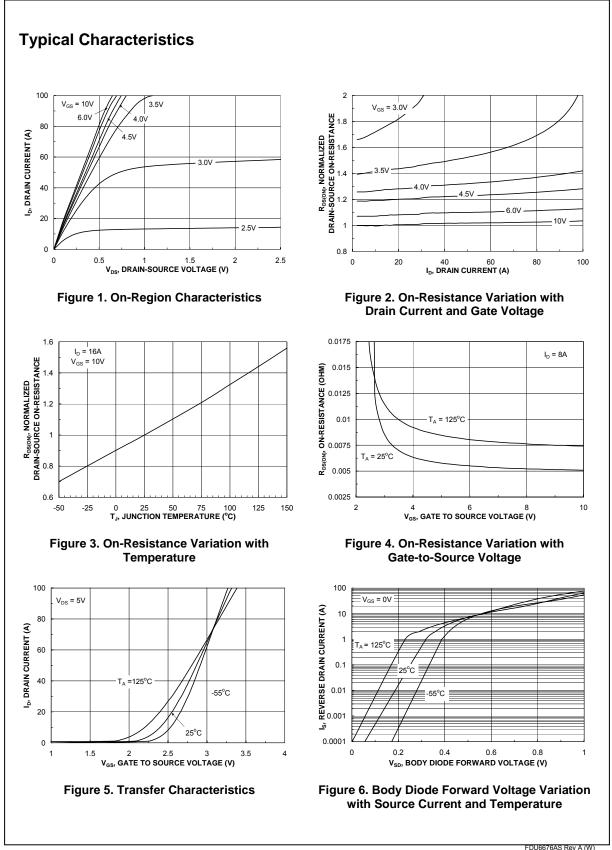
- $R_{DS(ON)} = 5.8m\Omega$ Max, VGS = 10V
- $R_{DS(ON)} = 7.3m\Omega$ Max, VGS = 4.5V
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- Low Gate Charge
- High power and current handling capability
- Includes SyncFET Schottky diode

Absolute Maximum Ratings TA=25°C unless otherwise noted

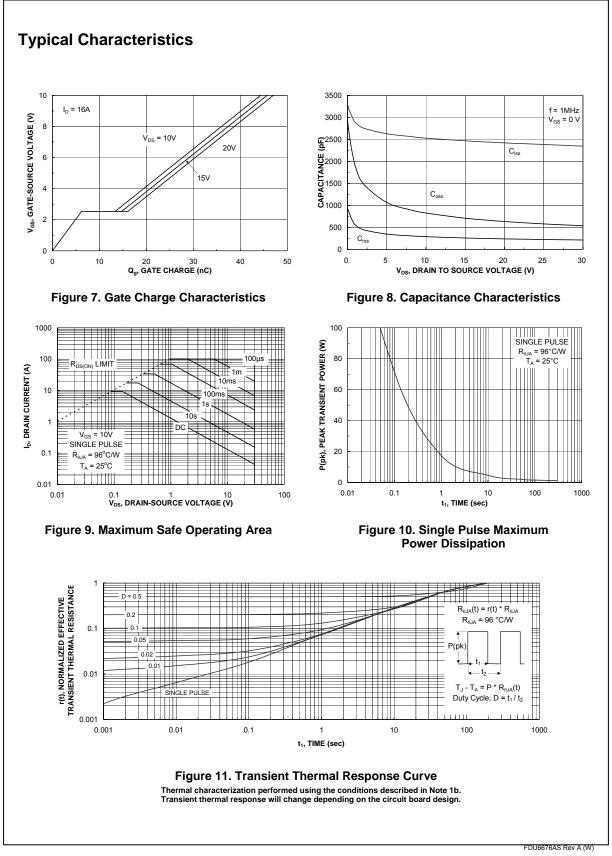
Symbol	Parameter	Ratings	Units	
V _{DSS}	Drain-Source Voltage	30	V	
V _{GSS}	Gate-Source Voltage	±20	V	
I _D	Drain Current –Continuous (Note 1a)	90	A	
	-Pulsed	100		
P _D	Power Dissipation for Single Operation (Note 1)	70	W	
	(Note 1a)	3.1		
	(Note 1b)	1.3		
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C	

$R_{ ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext$	Thermal Resistance junction to Case	(Note 1)	1.8	°C/W
R _{0JA}	Thermal Resistance junction to Ambient	(Note 1a)	45	
$R_{ ext{ heta}JA}$	Thermal Resistance junction to Ambient	(Note 1b)	96	

Package Marking and Ordering Information


Device Marking	Device	Package	Reel Size	Tape width	Quantity
FDU6676AS	FDU6676AS	I-PAK (TO-251)	Tube	N/A	75
FDU6676AS	FDU6676AS_NL (Note 4)	I-PAK (TO-251)	Tube	N/A	75
FDU6676AS	FDU6676AS_F071 (Note 5)	I-PAK (TO-251)	Tube	N/A	75

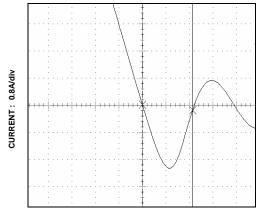
©2005 Fairchild Semiconductor Corporation


0	Demonstern	Tast Oscillations	B.4.1.	-		11
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-Sou	urce Avalanche Ratings (Note	2)				
W _{DSS}	Drain-Source Avalanche Energy	Single Pulse, V_{DD} = 15V, I_D = 16A		108	250	mJ
I _{AR}	Drain-Source Avalanche Current				16	А
Off Chara	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	V_{GS} = 0 V, I_{D} = 250 μ A	30			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	I_D = 250 µA,Referenced to 25°C		29		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			500	μA
		$V_{DS} = 24 V, V_{GS} = 0 V, T_J = 125^{\circ}C$		13		mA
I _{GSS}	Gate–Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Chara	ICTERISTICS (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	1	1.5	3	V
<u>ΔVgs(th)</u> ΔTJ	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA,Referenced to 25°C		-4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{ll} V_{\rm GS} = 10 \ V, & I_{\rm D} = 16 \ A \\ V_{\rm GS} = 4.5 \ V, & I_{\rm D} = 10 \ A \\ V_{\rm GS} = 10 \ V, & I_{\rm D} = 16 \ A, T_{\rm J} = 125^{\circ} C \end{array} $		4.8 5.8 7.7	5.8 7.3 9.6	mΩ
g _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, I_D = 16 \text{ A}$		67		S
-	Characteristics		1	1	1	
	Input Capacitance		İ	2470	1 1	pF
C _{oss}	Output Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$,		710		pF
C _{rss}	Reverse Transfer Capacitance	f = 1.0 MHz		260		pF
R _G	Gate Resistance	V _{GS} = 100 mV, f = 1.0 MHz		1.8		Ω
-	g Characteristics (Note 2)				1	
t _{d(on)}	Turn–On Delay Time			12	22	ns
t _r	Turn–On Rise Time	$V_{DD} = 15 V$, $I_D = 1 A$,		12	22	ns
t _{d(off)}	Turn–Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		50	80	ns
t _f	Turn–Off Fall Time			25	40	ns
t _{d(on)}	Turn-On Delay Time			20	32	ns
t _r	Turn–On Rise Time	$V_{DD} = 15 V$, $I_D = 1 A$,		24	38	ns
t _{d(off)}	Turn–Off Delay Time	V_{GS} = 4.5 V, R_{GEN} = 6 Ω		34	54	ns
t _f	Turn–Off Fall Time			26	42	ns
Qg	Total Gate Charge, V _{GS} = 10V			46	64	nC
Qg	Total Gate Charge, V _{GS} = 5V	V _{DS} = 15V, I _D = 16 A		25	35	nC
Q _{gs}	Gate–Source Charge			6		nC
Q _{gd}	Gate–Drain Charge	1		7	1 1	nC

FDU6676AS

Crain-Source Diode Characteristics and Maximum Ratings a Maximum Continuous Drain-Source Diode Forward Current 2.3 A A_{00} Drain-Source Diode Forward $V_{05} = 0.V$, $I_{5} = 2.3$ A (Note 2) 0.4 1.2 V a_{11} Diode Reverse Recovery Time I_{12} V_{05} $0.V$, $I_{5} = 2.3$ A (Note 2) 0.4 1.2 V a_{11} Diode Reverse Recovery Charge I_{12} V_{05} 0.4 1.2 V a_{11} Diode Reverse Recovery Charge I_{12} V_{05} 2.3 $(N_{12} = 2)$ 0.4 1.2 V a_{12} Diode Reverse Recovery Charge I_{12} V_{05} 2.3 N_{12} 2.8 I_{12} V a_{12} I_{12} V_{05} I_{12} V_{01} I_{12} V I_{12}	ymbol	Parameter	Test Conditions	Min	Тур	Max	Units
Maximum Continuous Drain–Source Diode Forward Vaster of the second	rain–So	urce Diode Characteristics	and Maximum Ratings				
SD Voltage V _{GS} = 0 V, I _S = 2.3 Å (Note 2) 0.4 1.2 V Diode Reverse Recovery Time I _F = 16 Å, dI _F /dt = 100 Å/µs 28 ns hrr Diode Reverse Recovery Charge 19 nC es: autor is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of e drain pins. R _{aUC} is guaranteed by design while R _{BCA} is determined by the user's board design. a: a) R _{BUA} = 45°C/W when mounted on a fin ⁶ pad of 2 oz copper b) R _{BUA} = 96°C/W when mounted on a minimum pad. iii f : 1 on letter size paper ulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%						2.3	А
Diode Reverse Recovery Charge 19 nC s: Image:	D				0.4	1.2	V
s: $_{JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of a drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design. a (a) $R_{0JA} = 45^{\circ}$ C/W when mounted on a (b) $R_{0JA} = 96^{\circ}$ C/W when mounted on a (compared or a minimum pad). b (compared or a minimum pad) c (compared or 2 oz copper) b (compared or a minimum pad) c (compared or 2 oz copper) c		Diode Reverse Recovery Time	$I_F = 16 \text{ A}, dI_F/dt = 100 \text{ A}/\mu \text{s}$		28		ns
The sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design. (a) $R_{0JA} = 45^{\circ}$ C/W when mounted on a fin ² pad of 2 oz copper (b) $R_{0JA} = 96^{\circ}$ C/W when mounted on a minimum pad. (c) $R_{0JA} = 96^{\circ}$ C/W when mounted		Diode Reverse Recovery Charge			19		nC
where P_D is maximum power dissipation at $T_C = 25^{\circ}C$ and $R_{DS(on)}$ is at $T_{J(max)}$ and $V_{GS} = 10V$. Package current limitation is 21A		r size paper e Width < 300µs, Duty Cycle < 2.0%	bz copper	on	_{JA} = 90 C/ a minimu	m pad.	oumea
where P_D is maximum power dissipation at $T_C = 25^{\circ}C$ and $R_{DS(on)}$ is at $T_{J(max)}$ and $V_{GS} = 10V$. Package current limitation is 21A FDU6676AS_NL is a lead free product. The FDU6676AS_NL marking will appear on the reel label.	laximum curre	nt is calculated as: $\sqrt{\frac{P_D}{R_{POCON}}}$					
FDU6676AS_NL is a lead free product. The FDU6676AS_NL marking will appear on the reel label.		•	vis at $T_{\rm M}$ and $V_{\rm ex} = 10V$. Package current	limitation is	214		
EDU6676AS_F071 is a lead free product. The FDU6676AS_F071 marking will appear on the reel label.	DU6676AS_N	L is a lead free product. The FDU6676AS_NL n	narking will appear on the reel label.				

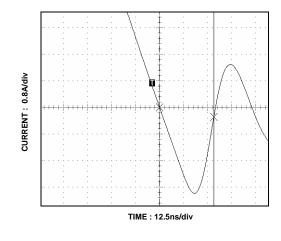
FDU6676AS



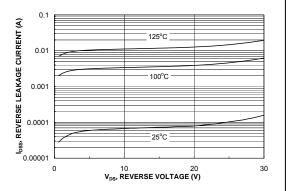
FDU6676AS

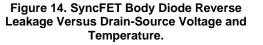
Typical Characteristics (continued)

SyncFET Schottky Body Diode Characteristics


Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 12 shows the reverse recovery characteristic of the FDU6676AS.

TIME : 12.5ns/div


Figure 12. FDU6676AS SyncFET Body Diode Reverse Recovery Characteristic.


For comparison purposes, Figure 13 shows the reverse recovery characteristics of the body diode of an equivalent size MOSFET produced without SyncFET (FDU6676A).

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

FDU6676AS Rev A (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [™] ActiveArray [™] Bottomless [™] Build it Now [™] CoolFET [™] <i>CROSSVOLT</i> [™] DOME [™] EcoSPARK [™] E ² CMOS [™] EnSigna [™] FACT [™] FACT Quiet Serie	FAST [®] FASTr [™] FPS [™] FRFET [™] GlobalOptoisolator [™] GTO [™] HiSeC [™] I ² C [™] <i>i</i> -Lo [™] ImpliedDisconnect [™] IntelliMAX [™] to TM	ISOPLANAR [™] LittleFET [™] MICROCOUPLER [™] MicroFET [™] MicroPak [™] MICROWIRE [™] MSX [™] MSXPro [™] OCX [™] OCX [™] OCXPro [™] OPTOLOGIC [®] OPTOPLANAR [™]	PowerSaver [™] PowerTrench [®] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] RapidConnect [™] µSerDes [™] ScalarPump [™] SILENT SWITCHER [®] SMART START [™]	SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TinyLogic [®] TINYOPTO [™] TruTranslation [™] UHC [™] UHC [™] UltraFET [®] UniFET [™] VCX [™] Wire [™]
Across the board The Power France	Across the board. Around the world. [™] The Power Franchise [®] Programmable Active Droop [™]		SPM™ Stealth™ SuperFET™ SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. I17