&~

SILICON LABODORATORIES

AN137

LITHIUM ION BATTERY CHARGER USING C8051F300

Relevant Devices

This application note applies to the following devices:
C8051F300

Introduction

Driven by the need for untethered mobility and
ease of use, many systems rely on rechargable bat-
teries as their primary power source. The battery
charging circuitry for these systems is typically
implemented using a fixed-function IC to control
the charging current/voltage profile.

The C8051F30x family provides a flexible alterna-
tive to fixed-function battery chargers. This appli-
cation note discusses how to use the C8051F30x
family in Li-lon battery charger applications. The
Li-Ion charging algorithms can be easily adapted to
other battery chemistries, but an understanding of
other battery chemistries is required to ensure
proper charging for those chemistries.

Key Points

On-chip high-speed, 8-bit ADC provides supe-
rior accuracy in monitoring charge voltage
(critical to prevent overcharging in Li-Ion
applications), maximizing charge effectiveness
and battery life.

* On-chip PWM provides means to implement
buck converter with a very small external
inductor.

* On-chip Temp sensor provides an accurate and
stable drive voltage for determining battery
temperature. An external RTD (resistive tem-
perature device) can also be used via the flexi-
ble analog input AMUX.

* A single C8051F30x platform provides full
product range for multi-chemistry chargers,
expediting time to market and reducing inven-

tory.

Figure 1. Lithium lon Battery Charge Block Diagram.

V Pos (+) g T
LDO Buck L
Converter I
PWM Out § 3
8051F30x
LED AN Resistor Li-lon
= Cygnal Divider == Cells
Integrated
Products § R
8k FLASH, PWM, '
\ q Temp Sensor,
J. J. Precision Time Base
V Neg (-) AN

Sense Resistor

Rev. 1.2 12/03

Copyright © 2003 by Silicon Laboratories

AN137-DS12

AN137

Charging Basics

Batteries are exhaustively characterized to deter-
mine safe yet time-efficient charging profiles. The
optimum charging method for a battery is depen-
dent on the battery’s chemistry (Li-Ion, NiMH,
NiCd, SLA, etc.). However, most charging strate-
gies implement a 3-phase scheme:

1. Low-current conditioning phase
2. Constant-current phase

3. Constant-voltage phase/charge termination

All batteries are charged by transferring electrical
energy into them (refer to the references at the end
of this note for a battery primer). The maximum
charge current for a battery is dependent on the bat-
tery’s rated capacity (C). For example, a battery
with a cell capacity of 1000mAh is referred to as
being charged at 1C (1 times the battery capacity) if
the charge current is 1000mA. A battery can be
charged at 1/50C (20 mA) or lower if desired.
However, this is a common trickle-charge rate and
is not practical in fast charge schemes where short
charge-time is desired.

Most modern chargers utilize both trickle-charge
and rated charge (also referred to as bulk charge)
while charging a battery. The trickle-charge current
is usually used in the initial phases of charging to
minimize early self heating which can lead to pre-
mature charge termination. The bulk charge is usu-
ally used in the middle phase where the most of the
battery’s energy is restored.

During the final phase of battery charge, which
generally takes the majority of the charge time,
either the current or voltage or a combination of
both are monitored to determine when charging is
complete. Again, the termination scheme depends
on the battery’s chemistry. For instance, most Lith-
ium lon battery chargers hold the battery voltage
constant, and monitor for minimum current. NiCd

batteries use a rate of change in voltage or tempera-
ture to determine when to terminate.

Note that while charging a battery, most of the elec-
trical energy is stored in a chemical process, but not
all as no system is 100 percent efficient. Some of
the electrical energy is converter to thermal energy,
heating up the battery. This is fine until the battery
reaches full charge at which time al/ the electrical
energy is converted to thermal energy. In this case,
if charging isn’t terminated, the battery can be
damaged or destroyed. Fast chargers (chargers that
charge batteries fully in less than a couple hours)
compound this issue, as these chargers use a high
charge current to minimize charge time. As one can
see, monitoring a battery’s temperature is critical
(especially for Li-lon as they explode if over-
charged). Therefore, the temperature is monitored
during all phases. Charge is terminated immedi-
ately if the temperature rises out of range.

Li-lon Battery Charger -

Hardware

Currently, Li-Ion batteries are the battery chemistry
of choice for most applications due to their high
energy/space and energy/weight characteristics
when compared to other chemistries. Most modern
Li-Ion chargers use the tapered charge termination,
minimum current (see Figure 2), method to ensure
the battery is fully charged as does the example
code provided at the end of this note.

Buck Converter

The most economical way to create a tapered ter-
mination charger is to use a buck converter. A buck
converter is a switching regulator that uses an
inductor and/or a transformer (if isolation is
desired), as an energy storage element to transfer
energy from the input to the output in discrete
packets (for our example we use an inductor; the
capacitor in Figure 3 is used for ripple reduction).
Feedback circuitry regulates the energy transfer via
the transistor, also referred to as the pass switch, to
maintain a constant voltage or constant current

2 Rev. 1.2

SILICON LABORATORIES

AN137

Figure 2. Lithium lon Charge Profile.

Time

? Charge Voltage __ __ _|

Charge Current ,

/
/
/
/
/
/
//
-
-
-

Conditioning | Current regulation |Voltage regulation
Phase

within the load limits of the circuit. See Figure 3
for details.

Tapered Charger Using the F30x

Figure 3 illustrates an example buck converter
using the ‘F30x. The pass switch is controlled via
the on-chip 8-bit PWM (Pulse Width Modulator)
output of the PCA. When the switch is on, current
will flow like in Figure 3A. The capacitor is
charged from the input through the inductor. The
inductor is also charged. When the switch is
opened (Figure 3B), the inductor will try to main-
tain its current flow by inducing a voltage as the
current through an inductor can’t change instanta-
neously. The current then flows through the diode
and the inductor charges the capacitor. Then the
cycle repeats itself. On a larger scale, if the duty
cycle is decreased (shorter “on” time), the average

voltage decreases and vice versa. Therefore, con-
trolling the duty cycles allows one to regulate the
voltage or the current to within desired limits.

Selecting the Buck Converter Inductor

To size the inductor in the buck converter, one first
assumes a 50 percent duty cycle, as this is where
the converter operates most efficiently.

Duty cycle is given by Equation 1, where T is the
period of the PWM (in our example T = 10.5uS).

DutyCycle = %’3

Equation 1. Duty Cycle.

Figure 3. Buck Converter.

(A) (B)
m Inductor m Inductor
| Pass Switch On \i/ | Pass Switch Off \i/
Power Shottky |, Gapasitor Batt Power Shottky Capacitor 1 Batt
Source Diode N attery Source Diode ah atery
®
Rev. 1.2 3

SILICON LABORATORIES

AN137

With this established, select a PWM switching fre-
quency. As Equation 2

L = (Vi—Vsat—Vo)ton
2lomax

Equation 2. Inductor Size.

shows, the larger the PWM switching frequency,
the smaller (and more cost effective) the inductor.
Our example code configures the ‘F30x’s 8-bit
hardware PWM to use the internal master clock of
24.5MHz divided by 256 to generate a 95.7kHz
switch rate.

Now we can calculate the inductor’s size. Assum-
ing V,, the charging voltage, is 15V, V,,, the satu-
ration voltage, is 0.5V, the desired output voltage,
Vo, is 4.2V, and Ippjax, the maximum output cur-

rent, is 1500 mA, the inductor should be at least
18uH.

Note that the capacitor in this circuit is simply a
ripple reducer. The larger it is the better as ripple is
inversely proportional to the size of the cap. For
more details on buck converters, refer to the refer-
ences listed at the end of this note.

Li-lon Battery Charger -
Software

The software example that follows demonstrates a
Li-Ion battery charger using the C8051F300. The
F300 is designed for high-level languages like “C”
and includes an 8-bit 8051 based micro-controller,
an 8-bit 500 ksps ADC, 8k FLASH, an 8-bit and
16-bit PWM, and a 2% accurate oscillator all on-
chip. The algorithms discussed are written entirely
in “C” making them easily portable. Refer to the
F300°’s datasheet for a full description of the
device.

To ensure accurate voltage and current measure-
ments, the algorithms use a two-point system cali-
bration scheme. In this scheme, the user is expected
to apply two known voltages and two known cur-
rents, preferable, one point near ground and the
other point near full-scale. The algorithm then
takes these two points, calculates a slope and an
offset for both the current and voltage channels,
and stores the results in FLASH. All future conver-
sions are scaled relative to these slope and offset
calculations. Note that if an external amplifier is
used for the current channel, it will need to be cali-
brated with a similar two-point calibration scheme
to ensure maximum accuracy.

Temperature

To monitor the temperature, the algorithms use the
on-chip temperature sensor. The sensor is left
uncalibrated, but still provides a sufficiently accu-
rate temperature measurement. For more accurate
temperature measurement, one or two-point tem-
perature calibration is required.

An external temperature sensor can be used if
desired. The AMUX can to be reconfigured to
accommodate this additional input voltage.

Current

The charge-current to the battery cells is monitored
by taking a differential voltage reading across a
small but accurate sense resistor. The current is
amplified through the on-chip PGA, digitized by
the on-chip 8-bit ADC, and scaled accordingly via
the slope and offset calibration coefficients. An
external gain stage may be necessary if more reso-
lution is desired for the current measurement.

Voltage

The battery’s voltages are divided down and moni-
tored via external resistors. Note that this example

Calibration uses the supply voltage as the ADC voltage refer-
ence. Any monitored voltage above the reference
voltage must be divided down for accurate moni-

4 Rev. 1.2 @

SILICON LABORATORIES

AN137

toring. If a more accurate reference is required, an
external voltage reference can be used. Adjustment
to the divide resistors must be made accordingly.

Charging - Phasel

In phase 1, (for description purposes, we assume
the battery is initially discharged), the ‘F30x regu-
lates the battery’s current to I owcurrenT (typi-
cally 1/50 C) until the battery’s voltage reaches
VuinvorreuLk- Note that the battery’s charge cur-

rent 1s current limited to I} gwcyurreNT tO €nsure
safe initial charge and to minimize battery self-
heating. If at any time the temperature increases out
of limit, charging is halted.

Charging - Phase 2

Once the battery reaches VynvorrsurLk the
charger enters phase 2, where the battery’s algo-
rithm controls the PWM pass switch to ensure the
output voltage provides a constant charge-current
IgyLx to the battery (rate or bulk current is usually

1C and is definable in the header file as is
I owcurrenT and VpinvoLTBULK)-

Charging - Phase 3

After the battery reaches Vr,, (typically 4.2 V in

single cell charger), the charger algorithm enters
phase 3, where the PWM feeds back and regulates
the battery’s voltage. In phase 3, the battery contin-
ues to charge until the battery’s charge current
reaches Iyngurky, after which, the battery is

charged for an additional 30 minutes and then
charge terminates. Phase 3 typically takes the
majority of the charging time.

Note that in most practical applications, such as a
portable PC, the batteries may be in any of the three
phases when charging is activated. This doesn’t
really affect the charger as it simply monitor’s the

battery’s current condition and starts charging from
that point.

Conclusion

The C8051F300’s high level of analog integration,
small form-factor, integrated FLASH memory, and
low power consumption makes it ideal for flexible
next generation battery charging applications. This
application note discussed how to wuse the
C8051F30x family in Lithium Ion battery charger
applications. Example code is provided as well.

References

Maxim Integrated Product, “DC-DC Converter
Tutorial”.

Martinez, Carlos and Drori, Yossi and Ciancio,
Joe, “AN126 Smart Battery Primer”, Xicor, Octo-
ber 1999.

SILICON LABORATORIES

Rev. 1.2 5

AN137

Appendix

g Jo 1 sbed % Raz3o] yatay

Jobueyy Auslizeg 1190 1

S90Npoud pajedbajul 1eubh)

a-2 € h.u.mlummmz._A 1

n

[1ogdW3l A
m 198 THJOTENT
il VA
m 1685
Q N
L mmm
o
%uv g [%
=y WMd
[83| 22| ~
() & s
(o)) N Hn y 9
= o1” 60—
© L TOND OND
K 8d ‘o 5 v'od €04/ TOIK [— H
4ni -
C on\ So 3 c ad o © B8d71T1X
w vd” Eol—1 g v mm_\
VWV R S s B ng g+
..nlu- uu\ To1—ng g+ b [ww_ [}
..Aw. or ER sy 7] dlStND-%ved 3 17ed = Oro>_ShaWs
m ——MA—1 nE "E+ a7 ¢'8d7022 °0d/ 333 (190> _SNENS
A1 EOND POND
— 9
e mﬂ% v—% cn
-—
<
()
W e
o 2 ems -
L. T A
A % . .
| . = 5
X 4n1°@ % a dyK 4n1te u
NETE+ e Lo
ser o T3 3 v 2 2 15T &
EN 3] ® oecevew | 1d _1d
o0 Ezuz 3_ 8
nEE+ !
g ! W —

Rev. 1.2

SILICON LABORATORIES

AN137

2 o 2 sbey Eppe/S1-1 sweu s, usubrsag

8 2 Ny

sweN O17Ewsayos

sweN huedwo)

Figure 5. 1 Cell Buck Converter Schematic.

V_GNM
2y

198
Fay
V_EM
11y
ez
#1Y
1BE >
del A
€y
ot
[1vEdW3L 2
o 1
C
[¢+3338d - m 1JBPESHEW ol LARELE: (7]
MLy 0 0
~M 119le15| 8
JISN3ISY
BNEBJIIWXZ
381
[SE] 11 a S
HN &€
[N) LT 21 NIn
P 10
138+ESHEW - 11
NE "E+
11
[N
40
100+ 1038W

Rev. 1.2

&

SILICON LABORATORIES

AN137

Figure 6. main() Flow Chart.

| Config_F300() |

CalibrateADCfor
Measurement()
Enable Interrupts

I

Infinite
Loop

Yes/No

Clear Termination Flags
Clear Charge Status Flags

Yes

Error
Detected

Error
Detected
?

Turn on LEDO

Turn off LEDO, Error +

BULK_charge()

Infinite Loop

Yes/No

LOWCURRENT _charge()

]

8 Rev. 1.2

SILICON LABORATORIES

AN137

Figure 7. CalibrateADCforMeasurement() Flow Chart.

CalibrateADCforMearurement()

SWO0

Pushed
?

No

SWO0

Pushed
?

Setup ADCO's AMUX,
Throughput, Gain, for near
zero-scale voltage cal point

Setup ADCO's AMUX,
Throughput, Gain, for near
zero-scale Current cal point

Acquire 16-bit
Measurement

Setup ADCO0's AMUX,
Throughput, Gain, for near
full-scale voltage cal point

Acquire 16-bit
Measurement

Acquire16-bit Setup ADCO0's AMUX,
Throughput, Gain, for near

Measurement
full-scale Current cal point

Calculate Voltage Slope

Coefficient Acquire16-bit
Measurement
Calculate Voltage Offset
Coefficient Calculate Current Slope
Coefficient

Erase Memory Page

0x1A00 Calculate Current Offset
Coefficient
Store Voltage Offset and
Slope Coefficients in Store Current Offset and
FLASH Memory Slope Coefficients in

| FLASH Memory

®
@ Rev. 1.2

SILICON LABORATORIES

AN137

Figure 8. Monitor_Battery() Flow Chart.

Monitor_Battery()

Measurement
Type
?

Current Charge Voltage Temperature Battery Voltage
AMUX = Current AMUX = Volt Stop PWM Stop PWM
AMUX = Temperature AMUX = Volt
Y 4
AV =0
1=0
No
Voltage w/ or w/out PWM Current Temperature
Yes Calculate Voltage w/ Calculate Current w/ Calculate Temperature w/
Calibration Coefficients Calibration Coefficients Calibration Coefficients

Start ADCO

ADCO Done?

Y
Y
es Y
AV = AV + ADCO Turn PWM on
Y Return Desired Parameter
AV = AV/10
®
10 Rev. 1.2

SILICON LABORATORIES

AN137

Figure 9. Bulk_Charge() Flow Chart (Part 1).

Bulk_Charge()

| Start PWM w/ Zero Output

v

| Status = const_C |

No T
Within Limits
No <max_V &

A |

Set Appropriate Flags

> min_Bulk

Calculate bulk_finish_time

'

| Green LED On |

No
Error?
Yes
No Status =

const_c
?

| Regulate Battery Current

v

| Read Charge Voltage |

Charge
Voltage Within
Limits

Yes

Change Status from |
const_C to const_V

2
No

®

SILICON LABORATORIES

Rev. 1.2

11

AN137

Figure 10. BULKCurrent() Flow Chart (Part 2).

®

©

+ Yes

| Regulate Voltage() |

A

Stop PWM
& Flag Error

Yes

Stop PWM
& Flag Error

No

const_V,
NOT Delay & Current
Below Threshold

| Calculate bulk_finish_time |

v

| Status = Delay |

No

| Stop PWM |

| Status = const_C
Status = LOWCURRENT
.|

L4
| Green LED Off |

|

12

Rev. 1.2

SILICON LABORATORIES

AN137

Figure 11. LowCurrent_Charge() Flow Chart.

LOWCURRENT_charge()
No

\Y

<BulkThreshold
?

ResetTimeBase()

'

Calculate Finish_time Prepare Flags to enter
Bulk Mode

No ERROR & Charge

Yes

= Voltage
Within Limits
?
Change Status
from const_C to
const V
Regulate Current
|
No
Yes
\)
Status = Delay Green LED Blinking Regulate Voltage
Y
Yes Lowcurrent
=< Finish Time
Green LED Off
reached?
\
Stop PWM N
y and flag error > No
END
Y

Rev. 1.2

SILICON LABORATORIES

13

AN137

Figure 12. Turn_PWM_Off() Flow Chart.

CEXO0
Counter
<0x0F?

Yes

Increment CEXO
Counter

Disable PWM Mode

®
14 Rev. 1.2 @

SILICON LABORATORIES

AN137

Figure 13. Measure() Flow Chart.

Set accumulator and
counter i variables to zero

Clear End of Conversion
Flag

Start New Conversion

Conversion

Complete
?

accumulator =
accumulator + ADCO

Increment i

No

Yes

Return 16-bit
Measurement

SILICON LABORATORIES

Rev. 1.2

15

AN137

Figure 14. Regulate_Voltage() Flow Chart.

Regulate_Voltage()

)

Measure Battery's
voltage

Voltage <
VOLT_BULK &

PCA not max
?

No

No Voltage >
VOLT_BULK &

PCAnot 0

Make Duty Cycle Larger

Make Duty Cycle Smaller

Voltage No
<VOLT_BULK + Tolerence

&> VOLT_BULK
?

®
16 Rev. 1.2 @

SILICON LABORATORIES

AN137

Figure 15. Regulate_Current() Flow Chart.

Regulate_Current()

Measure Current

Current <

passed current & No

PCA not max
?

Make Duty Cycle Larger No

A

Current >
passed current &
PCA not 0

Make Duty Cycle Smaller

A

No

Current =
passed value

?

Monitor Voltage
w/ PWM off

No

Voltage <
VOLT_LOWCURREN

+ Tolerence
?

CHARGE_STATUS =
const_V

|
el

®
@ Rev. 1.2

SILICON LABORATORIES

17

AN137

/

Figure 16. PCA_OVERFLOW_ISR() Flow Chart.

PCA_OVERFLOW_ISR()

Reset PCA Counter and
PCA Interrupts

v

Decrement time.count

Y

0 = time.count

No

Reset time.count to
overflow value

| Increment time.sec |

No
60 = time.sec
?

| Reset time.sec |

v

| Increment time.min |

A

LOwW
CURRENT
charge &
no errors
?

60 = time.min
?

| Increment time.hour |

'

| Reset time.min |

¢ Yes
No

| Turn on LED |

24 = time.hour

Turn Off LED |

—

Reset time.hour |

<Y

END

18

Rev. 1.2

SILICON LABORATORIES

AN137

/e
//

// Copyright 2002 Cygnal Integrated Products, Inc.

//

// Filename: LIION BC MAIN.h

// Target Device: 8051F300

// Created: 11 SEP 2002

// Created By: DKC

// Tool chain: KEIL Eval C51

//

// This header file is used to define all preprocessor directives, prototypes,
// and global variable for LIION BC MAIN.c.

//

// The user should modify this header file before proceeding as key

// battery parameter limits are set here.

//

[mm e -
// Function Prototypes

void Config F300(void);

void Reset Time Base (void);

void CalibrateADCforMeasurement (void) ;
void Regulate Current (int);

void Regulate Voltage (void);

void Turn PWM Off (void);

int Monitor Battery(unsigned char);
void Bulk Charge (void);

void Lowcurrent Charge (void);
unsigned int Measure (void) ;

void Delay Loop (void);

/=
// UNIONs, STRUCTUREs, and ENUMs
[
typedef union LONG ({ // byte-addressable LONG
long 1;
unsigned char b[4];
} LONG;
typedef union INT ({ // byte-addressable INT
int 1i;
unsigned char b[2];
} INT;

typedef struct
{

unsigned long int t count;

int sec; // global seconds
int min; // global minutes
int hour; // global hour

}time struct;

// Global Variable Definitions

Rev. 1.2 19

SILICON LABORATORIES

AN137

/e e
time struct TIME; // Global Struct to Track Time

char bdata TERMINATION; // Global Variable to Track Termination
char bdata CHARGE STATUS; // Global Variable to Track Charging
INT code CHECK BYTE _at_ 0x1A00; // 0x0AOA Default value, for later use
LONG code VOLT SLOPE _at_ 0x1A60; // Volt Slope Register

LONG code VOLT OFFSET at O0xl1A64; // Volt Offset Register

LONG code I NOAMP SLOPE at 0x1A70; // Current Slope Register,ext. amp off

LONG code I NOAMP OFFSET _at 0x1A74; // Current Offset Register,ext. amp.off

LONG temp LONG 1,temp LONG 2; // Temporary Storage Variables
INT temp INT 1,temp INT 2; // Temporary Storage Variables
[m e -
// Bit maskable CHARGE STATUS Register Definition
e
sbit BULK = CHARGE_STATUS"0; // bit 0 : BULK charge status bit
sbit LOWCURRENT = CHARGE STATUS"1; // bit 1 : LOWCURRENT charge status bit
sbit ERROR = CHARGE_STATUS"2; // bit 2 : ERROR before/during charging
sbit CONST V = CHARGE STATUS"3; // bit 3 charged w/ constant VOLTAGE
sbit CONST C = CHARGE STATUS"4; // bit 4 : charged w/ constant CURRENT
sbit DELAY = CHARGE_ STATUS"5; // bit 5 : BULK charge DELAY for LiIon
// after CURRENT threshold detection
sbit READY = CHARGE STATUS"6; // bit 6 : Lowcurrent charge is
// terminated; battery is charged
sbit FREEL = CHARGE STATUS"7; // bit 7 : Not Currently used
e
// Bit Maskable TERMINATION Register Definition
[mm e e -
sbit TEMP_MIN = TERMINATION"O; // bit 0 minimum TEMPERATURE overflow
sbit TEMP MAX = TERMINATION"1; // bit 1 maximum TEMPERATURE overflow
sbit I MIN = TERMINATION"2; // bit 2 : minimum CURRENT overflow
sbit I MAX = TERMINATION"3; // bit 3 : maximum CURRENT overflow
sbit TIME MAX = TERMINATION"4; // bit 4 : maximum time overflow
sbit VOLT MAX = TERMINATION"5; // bit 5 maximum VOLTAGE overflow
sbit VOLT MIN = TERMINATION"6; // bit 6 minimum VOLTAGE overflow
sbit FREE2 = TERMINATION"7; // bit 7 Not Currently used
/e e
// Bit maskable PORT Definitions
/mm e e
sbit SDA = P0 "~ 0; // bit 0 SDA In/Output, Pin PO.
sbit SCL = P0 "~ 1; // bit 1 : SCL Output, Pin P1.
sbit CEXO = P0 ~ 2; // bit 2 : PWM Output, Pin P2.
sbit LEDO = PO * 3; // bit 3 : LEDO, Pin P0.3
sbit SWO = PO "~ 7; // bit 7 SwitchO, Pin PO.7

// AMUX Selections; Analog Inputs

#define TBAT 0xF8; // bit 4 : Temp. Ch.; Analog In
#define IBAT 0x65; // bit 5 : Current Ch.; Analog In
#define VBAT 0xF6; // bit 6 : Voltage Ch.; Analog In

/e e
// 8051F300 PARAMETERS

[
#define SYSCLK 24500000 // System clock frequency

20 Rev. 1.2

SILICON LABORATORIES

AN137

#define TEMP_ SENSOR GAIN 3300 // Temp Sensor Gain in (uV / degC)
#define TEMP GAIN 2 // PGA gain setting

#define CURRENT GAIN 4 // PGA gain setting

#define VREF 3200 // ADC Voltage Reference (mV)

#define SCRATCH PAGE 0x1C00 // FLASH page used for temp storage
#define PWM CLOCK SYSCLK/255 // PWM frequency is 96 kHz

J e R
// Calibration/Calculation PARAMETERS

/e oo
#define V1 CAL 67 // 1lst cal point for 2 point cal.
#define V2 CAL 2800 // 2nd cal point for 2 point cal.
#define I1 CAL 67 // 1lst cal point for 2 point cal.
#define I2 CAL 133 // 2nd cal point for 2 point cal.
#define RSENSE 1 // RSENSE is assumed to be 1/2 ohm
#define RESB 20 // 10k Ohms, Voltage Divide Resistor
#define RESAB 30 // 20k Ohms, Voltage Divide Resistor

#define TEMP_SLOPE ((long) TEMP_GAIN * TEMP SENSOR GAIN * 65536 / 100 / VREF)
// An estimate of the Temperature<SLOPE>
// in [tenth codes / K]
// The temperature measurement is
// within 3 degrees of accuracy.

#define TEMPERATURE 7 // Value for Switch Statement
#define VOLTAGE 5 // Value for Switch Statement
#define VOLTAGE PWM OFF 3 // Value for Switch Statement
#define CURRENT 1 // Value for Switch Statement

[
// Battery/Pack Parameters
et
#define CELLS 1 // Number of cells in the battery pack
#define CAPACITY 150 // mAh, Battery Capacity (LiIon)
#define LiIon CELL VOLT 4200 // mV, Nominal Charge Voltage

#define I BULK (unsigned int) (CAPACITY)

#define I LOWCURRENT (unsigned int) (CAPACITY/4)

#define VOLT BULK (unsigned int) (LiIon CELL VOLT)

#define VOLT LOWCURRENT (unsigned int) (LiIon CELL VOLT)

#define VOLT TOLERANCE (unsigned int) (LiIon CELL VOLT/100)// 1 Percent Acc
#define CURRENT TOLERENCE (unsigned int) (CAPACITY/10) // 10 Percent Acc
/e e
// Battery Characteristics: Charge TERMINATION Limits

[m e
#define MIN TEMP ABS 26300 // Abs. min. TEMPERATURE = -10 C, 263K
#define MAX TEMP_ ABS 32300 // Abs. max. TEMPERATURE = 50C, 323K:

Rev. 1.2 21

SILICON LABORATORIES

AN137

#define MIN VOLT BULK 3000 // Minimum BULK Voltage

#define MAX VOLT ABS (unsigned int) (CELLS * LiIon CELL VOLT)

#define MIN I BULK (unsigned int) (CAPACITY/4)

#define MAX TIME LOWCURRENT 30 // Max Lowcurrent Charge Time = 90min

#define MAX TIME BULK 90 // Maximum BULK Charge Time = 90 min
// at 1C CURRENT

#define BULK TIME DELAY 30 // DELAY = 30min after “MIN I BULK”

// END OF FILE

22 Rev. 1.2

SILICON LABORATORIES

AN137

//
//
1/
//
1/
//
//
//
!/
!/
//
//
//

!/
!/

#1i
#1i

VO

{

Copyright 2002 Cygnal Integrated Products, Inc.
Filename: LIION BC MAIN.c

Target Device: 8051F300

Created: 11 SEP 2002

Created By: DKC

Tool chain: KEIL Eval C51

This is a stand alone battery charger for a Lithium ION battery.
It utilizes a buck converter, controlled by the on-chip 8-bit PWM,
to provide constant current followed by constant voltage battery charge.

Includes
nclude <c8051£300.h>
nclude “LIION BC MAIN.h” //
Functions
id Config F300 (void)
RSTSRC = 0x02; //
XBRO = 0x70; //
XBR1 = 0x44; //
XBR2 = 0x40; //
//
POMDOUT = 0x0C; //
POMDIN = 0x8F; //
OSCICN = 0x07; //
ADCOCN = 0xCO; //
//
REFOCN = 0x0C; //
//
//
PCA Configuration
PCAOMD = 0x00; //
PCAOMD = 0x08; //
PCAOL = 0x00; //
PCAQOH = 0x00;
PCAOCN = 0x40; //
//
//Module 0
PCAOCPMO = 0x00; //
PCAOCPLO = 0xFO; //
PCAQOCPHO = 0xFO; //

Enable VDD Monitor

Skip P0.4,5,6; they’re analog In
Enable SMBus on P0.0, P0.1, and CEXO
as PWM at P0.2

Enable crossbar and weak pull-ups

Set P0.2 & P0O.3 output to push-pull
Configure P0.4,5,6 as Analog Inputs

Set SYSCLK to 24.5MHz, internal osc.

Turn on the ADC Module;
enable low power mode for settling

Configure ADC’s to use VDD for
Voltage Reference,
Enable On-chip Temperature Sensor

Disable WDT
Set PWM Time base = SYSCLK

Initialize PCA Counter to Zero
Enable PCA Counter
Clear PCA Counter Overflow flag

Configure CCMO to 8-bit PWM mode

Initialize PCA PWM to small duty cycle

0xF0 Ensures a Soft Initial Charge

SILICON LABORATORIES

Rev. 1.2

23

AN137

//Module 1
PCAOCPM1 = 0x49; // Configure Module 1 as software timer
PCAOCPL1 = OxFF; // Initialize to 255 so that Interrupt
// is generated when PCA ends
// 8-bit PWM Cycle
PCAOCPH1 = 0x00; // PCAOCPH is the high byte of the
// Output Compare Module
EIE1 = 0x08; // Enable PCA Overflow Interrupt
}
/) m
// Reset Time Base - Resets all Time Counting Values
J e R R
void Reset Time Base ()
{
TIME.sec = 0x00;
TIME.min = 0x00;
TIME.hour = 0x00;
TIME.t count = PWM CLOCK;
}
ettt bl
// Delay - This is a Delay to permit time for Switches to Debounce
J e R R
void Delay Loop (void)
{
long 1i=0;
for (i=0;i<100000;1i++);
}
/-
// Initialize CalibrateADCforVoltageMeasurement
/e oo

// This function calibrates the voltage channel and stores the calibration
// coefficients in the parameters volt slope and volt offset.

//

void CalibrateADCforMeasurement ()

// This calibration routine uses a 2 point cal.

{ unsigned char xdata *pwrite; // FLASH write pointer

EA = 0; // Disable All Interrupts
// Wait until 1st calibration voltage is ready for cal
while (SWO == 1); // Wait until SWO pushed

Delay Loop () ; // Wait for Switch Bounce

// Once ready, Get the first calibration voltage

AMXO0SL = VBAT; // Select appropriate input for AMUX
ADCOCF = (SYSCLK/5000000) << 3; // ADC conversion clock = 5.0MHz
ADCOCF &=0xF8; // Clear any Previous Gain Settings
ADCOCF |= 0x01; // PGA gain = 1

temp INT 1.i = Measure();

// Wait until 2nd calibration voltage is ready for cal
while (SWO == 1); // Wait until SWO pushed
Delay Loop(): // Wait for Switch Bounce

24 Rev. 1.2

SILICON LABORATORIES

AN137

// Once ready, Get the 2nd calibration voltage
AMXO0SL = VBAT; // Change Mux for second point
temp INT 2.i = Measure();

// Calculate the SLOPE // V1 and V2 are in tenth of a degree
temp LONG 1.1 = (unsigned) (temp INT 2.i-temp INT 1.1);
temp LONG 1.1 *= (unsigned)100; // Account for Math Truncation Error

temp LONG 1.1 /= (unsigned) (V2 _CAL - V1 CAL);

// Calculate the OFFSET

temp LONG 2.1 = (unsigned)temp INT 1.1i;

temp LONG 2.1 -= (signed) (temp LONG 1.1 * V1 CAL/100);

temp LONG 1.1 = 2050; // If no cal. use these
temp LONG 2.1 = 0; // as default values

// Erased memory at page 0x1A00
pwrite = (char xdata *)&(CHECK BYTE.b[O0]);

PSCTL = 0x03; // MOVX writes target FLASH memory;
// FLASH erase operations enabled

FLKEY = 0xA5; // FLASH key sequence #1
FLKEY = O0xF1; // FLASH key sequence #2
*pwrite = 0x00; // initiate PAGE erase

// Write the Volt SLOPE and OFFSET to Flash

PSCTL = 1; // MOVX writes to Flash
pwrite = (char xdata *)&(VOLT SLOPE.b[0]);

FLKEY = 0xA5;

FLKEY = OxF1; // enable flash write
*pwrite = temp LONG 1.b[O0];

pwrite = (char xdata *)&(VOLT SLOPE.b[1]);

FLKEY = 0xA5;

FLKEY = O0xF1; // enable flash write
*pwrite = temp LONG 1.Db[1];

pwrite = (char xdata *)&(VOLT SLOPE.b[2]);

FLKEY = 0xA5;

FLKEY = O0xF1; // enable flash write
*pwrite = temp LONG 1.b[2];

pwrite = (char xdata *)&(VOLT SLOPE.b[3]);

FLKEY = 0xA5;

FLKEY = OxF1; // enable flash write

*pwrite = temp LONG 1.b[3];

pwrite = (char xdata *)&(VOLT OFFSET.b[0]);

FLKEY = 0xA5;

FLKEY = OxF1; // enable flash write
*pwrite = temp LONG 2.b[0];

pwrite = (char xdata *)&(VOLT OFFSET.b[1]);

FLKEY = 0xA5;

FLKEY = OxF1; // enable flash write
*pwrite = temp LONG 2.b[1];

pwrite = (char xdata *)&(VOLT OFFSET.b[2]);

FLKEY = 0xA5;

FLKEY = 0OxF1; // enable flash write

*pwrite = temp LONG 2.b[2];

Rev. 1.2

SILICON LABORATORIES

25

AN137

//
//
//
//
//
//
//

pwrite = (char xdata *)&(VOLT OFFSET.b[3]);
FLKEY = 0xA5;
FLKEY = 0OxF1; // enable flash write

*pwrite = temp LONG 2.b[3];

PSCTL = 0; // MOVX writes target XRAM

This function calibrates the current channel with no external amp
and stores the calibration coefficients in the
parameters i noamp slope and i noamp offset.
This calibration routine uses a 2 point cal.
// Wait until calibration voltage is ready for cal
while (SWO == 1); // Wait until SWO pushed
Delay Loop () ; // Wait for Switch Bounce
// Once ready, Get the first calibration voltage
AMXO0SL = IBAT; // Select appropriate input for AMUX
ADCOCF = (SYSCLK/5000000) << 3; // ADC conversion clock = 5.0MHz
ADCOCF &=0xF8; // Clear any Previous Gain Settings
ADCOCF |= 0x03; // Set PGA gain = 4
temp INT 1.i = Measure(); // Acquire 16-bit Conversion
temp INT 1.i *= 2; // Account for Differential Mode
// Wait until 2nd calibration voltage is ready for cal
while (SWO == 1); // Wait until SWO pushed
Delay Loop(): // Wait for Switch Bounce

// Once ready, Get the 2nd calibration voltage
temp INT 2.i = Measure(); // Acquire 16-bit Conversion
temp INT 2.1 *=2; // Account for Differential Mode

// Calculate the SLOPE

temp LONG 1.1 = (unsigned) (temp INT 2.i - temp INT 1.1i);
temp LONG 1.1 *= (unsigned)100; // Account for Math Truncation Error
temp LONG 1.1 /= (unsigned) (I2 CAL - Il CAL);

temp LONG 1.1 /= (unsigned)CURRENT_GAIN;// Account for Gain

// Calculate the OFFSET

temp LONG 2.1 = (signed) (temp INT 1.i/CURRENT_ GAIN) ;

temp LONG 2.1 -= (signed) (temp LONG 1.1 * V1 CAL/100);

temp LONG 1.1 = 2050; // If no cal. use these
temp LONG 2.1 = 0; // as default values

// Memory at 0x1A00 is already erased
// Write the Volt SLOPE and OFFSET to Flash

PSCTL = 1; // MOVX writes to Flash

pwrite = (char xdata *)&(I_NOAMP SLOPE.b[O0]);

FLKEY = 0xA5;

FLKEY = 0xF1; // enable flash write

*pwrite = temp LONG 1.b[0];

pwrite = (char xdata *)&(I_NOAMP SLOPE.b[1]);

FLKEY = 0xA5;

FLKEY = OxF1; // enable flash write

*pwrite = temp LONG 1.b[1];

pwrite = (char xdata *)&(I_NOAMP SLOPE.Db[Z2]);

®

26 Rev. 1.2

SILICON LABORATORIES

AN137

FLKEY = 0xA5;

FLKEY = OxF1; // enable flash write
*pwrite = temp LONG 1.b[2];

pwrite = (char xdata *)&(I_NOAMP SLOPE.Db[3]);

FLKEY = 0xA5;

FLKEY = O0xF1; // enable flash write
*pwrite = temp LONG 1.b[3];

pwrite = (char xdata *)&(I_NOAMP OFFSET.b[0]);

FLKEY = 0xA5;

FLKEY = OxF1; // enable flash write
*pwrite = temp LONG 2.b[0];

pwrite = (char xdata *)&(I_NOAMP OFFSET.b[1]);

FLKEY = 0xA5;

FLKEY = OxF1; // enable flash write
*pwrite = temp LONG 2.b[1];

pwrite = (char xdata *)&(I_NOAMP OFFSET.b[2]);

FLKEY = 0xA5;

FLKEY = OxF1; // enable flash write
*pwrite = temp LONG 2.b[2];

pwrite = (char xdata *)&(I_NOAMP OFFSET.b[3]);

FLKEY = 0xA5;

FLKEY = 0OxF1; // enable flash write

*pwrite = temp LONG 2.b[3];

PSCTL = 0; // MOVX writes target XRAM

//
// This routine averages 65536 ADC samples and returns a 16-bit unsigned
// result.
//
unsigned int Measure (void)
{
unsigned i; // sample counter
unsigned long accumulator=0L; // here’s where we integrate the
// ADC samples

// read the ADC value and add to running total

i=0;

do {
ADOINT = 0; // clear end-of-conversion indicator
ADOBUSY = 1; // initiate conversion
while (!ADOINT) ; // wait for conversion to complete
accumulator += ADCO; // read adc value and accumulate
it++; // update counter

} while (i != 0x0000);

// the accumulator now contains 16 added bits of which 8 are usable
return (unsigned int) (accumulator >> 8);

// This routine monitors the battery’s current and adjusts
// the PWM (i.e. duty cycle) to keep the current at a known value

Rev. 1.2 27

SILICON LABORATORIES

AN137

//
void Regulate Current (int passed current)
{ unsigned int temp = O;

do {

temp = Monitor Battery (CURRENT) ; // Measure Current

if (temp < passed current)
PCAQOCPHO--;
if (temp > passed current)
PCAOCPHO++;

}while ((temp < (passed current - CURRENT TOLERENCE)) ||
(temp > (passed current + CURRENT TOLERENCE))) ;
// I _BULK or I LOWCURRENT is set now

temp = Monitor Battery (VOLTAGE PWM OFF);
// If VOLTAGE within range,
// change from constant CURRENT charge
// mode to constant VOLTAGE charge mode
if ((temp >= (VOLT LOWCURRENT - VOLT TOLERANCE)) &&
(temp <= (VOLT LOWCURRENT + VOLT TOLERANCE)))
{
CONST C = 0;
CONST V = 1;

// This routine monitors the battery’s voltage and adjusts
// the PWM (i.e. duty cycle) to keep the voltage at a known value

//
void Regulate Voltage (void)
{ unsigned int temp = 0;
// set VOLT BULK (with “soft start”)
do {

temp = Monitor Battery (VOLTAGE) ;

if (temp < VOLT BULK)
PCAOCPHO--;

if (temp > VOLT BULK)
PCAOCPHO++;

}while ((temp < (VOLT BULK - VOLT TOLERANCE)) ||
(temp > (VOLT BULK + VOLT TOLERANCE)));
// VOLTAGE is set now

// This routine peforms a soft charge turn off by taking the PWM’s
// duty cycle slowly to zero.

//
void Turn PWM Off (void)

{

28 Rev. 1.2

SILICON LABORATORIES

AN137

do {
if (PCAOCPHO < 0xFO0)
PCAQOCPHO++;

}while (PCAOCPHO < O0xFO);
// Duty Cycle is now small and safe to turn off.

PCAOCPMO = 0x00; // Disable PWM
}
/e e
// Monitor Battery
/e e e

// This routine acts as a switch when gathering different conversion types.
// It adjusts the throughput, adjust the AMUX and returns the current in ma,
// voltage in mV, and temperature in C, 2% accurate.
//
int Monitor Battery(unsigned char value)
{

char i;

unsigned long av =0;

long signed result;

ADCOCF = (SYSCLK/5000000) << 3; // ADC conversion clock = 5.0MHz
ADCOCF &= O0OxF8; // Clear any Previous Gain Settings

switch (value)

{
case TEMPERATURE:

Turn PWM Off () ; // Turn PWM Off

AMXO0SL = TBAT; // Select appropriate input for AMUX
ADCOCF |= 0x02; // Set PGA gain = 2

break;

case VOLTAGE:

AMXO0SL = VBAT; // Select appropriate input for AMUX
ADCOCF |= 0x01; // Set PGA gain = 1
break;

case VOLTAGE PWM OFF:

Turn PWM Off () ; // Turn PWM Off

AMXO0SL = VBAT; // Select appropriate input for AMUX
ADCOCF |= 0x01; // Set PGA gain = 1

break;

case CURRENT:

AMXO0SL = IBAT; // Select appropriate input for AMUX
ADCOCF |= 0x03; // Set PGA gain = 4
break;

//Compute average of next 10 A/D conversions
for (av=0,1i=10;1;--1) {

ADOINT = 0; // clear end-of-conversion indicator
ADOBUSY = 1; // initiate conversion
while ('ADOINT) ; // wait for conversion to complete

av = av+ADCO;

Rev. 1.2 29

SILICON LABORATORIES

AN137

VO

{

av = av/10; // Compute the average

av = av<<$§; // Convert to 16-bit conversion
// ...to account for 16-bit cal.
// coefficients

PCAOCPMO = 0x42; // Turn on PWM

switch (value)
{ case TEMPERATURE:

result = (long) av * 1000/TEMP_SLOPE;

break;

case VOLTAGE:
case VOLTAGE PWM OFF:

result = (av - VOLT OFFSET.1); //

result /= VOLT SLOPE.1; //

result *= 100; //

result *= RESAB; //

result /= RESB;

break;

case CURRENT:
result = av*2; //
result -= I NOAMP OFFSET.1; //
result /= I NOAMP SLOPE.1; //
result *= 100; //
result /= RSENSE; //
result *= RESAB; //

result /= RESB;
result /= CURRENT GAIN;
break;

return (int) result;

Account
Convert
Account
Account

Account
Account
Convert
Account
Account
Account

for System Errors

to Voltage in Millivolts
for Math Truncation Error
for Divide Resistors

for Differential Mode

for System Errors

to Milliamps

for Math Truncation Error
for Sense Resistor

for Divide Resistors

Bulk Charge Function
id Bulk Charge (void)
unsigned int temp = 0;
unsigned int bulk finish hour = 0;
unsigned int bulk finish min = 0;
unsigned int delay hour = 0;
unsigned int delay min = 0;
unsigned int last min = 0;
Reset Time Base(); // Reset Time Base to zero
// Calculate BULK charge finish time
bulk finish min = (TIME.min + MAX TIME BULK) ;

bulk finish hour = TIME.hour;

while (bulk finish min > 60)

{
bulk finish min = bulk finish min - 60;
bulk finish hour++;

30

Rev. 1.2

SILICON LABORATORIES

AN137

CONST C = 1; // Start in constant current charge mode
DELAY =0; // Reset timer DELAY
temp = Monitor Battery (TEMPERATURE); // Monitor Temperature
// Is temperature within range?
if ((temp > MIN TEMP ABS) && (temp < MAX TEMP ABS))

{

temp = Monitor Battery (VOLTAGE) ; // Monitor Voltage
// Is Voltage within range?
if ((temp <= (MAX VOLT ABS + VOLT TOLERANCE)) && temp > MIN VOLT BULK)
{
PCAOCPMO = 0x42; // Configure CCMO to 8-bit PWM mode

// Enter main loop in Bulk Charge ()
while ((BULK == 1) && (ERROR == 0))
{
if (CONST C == 1)
Regulate Current (I BULK) ; // Charge with Constant Current

else if (CONST V == 1)
Regulate Voltage(); // Charge with Constant Voltage

// Now, Check for error and charge termination conditions
// If above max charge time, flag error

// Test for BULK Charge Time Out

// Monitor Time

if ((TIME.hour == bulk finish hour) && (TIME.min == bulk finish min)
&& (DELAY == 0))
{
Turn PWM Off () ; // Turn Off PWM
TIME MAX = 1; // Set Time max error flag
ERROR =1; // Set general error flag

// Monitor Temperature
temp = Monitor_Battery(TEMPERATURE);
if ((temp < MIN TEMP ABS) && (temp > MAX TEMP ABS))
Turn PWM Off () ; // Turn Off PWM

if (temp < MIN TEMP ABS)

TEMP_MIN = 1; // Set Temperature below minimum flag
else

TEMP MAX = 1; // Set Temperature exceeds maximum flag
ERROR =1; // Set general error flag

// Minute elapsed?
// Check for minimum current
// if reached, enter last DELAY charge
if (TIME.min != last min)
{
last min = TIME.min;
if ((CONST V == 1) && (DELAY == 0) && (Monitor_Battery(CURRENT)
<= MIN_ T _BULK))

Rev. 1.2

SILICON LABORATORIES

31

AN137

// Calculate TOP OFF Battery Time finish time

delay min = (TIME.min + BULK TIME DELAY) ;

delay hour = TIME.hour;
while (delay min > 60)
{

delay min = delay min - 60;

delay hour++;

}

DELAY = 1; // Set Delay Flag
}
// Monitor Delay time, time up?
if ((TIME.hour == delay hour) && (TIME.min == delay min) &&
(DELAY == 1))

Turn PWM Off () ;
CONST V = 0;
CONST C = 1;
BULK = 0;
LOWCURRENT = 1;

else 1f (ERROR == 0)
{

// Turn Off PWM

// Exit CONST V

// Prepare to enter CONST C

// Prepare to exit BULK mode

// Prepare to enter LOWCURRENT Mode

// End Main While loop

if (temp > (MAX VOLT ABS + VOLT TOLERANCE))

{ VOLT MAX = 1;
ERROR =1;
}
else if (temp < MIN VOLT BULK)
{ VOLT MIN = 1;
LOWCURRENT = 1;
BULK = 0;

else 1if (ERROR == 0)
{
if (temp < MIN TEMP ABS)
TEMP MIN = 1;
else
TEMP MAX = 1;

void Lowcurrent Charge (void)
{
unsigned int temp = 0;
unsigned int lowcurrent finish min

// Set Max Voltage error flag
// Set general error flag

// Set Minimum bulk voltage error flag
// Switch to LOWCURRENT mode

// Exit Bulk Charge mode

// battery’s voltage very low

// Bbsolute temperature out of range?

// Set Temperature below minimum flag
// Set Temperature exceeds maximum flag

// Set general error flag

32

Rev. 1.2

SILICON LABORATORIES

AN137

unsigned int lowcurrent finish hour = 0;
Reset Time Base(); // Reset Time base to zero

// Calculate LOWCURRENT finish time
lowcurrent finish min = (TIME.min + MAX TIME LOWCURRENT) ;
lowcurrent finish hour = TIME.hour;
while (lowcurrent finish min > 60)
{
lowcurrent finish min = lowcurrent finish min - 60;
lowcurrent finish hour++;

}

// Enter Main Lowcurrent Loop.
// Only exits are upon error and full charge
while ((LOWCURRENT == 1) && (ERROR == 0))
{
temp = Monitor Battery (TEMPERATURE);// Get Temperature Reading
// Is TEMPERATURE within limits
if ((temp > MIN TEMP ABS) && (temp < MAX TEMP ABS))
{
// Is Battery’s Charge Voltage below max charge voltage
temp = Monitor Battery(VOLTAGE); // Get Voltage Reading
if (temp <= (VOLT LOWCURRENT + VOLT TOLERANCE))
{
if (CONST C == 1) // CONST_C ?, charge w/ constant current
Regulate Current (I LOWCURRENT) ;

if (CONST V == 1) // CONST V?, charge w/ constant voltage
Regulate Voltage();

if ((temp >= MIN VOLT BULK) && (DELAY == 0))// Bulk Threshold voltage met?
{ LOWCURRENT = 0; // Exit LOWCURRENT mode
BULK = 1; // Switch to Bulk Charge mode

// Check elapsed time

if ((TIME.hour == lowcurrent finish hour) &&

(TIME.min == lowcurrent finish min))

{
TIME MAX = 1; // Set Time MAX error flag
ERROR =1; // Set general error flag

}

else if (ERROR == 0) // Voltage to high?
{
VOLT MAX = 1; // Set Max voltage error flag
ERROR =1; // Set general error flag
}
}
else 1if (ERROR == 0) // Bbsolute temperature out of range-?

{
if (temp < MIN TEMP ABS)

TEMP_MIN = 1; // Set Temperature below minimum flag
else

TEMP MAX = 1; // Set Temperature exceeds maximum flag
ERROR = 1; // Set general error flag

Rev. 1.2 33

SILICON LABORATORIES

[
// Main Function
[e
void main (void)
{
EA = 0; // Disable All Interrupts
Reset Time Base();
Config F300(); // Config F300
CalibrateADCforMeasurement () ; // Calibrate F300
EA = 1; // Enable All Active Interrupts
while (1)
{
LEDO = 0; // Turn LEDO off
TERMINATION = 0x00; // Reset Termination Flags
CHARGE_STATUS = 0x00; // Reset Charge Status Flags
BULK = 1; // Start in LOWCURRENT Charge mode
CONST C = 1;
while (SWO == 1); // Wait until SWO pushed
Delay Loop(); // Wait for Switch Bounce

while (ERROR == 0)
{

if (BULK ==)

{
LEDO = 1; // Turn LEDO, indicates Bulk Mode
Bulk Charge(); // Enter Bulk Charge Mode

}
if (LOWCURRENT == 1)
Lowcurrent Charge(); // Enter Lowcurrent Charge function
// Toggle LEDO at 1 Hz rate via ISR

if (ERROR == 1)
{
Turn PWM Off();; // Turn PWM Off
LEDO = 0; // Turn OFF LEDO to indicate “ERROR”.
EA = 0; // Disable All Interrupts
while (1); // Enter a eternal loop
// No recovery except “reset-button”
}
}
}
[m e
// PCA ISR
[

// This routine counts the elapsed time in seconds, minutes, hours.

// It also toggles LEDO every second when in Lowcurrent Charge Mode.

// This routine interrupts every time the PCA counter overflows, every 256
// SYSCLK cycles. After SYSCLK/256 interrupts, one second has elapsed.

//

void PCA OVERFLOW ISR (void) interrupt 9

{

34 Rev. 1.2

SILICON LABORATORIES

AN137

PCAOCN = 0x40; //
PCAQOH = 0x00; //
//
if (0x0000 == --TIME.t count)
{
TIME.t count = PWM CLOCK; /7
if (60 == ++TIME.sec) //
{ //
TIME.sec = 0x00;
if (60 == +4+TIME.min) //
{ //
TIME.min = 0x00;
if (24 == ++TIME.hour) //
TIME.hour = 0x00; //
}
}
if ((LOWCURRENT == 1) && (ERROR == 0))
{ //
if (TIME.sec % 2)
LEDO = 0; //
else
LEDO = 1; //

// END OF FILE

Reset all PCA Interrupt Flags

Reset High Byte of PCA Counter
of 8-bit PWM we are using Modulel

Reset 1 Second Clock
Account for elapsed seconds
Reset second counter every minute

Account for elapsed minutes
Reset minute counter every hour

Account for elapsed hours
Reset hour counter every day

Blink LEDO at 1 Hz if in Lowcurrent
Turn on LED every odd second

Turn on LED every even second

SILICON LABORATORIES

Rev. 1.2

35

AN137

Contact Information

Silicon Laboratories Inc.
4635 Boston Lane

Austin, TX 78735

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Email: productinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

36 Rev. 1.2

SILICON LABORATORIES

