agere

Advance Data Sheet, Rev. 9 June 2001

USS-344 *QuadraBus*™ Four-Host PCI-to-USB OpenHCI Host Controller

Features

- 32-bit, 33 MHz PCI interface compliant with PCI Local Bus Specification Revision 2.2
- Four downstream USB ports
- Each USB port dedicated to providing full USB bandwidth to the attached device
- Full compliance with Universal Serial Bus Specification Revision 1.1
- OpenHCI Open Host Controller Interface Specification for USB Release 1.0a compatible
- Fully compatible with *Microsoft Windows* 98/95/*Windows* NT*standard OpenHCI drivers
- Fully compatible with *Mac*[†] OS 8.5 and 8.6
- Integrated dual-speed USB transceivers
- 3 V or 5 V switchable PCI signaling
- Low-power mode and wake-up compatible with PCI Power Management Interface Specification Revision 1.1
- Supports up to 127 devices per port
- Supports peripheral hot swap and wake-up
- Support for legacy keyboard and mouse
- 128-pin TQFP package
- Full 12 Mbits/s bandwidth per port
- Evaluation kit:
 - PCI card
 - Data sheet
- 0.25 µm technology

Applications

- Seamless integration with 3 V or 5 V PCI-based computer products
- Supports all USB compliant devices and hubs
- Simultaneous operation of multiple high-performance devices

Description

The Agere Systems Inc. USS-344 *QuadraBus* provides a single-chip four-host PCI-to-Universal Serial Bus (USB) solution. The USS-344 interfaces directly to any 32-bit, 33 MHz PCI bus and is ideal for either onboard applications or add-in card applications. It can easily be configured to communicate in either a 3 V PCI environment or 5 V PCI environment simply by selecting the appropriate communications voltage level on the VIO input pin.

The USS-344 provides four downstream USB ports for connectivity with any USB compliant device or hub. Fullspeed or low-speed peripherals are supported along with all of the USB transfer types: control, interrupt, bulk, or isochronous. The USS-344's OpenHCI compliance offers significant USB performance benefits and reduced CPU overhead compared to other USB UHCI host controllers.

In addition, the USS-344 offers a significant performance advantage over all other USB host controllers (both UHCI and OHCI) by providing full USB bandwidth to each port rather than sharing the USB bandwidth over all ports. This results in an increase in the number of devices which can feasibly be connected to a computer system as well as ensuring high-bandwidth devices, such as video cameras and audio devices, are always provided with the high bandwidth they need while other USB devices are in use.

The USS-344 is a multifunction PCI device with one single-port USB host controller per PCI function. There are four PCI functions in the USS-344 for a total of four single-port USB host controllers. Each single-port host controller provides the full USB bandwidth (12 Mbits/s) for devices connected downstream of its port.

The USS-344 is fully compatible with the *Microsoft Windows* standard OpenHCI drivers. The USS-344 pinout is compatible with the future release of the Agere USB 2.0 host controller. The USS-344 is a 3.3 V device fabricated in 0.25 μ m technology. Integrated dual-speed USB transceivers enable a single-chip PCI-to-USB solution. The USS-344 provides full support for legacy PC peripherals as defined in the *OpenHCI Open Host Controller Interface Specification for USB Release 1.0a.*

- * *Microsoft, Windows*, and *Windows NT* are registered trademarks of Microsoft Corporation.
- *†Mac* is a registered trademark of Apple Computer, Inc.

Page

Table of Contents

Contents

Applications1 Description 1 Applicable Documents and Specifications 4 PCI Function 0—Single-Port USB Host Controller 012 PCI Function 3—Single-Port USB Host Controller 324 Configuration Space Offset 50h......43 Configuration Space Offset 51h......43 Configuration Space Offset 56h......45 Configuration Space Offset 57h......45

Description (continued)

Figure 1. USS-344 Interconnection Diagram

Applicable Documents and Specifications

- PCI Local Bus Specification Revision 2.1s., June 1, 1995. PCI Special Interest Group.
- Universal Serial Bus Specification Revision 1.1., September 23, 1998. Compaq/Digital Equipment Corporation/ IBM PC Company/Intel/Microsoft/NEC/Northern Telecom.
- OpenHCI Open Host Controller Interface Specification for USB Release 1.0a., July 31, 1997. Compaq/Microsoft/ National Semiconductor.
- PCI Bus Power Management Interface Specification Revision 1.1., December 18, 1998. PCI Special Interest Group.

Pin Information

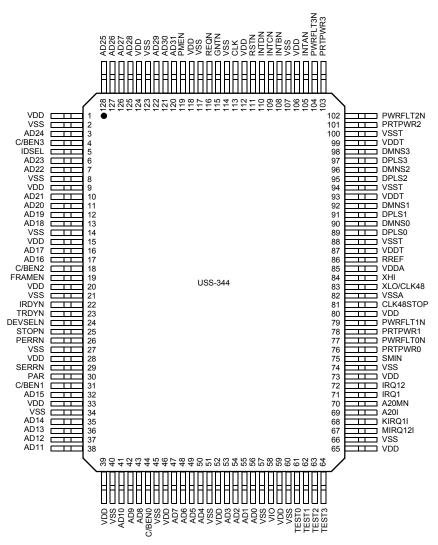


Figure 2. USS-344 Pin Diagram

Pin Information (continued)

Table 1. Numeric Pin Cross Reference

Pin	Symbol*	Pin	Symbol*	Pin	Symbol*	Pin	Symbol*
1	Vdd	33	Vdd	65	Vdd	97	DPLS3
2	Vss	34	Vss	66	Vss	98	DMNS3
3	AD24	35	AD14	67	MIRQ12I	99	VddT
4	C/BEN3	36	AD13	68	KIRQ1I	100	VssT
5	IDSEL	37	AD12	69	A20I	101	PRTPWR2
6	AD23	38	AD11	70	A20MN	102	PWRFLT2N
7	AD22	39	Vdd	71	IRQ1	103	PRTPWR3
8	Vss	40	Vss	72	IRQ12	104	PWRFLT3N
9	Vdd	41	AD10	73	Vdd	105	INTAN
10	AD21	42	AD9	74	Vss	106	Vdd
11	AD20	43	AD8	75	SMIN	107	Vss
12	AD19	44	C/BEN0	76	PRTPWR0	108	INTBN
13	AD18	45	Vss	77	PWRFLT0N	109	INTCN
14	Vss	46	Vdd	78	PRTPWR1	110	INTDN
15	Vdd	47	AD7	79	PWRFLT1N	111	RSTN
16	AD17	48	AD6	80	Vdd	112	Vdd
17	AD16	49	AD5	81	CLK48STOP	113	CLK
18	C/BEN2	50	AD4	82	VssA	114	Vss
19	FRAMEN	51	Vss	83	XLO/CLK48	115	GNTN
20	Vdd	52	Vdd	84	XHI	116	REQN
21	Vss	53	AD3	85	VddA	117	Vss
22	IRDYN	54	AD2	86	RREF	118	Vdd
23	TRDYN	55	AD1	87	VddT	119	PMEN
24	DEVSELN	56	AD0	88	VssT	120	AD31
25	STOPN	57	Vss	89	DPLS0	121	AD30
26	PERRN	58	VIO	90	DMNS0	122	AD29
27	Vss	59	Vdd	91	DPLS1	123	Vss
28	Vdd	60	Vss	92	DMNS1	124	Vdd
29	SERRN	61	TEST0	93	VddT	125	AD28
30	PAR	62	TEST1	94	VssT	126	AD27
31	C/BEN1	63	TEST2	95	DPLS2	127	AD26
32	AD15	64	TEST3	96	DMNS2	128	AD25

* Pins identified as NC are unused and should be left unconnected. Active-low signals within this document are indicated by an N following the symbol names.

Pin Information (continued)

Table 2. PCI Signals

Pin	Symbol*	Туре	Description
111	RSTN	Input	PCI Reset (Active-Low).
113	CLK	Input	PCI System Clock (33 MHz).
116	REQN	Output/3-State	PCI Request (Active-Low).
115	GNTN	Input	PCI Grant (Active-Low).
120, 121, 122, 125, 126, 127, 128,	AD[31:0]	Bidir	PCI Address and Data.
3, 6, 7, 10, 11, 12, 13, 16, 17, 32,			
35, 36, 37, 38, 41, 42, 43, 47, 48,			
49, 50, 53, 54, 55, 56			
30	PAR	Bidir	PCI Parity.
4, 18, 31, 44	C/BEN[3:0]	Bidir	PCI Bus Command and Byte Enables.
19	FRAMEN	Bidir	PCI Cycle Frame (Active-Low).
22	IRDYN	Bidir	PCI Initiator Ready (Active-Low).
23	TRDYN	Bidir	PCI Target Ready (Active-Low).
25	STOPN	Bidir	PCI Stop (Active-Low).
5	IDSEL	Input	PCI Initialization Device Select.
24	DEVSELN	Bidir	PCI Device Select (Active-Low).
26	PERRN	Bidir	PCI Parity Error (Active-Low).
29	SERRN	Output/Open Drain	PCI System Error (Active-Low).
105	INTAN	Output/Open Drain	PCI Interrupt A (Active-Low).
108	INTBN	Output/Open Drain	PCI Interrupt B (Active-Low).
109	INTCN	Output/Open Drain	PCI Interrupt C (Active-Low).
110	INTDN	Output/Open Drain	PCI Interrupt D (Active-Low).
119	PMEN	Output/Open Drain	Power Management Event (Active-Low).
1, 9, 15, 20, 28, 33, 39, 46, 52, 59,	Vdd	Power	3.3 V VDD.
65, 73, 80, 106, 112, 118, 124			
2, 8, 14, 21, 27, 34, 40, 45, 51, 57,	Vss	Power	Vss.
60, 66, 74, 107, 114, 117, 123			
58	VIO	Power	PCI Environment Selection (3.3 V or 5 V).

* An N following the symbol names indicates active-low for the USS-344.

Table 3. USB Port Signals

Pin	Symbol*	Туре	Description
89	DPLS0	Bidir	USB Port 0 DPLUS.
90	DMNS0	Bidir	USB Port 0 DMINUS.
91	DPLS1	Bidir	USB Port 1 DPLUS.
92	DMNS1	Bidir	USB Port 1 DMINUS.
95	DPLS2	Bidir	USB Port 2 DPLUS.
96	DMNS2	Bidir	USB Port 2 DMINUS.
97	DPLS3	Bidir	USB Port 3 DPLUS.
98	DMNS3	Bidir	USB Port 3 DMINUS.
76	PRTPWR0	Bidir	USB Port 0 Power Enable (Active-Low).
78	PRTPWR1	Bidir	USB Port 1 Power Enable (Active-Low).
101	PRTPWR2	Bidir	USB Port 2 Power Enable (Active-Low).
103	PRTPWR3	Bidir	USB Port 3 Power Enable (Active-Low).

* An N following the symbol names indicates active-low for the USS-344.

Pin Information (continued)

Pin	Symbol*	Туре	Description
77	PWRFLT0N	Input	USB Port 0 Overcurrent (Active-Low).
79	PWRFLT1N	Input	USB Port 1 Overcurrent (Active-Low).
102	PWRFLT2N	Input	USB Port 2 Overcurrent (Active-Low).
104	PWRFLT3N	Input	USB Port 3 Overcurrent (Active-Low).
81	CLK48STOP	Bidir	USB Clock Stop (Optional). Used to stop external
			48 MHz clock in PCI power management state D3.
87, 93, 99	VddT	Power	USB Transceiver VDD (3.3 V).
88, 94, 100	VssT	Power	USB Transceiver Vss.
86	RREF	Input	USB 2.0 1 k Ω Precision Resistor Connection. Hi-Z if
			implementation does not expect upgrade to USB 2.0.
85	VddA	Power	USB 2.0 Analog Power. Connect to VDD if implementa-
			tion does not expect upgrade to USB 2.0.
82	VssA	Power	USB 2.0 Analog Power. Connect to Vss if implementa-
			tion does not expect upgrade to USB 2.0.
84	XHI	Power	USB 2.0 Crystal Oscillator XHI Connection. Hi-Z if
			implementation does not expect upgrade to USB 2.0.
83	XLO/CLK48	Power/Input	USB 2.0 Crystal Oscillator XHI Connection/USB 1.X
			CLK 48 MHz Input.

Table 3. USB Port Signals (continued)

* An N following the symbol names indicates active-low for the USS-344.

Table 4. Legacy Support Signals

Pin	Symbol*	Туре	Description
68	KIRQ1I		Legacy Keyboard Controller Interrupt (IRQ1 Input from Keyboard Controller).
67	MIRQ12I		Legacy Mouse Controller Interrupt (IRQ12 Input from Mouse Controller).
69	A20I	Input	Legacy Gate A20 Input.
70	A20MN	Output/Open Drain	Legacy Gate A20 Output (to Memory Controller).
71	IRQ1	Output/Open Drain	System Keyboard Interrupt (Active-High).
72	IRQ12	Output/Open Drain	System Mouse Interrupt (Active-High).
75	SMIN	Output/Open Drain	System Management Interrupt (Active-Low).

* An N following the symbol names indicates active-low for the USS-344.

Table 5. Chip Test Signals

Pin	Symbol*	Туре	Description
61	TEST0	Input	Chip Test Signal. Refer to Test Mode Connection Instructions section for usage information.
62	TEST1	Input	Chip Test Signal. Refer to Test Mode Connection Instructions section for usage information.
63	TEST2	Input	Chip Test Signal. Refer to Test Mode Connection Instructions section for usage information.
64	TEST3	Input	Chip Test Signal. Refer to section Test Mode Connection Instructions for usage information.

* An N following the symbol names indicates active-low for the USS-344.

Register Overview

Table 6. PCI Bus Configuration Memory Summary (Function 0)

Refer to Tables 10-31 for more details on each of these registers.

Configuration Space Offset	Register Name	Read/Write	Default Value (Reset)
00h—01h	Vendor ID	R	11C1h
02h—03h	Device ID	R	5803h
04h—05h	Command	R/W	0000h
06h—07h	Status	R/W	TEST1 = 0b: 0210h TEST1 = 1b: 0200h
08h	Revision ID*	R	10h
09h—0Bh	Class Code	R	0C0310h
0Ch	Cache Line Size	R	00h
0Dh	Latency Timer	R/W	00h
0Eh	Header Type	R	80h
0Fh	BIST	R	00h
10h—13h	BAR 0	R/W	0000000h
14h—17h	BAR 1	R	0000000h
18h—1Bh	BAR 2	R	0000000h
1Ch—1Fh	BAR 3	R	0000000h
20h—23h	BAR 4	R	0000000h
24h—27h	BAR 5	R	0000000h
28h—2Bh	CardBus CIS Pointer	R	0000000h
2Ch—2Dh	Subsystem Vendor ID	R/W [†]	11C1h
2Eh—2Fh	Subsystem ID	R/W [†]	5803h
30h—33h	Expansion ROM Base Address	R	0000000h
34h	Capabilities Pointer	R	TEST1 = 0b: 50h TEST1 = 1b: 00h
3Ch	Interrupt Line	R/W	00h
3Dh	Interrupt Pin	R	01h
3Eh	Min_Gnt	R	03h
3Fh	Max_Lat	R	56h
4Ch	Special—Subsystem Write Capability	R/W	0000000h

* The revision can be identified electronically using the standard PCI Revision ID register described in this table. The revision can also be identified by physical markings using the last letter of the USS-344 identifier code printed on the device. The USS-344 identifier code will be printed using the format USS344XY, where X will identify the package type (T) and Y will identify the revision.

Register Overview (continued)

Table 7. PCI Bus Configuration Memory Summary (Function 1)

Refer to Tables 32-53 for more details on each of these registers.

Configuration Space Offset	Register Name	Read/Write	Default Value (Reset)
00h—01h	Vendor ID	R	11C1h
02h—03h	Device ID	R	5803h
04h—05h	Command	R/W	0000h
06h—07h	Status	R/W	TEST1 = 0b: 0210h
			TEST1 = 1b: 0200h
08h	Revision ID*	R	10h
09h—0Bh	Class Code	R	0C0310h
0Ch	Cache Line Size	R	00h
0Dh	Latency Timer	R/W	00h
0Eh	Header Type	R	80h
0Fh	BIST	R	00h
10h—13h	BAR 0	R/W	0000000h
14h—17h	BAR 1	R	0000000h
18h—1Bh	BAR 2	R	0000000h
1Ch—1Fh	BAR 3	R	0000000h
20h—23h	BAR 4	R	0000000h
24h—27h	BAR 5	R	0000000h
28h—2Bh	CardBus CIS Pointer	R	0000000h
2Ch—2Dh	Subsystem Vendor ID	R/W [†]	11C1h
2Eh—2Fh	Subsystem ID	R/W [†]	5803h
30h—33h	Expansion ROM Base Address	R	0000000h
34h	Capabilities Pointer	R	TEST1 = 0b: 50h
			TEST1 = 1b: 00h
3Ch	Interrupt Line	R/W	00h
3Dh	Interrupt Pin	R	TEST0 = 0b: 01h
			TEST0 = 1b: 02h
3Eh	Min_Gnt	R	03h
3Fh	Max_Lat	R	56h
4Ch	Special—Subsystem Write Capability	R/W	00000000h

* The revision can be identified electronically using the standard PCI Revision ID register described in this table. The revision can also be identified by physical markings using the last letter of the USS-344 identifier code printed on the device. The USS-344 identifier code will be printed using the format USS344XY, where X will identify the package type (T) and Y will identify the revision.

Register Overview (continued)

Table 8. PCI Bus Configuration Memory Summary (Function 2)

Refer to Tables 54—75 for more details on each of these registers.

Configuration Space Offset	Register Name	Read/Write	Default Value (Reset)
00h—01h	Vendor ID	R	11C1h
02h—03h	Device ID	R	5803h
04h—05h	Command	R/W	0000h
06h—07h	Status	R/W	TEST1 = 0b: 0210h TEST1 = 1b: 0200h
08h	Revision ID*	R	10h
09h—0Bh	Class Code	R	0C0310h
0Ch	Cache Line Size	R	00h
0Dh	Latency Timer	R/W	00h
0Eh	Header Type	R	80h
0Fh	BIST	R	00h
10h—13h	BAR 0	R/W	00000000h
14h—17h	BAR 1	R	0000000h
18h—1Bh	BAR 2	R	00000000h
1Ch—1Fh	BAR 3	R	0000000h
20h—23h	BAR 4	R	0000000h
24h—27h	BAR 5	R	0000000h
28h—2Bh	CardBus CIS Pointer	R	0000000h
2Ch—2Dh	Subsystem Vendor ID	R/W [†]	11C1h
2Eh—2Fh	Subsystem ID	R/W [†]	5803h
30h—33h	Expansion ROM Base Address	R	0000000h
34h	Capabilities Pointer	R	TEST1 = 0b: 50h TEST1 = 1b: 00h
3Ch	Interrupt Line	R/W	00h
3Dh	Interrupt Pin	R	TEST0 = 0b: 01h TEST0 = 1b: 03h
3Eh	Min_Gnt	R	03h
3Fh	Max_Lat	R	56h
4Ch	Special—Subsystem Write Capability	R/W	00000000h

* The revision can be identified electronically using the standard PCI Revision ID register described in this table. The revision can also be identified by physical markings using the last letter of the USS-344 identifier code printed on the device. The USS-344 identifier code will be printed using the format USS344XY, where X will identify the package type (T) and Y will identify the revision.

Register Overview (continued)

Table 9. PCI Bus Configuration Memory Summary (Function 3)

Refer to Tables 76—97 for more details on each of these registers.

Configuration Space Offset	Register Name	Read/Write	Default Value (Reset)
00h—01h	Vendor ID	R	11C1h
02h—03h	Device ID	R	5803h
04h—05h	Command	R/W	0000h
06h—07h	Status	R/W	TEST1 = 0b: 0210h TEST1 = 1b: 0200h
08h	Revision ID*	R	10h
09h—0Bh	Class Code	R	0C0310h
0Ch	Cache Line Size	R	00h
0Dh	Latency Timer	R/W	00h
0Eh	Header Type	R	80h
0Fh	BIST	R	00h
10h—13h	BAR 0	R/W	00000000h
14h—17h	BAR 1	R	0000000h
18h—1Bh	BAR 2	R	00000000h
1Ch—1Fh	BAR 3	R	0000000h
20h—23h	BAR 4	R	0000000h
24h—27h	ו BAR 5		0000000h
28h—2Bh	—2Bh CardBus CIS Pointer		0000000h
2Ch—2Dh	Subsystem Vendor ID	R/W [†]	11C1h
2Eh—2Fh	Subsystem ID	R/W [†]	5803h
30h—33h	Expansion ROM Base Address	R	0000000h
34h	Capabilities Pointer	R	TEST1 = 0b: 50h TEST1 = 1b: 00h
3Ch	Interrupt Line	R/W	00h
3Dh	Interrupt Pin	R	TEST0 = 0b: 01h TEST0 = 1b: 04h
3Eh	Min_Gnt	R	03h
3Fh	Max_Lat	R	56h
4Ch	Special—Subsystem Write Capability	R/W	00000000h

* The revision of the USS-344 can be identified either electronically or by physical markings. The revision can be identified electronically using the standard PCI Revision ID register described in this table. The revision can also be identified by physical markings using the last letter of the USS-344 identifier code printed on the device. The USS-344 identifier code will be printed using the format USS344XY, where X will identify the package type (T) and Y will identify the revision.

PCI Registers

PCI Function 0—Single-Port USB Host Controller 0

Table 10. Vendor ID Register (00h-01h)

This register is fixed as the Agere Systems vendor ID assigned by the PCI SIG.

Bits	Field	Read/Write	Reset/Description
15:0	Vendor ID	R	Assigned 11C1h

Table 11. Device ID Register (02h-03h)

This register is fixed as the Agere Systems product USS-344.

Bits	Field	Read/Write	Reset/Description
15:0	Device ID	R	Assigned 5803h

Table 12. Command Register (04h—05h)

All read-only bits represent nonconfigurable features of the USS-344.

Bits	Field	Read/Write	Reset/Description
0	IO Space	R/W	0
1	Memory Space	R/W	0
2	Bus Master	R/W	0
3	Special Cycles	R	0
4	Memory Write and	R/W	0
	Invalidate Enable		
5	VGA Palette Snoop	R	0
6	Parity Error Response	R/W	0
7	Wait Cycle Control	R	0
8	SERRN Enable	R/W	0
9	Fast Back-to-back	R/W	0
	Enable		
15:10	Reserved	R	00000b

Table 13. Status Register (06h—07h)

All read-only bits represent nonconfigurable features of the USS-344.

Bits	Field	Read/Write	Reset/Description
3:0	Reserved	R	0000b
4	Capabilities	R	TEST1 = 0b: 1
			TEST1 = 1b: 0
5	66 MHz Capable	R	0
6	UDF Support	R	0
7	Fast Back-to-back	R	0
	Capable		
8	Data Parity Error	R/W	0
	Detected		
10:9	DEVSEL Timing	R	01
11	Signaled Target Abort	R/W	0
12	Received Target Abort	R/W	0
13	Received Master Abort	R/W	0
14	Signaled System Error	R/W	0
15	Detected Parity Error	R/W	0

Table 14. Revision ID Register (08h)

Represents the current revision of the USS-344.

Bits	Field	Read/Write	Reset/Description
7:0	Revision ID*	R	10h

* The revision of the USS-344 can be identified either electronically or by physical markings. The revision can be identified electronically using the standard PCI Revision ID register described in this table. The revision can also be identified by physical markings using the last letter of the USS-344 identifier code printed on the device. The USS-344 identifier code will be printed using the format USS344XY, where X will identify the package type (M or T) and Y will identify the revision.

Table 15. Class Code Register (09h—0Bh)

The PCI class code for all OpenHCI host controllers is defined in the OpenHCI specification.

Bits	Field	Read/Write	Reset/Description
7:0	Programming Interface	R	10h = OpenHCI Host Controller
15:8	Subclass	R	03h = Universal Serial Bus
23:16	Base Class	R	0Ch = Serial Bus Controller

Table 16. Cache Line Size Register (0Ch)

No cache line is supported by the USS-344.

Bits	Field	Read/Write	Reset/Description
7:0	Cache Line Size	R	00h

Table 17. Latency Timer Register (0Dh)

Controls the number of clock cycles the USS-344 may remain on the PCI bus after becoming bus master.

Bits	Field	Read/Write	Reset/Description
7:0	Latency Timer		Upper 5 bits are read/write. Lower 3 bits are read only.

Table 18. Header Type Register (0Eh)

The USS-344 supports PCI header type 0 only.

Bits	Field	Read/Write	Reset/Description
7:0	Header Type	R	80h = Multifunction PCI Device

Table 19. BIST Register (0Fh)

BIST is not supported by the USS-344.

Bits	Field	Read/Write	Reset/Description
7:0	BIST	R	00h

Table 20. Base Address Register 0 (10h-13h)

The Base Address register is used to specify to the PCI operating system the memory size of the USS-344 device. As recommended by the OpenHCI specification, the lower 12 bits are read only (fixed to logic 0) to indicate 4K (2¹²) memory size.

Bits	Field	Read/Write	Reset/Description
31:0	BAR 0		Lower 12 bits are read only. Upper 20 bits are read/write.

Table 21. Base Address Register 1, 2, 3, 4, 5 (14h—17h), (18h—1Bh), (1Ch—1Fh), (20h—23h), (24h—27h)

These Base Address registers are unused by the USS-344 device.

Bits	Field	Read/Write	Reset/Description
31:0	BAR 1—5	R	0000000h

Table 22. Cardbus CIS Pointer Register (28h-2Bh)

Cardbus CIS pointer not required for the USS-344.

Bits	Field	Read/Write	Reset/Description
31:0	CardBus CIS Pointer	R	0000000h

Table 23. Subsystem Vendor ID Register (2Ch-2Dh)

The subsystem vendor ID is R/W for compliance with *Microsoft* PC98 specifications. On reset, this register is read only. System BIOS may write a 1 to Special—Subsystem Write Capability register (4Ch) bit 0 to enable write capability of this register. After configuring this register, the system BIOS must write a 0 to Special—Subsystem Write Capability register (4Ch) bit 0 to disable write capability of this register.

Bits	Field	Read/Write	Reset/Description
15:0	Subsystem Vendor ID	R/W	11C1h

Table 24. Subsystem ID Register (2Eh—2Fh)

The subsystem vendor ID is R/W for compliance with *Microsoft* PC98 specifications. On reset, this register is read only. System BIOS may write a 1 to Special—Subsystem Write Capability register (4Ch) bit 0 to enable write capability of this register. After configuring this register, the system BIOS must write a 0 to Special—Subsystem Write Capability register (4Ch) bit 0 to disable write capability of this register.

Ī	Bits	Field	Read/Write	Reset/Description
	15:0	Subsystem ID	R/W	5803h

Table 25. Expansion ROM Base Address Register (30h—33h)

Expansion ROM not supported by the USS-344.

Bits	Field	Read/Write	Reset/Description
31:0	Expansion ROM Base	R	0000000h
	Address		

Table 26. Capabilities Pointer Register (34h)

Bits	Field	Read/Write	Reset/Description
7:0	Cap_Ptr	R	TEST1 = 0b: 50h
			TEST1 = 1b: 00h

Table 27. Interrupt Line Register (3Ch)

Bits	Field	Read/Write	Reset/Description
7:0	Interrupt Line	R/W	00h

Table 28. Interrupt Pin Register (3Dh)

Interrupt A used as the PCI interrupt for this core.

Bits	Field	Read/Write	Reset/Description
7:0	Interrupt Pin	R	01h

Table 29. Min_Gnt Register (3Eh)

The USS-344 can support a four DWORD master burst read or write which requires less than 500 ns.

Bits	Field	Read/Write	Reset/Description
7:0	Min_Gnt	R	03h

Table 30. Max_Lat Register (3Fh)

The USS-344 requires service at a minimum interval of 21.3 μ s.

Bits	Field	Read/Write	Reset/Description
7:0	Max_Lat	R	56h

Table 31. Special—Subsystem Write Capability (4Ch)

This is a special register implemented for compliance with *Microsoft* PC98 Specification, Chapter 9, Item 11. Bit 0 is read/write to allow the system BIOS to enable write capability of the Subsystem Vendor ID and Subsystem ID registers (refer to Tables 23 and 24).

Bits	Field	Read/Write	Reset/Description
31:1	Reserved	R	0000000h
0	Subsystem Write	R/W	0b 0 = Subsystem write disabled 1 = Subsystem write enabled

PCI Function 1—Single-Port USB Host Controller 1

Table 32. Vendor ID Register (00h-01h)

This register is fixed as the Agere Systems vendor ID assigned by the PCI SIG.

Bits	Field	Read/Write	Reset/Description
15:0	Vendor ID	R	Assigned 11C1h

Table 33. Device ID Register (02h-03h)

This register is fixed as the Agere Systems product USS-344.

Bits	Field	Read/Write	Reset/Description
15:0	Device ID	R	Assigned 5803h

Table 34. Command Register (04h-05h)

All read-only bits represent nonconfigurable features of the USS-344.

Bits	Field	Read/Write	Reset/Description
0	IO Space	R/W	0
1	Memory Space	R/W	0
2	Bus Master	R/W	0
3	Special Cycles	R	0
4	Memory Write and Invalidate Enable	R/W	0
5	VGA Palette Snoop	R	0
6	Parity Error Response	R/W	0
7	Wait Cycle Control	R	0
8	SERRN Enable	R/W	0
9	Fast Back-to-back Enable	R/W	0
15:10	Reserved	R	00000b

Table 35. Status Register (06h-07h)

All read-only bits represent nonconfigurable features of the USS-344.

Bits	Field	Read/Write	Reset/Description
3:0	Reserved	R	0000b
4	Capabilities	R	TEST1 = 0b: 1 TEST1 = 1b: 0
5	66 MHz Capable	R	0
6	UDF Support	R	0
7	Fast Back-to-back Capable	R	0
8	Data Parity Error Detected	R/W	0
10:9	DEVSEL Timing	R	01
11	Signaled Target Abort	R/W	0
12	Received Target Abort	R/W	0
13	Received Master Abort	R/W	0
14	Signaled System Error	R/W	0
15	Detected Parity Error	R/W	0

Table 36. Revision ID Register (08h)

Represents the current revision of the USS-344.

Bits	Field	Read/Write	Reset/Description
7:0	Revision ID*	R	10h

* The revision of the USS-344 can be identified either electronically or by physical markings. The revision can be identified electronically using the standard PCI Revision ID register described in this table. The revision can also be identified by physical markings using the last letter of the USS-344 identifier code printed on the device. The USS-344 identifier code will be printed using the format USS344XY, where X will identify the package type (M or T) and Y will identify the revision.

Table 37. Class Code Register (09h—0Bh)

The PCI class code for all OpenHCI host controllers is defined in the OpenHCI specification.

Bits	Field	Read/Write	Reset/Description
7:0	Programming Interface	R	10h = OpenHCI Host Controller
15:8	Subclass	R	03h = Universal Serial Bus
23:16	Base Class	R	0Ch = Serial Bus Controller

Table 38. Cache Line Size Register (0Ch)

No cache line is supported by the USS-344.

Bits	Field	Read/Write	Reset/Description
7:0	Cache Line Size	R	00h

Table 39. Latency Timer Register (0Dh)

Controls the number of clock cycles the USS-344 may remain on the PCI bus after becoming bus master.

Bits	Field	Read/Write	Reset/Description
7:0	Latency Timer		Upper 5 bits are read/write. Lower 3 bits are read only.

Table 40. Header Type Register (0Eh)

The USS-344 supports PCI header type 0 only.

Bits	Field	Read/Write	Reset/Description
7:0	Header Type	R	80h = Multifunction PCI Device

Table 41. BIST Register (0Fh)

BIST is not supported by the USS-344.

Bits	Field	Read/Write	Reset/Description
7:0	BIST	R	00h

Table 42. Base Address Register 0 (10h-13h)

The Base Address register is used to specify to the PCI operating system the memory size of the USS-344 device. As recommended by the OpenHCI specification, the lower 12 bits are read only (fixed to logic 0) to indicate 4K (2¹²) memory size.

Bits	Field	Read/Write	Reset/Description
31:0	BAR 0	R/W	Lower 12 bits are read only. Upper 20 bits are read/write.

Table 43. Base Address Register 1, 2, 3, 4, 5 (14h—17h), (18h—1Bh), (1Ch—1Fh), (20h—23h), (24h—27h)

These Base Address registers are unused by the USS-344 device.

Bits	Field	Read/Write	Reset/Description
31:0	BAR 1—5	R	0000000h

Table 44. Cardbus CIS Pointer Register (28h—2Bh)

Cardbus CIS pointer not required for the USS-344.

Bits	Field	Read/Write	Reset/Description
31:0	CardBus CIS Pointer	R	0000000h

Table 45. Subsystem Vendor ID Register (2Ch-2Dh)

The subsystem vendor ID is R/W for compliance with *Microsoft* PC98 specifications. On reset, this register is read only. System BIOS may write a 1 to Special—Subsystem Write Capability register (4Ch) bit 0 to enable write capability of this register. After configuring this register, the system BIOS must write a 0 to Special—Subsystem Write Capability register (4Ch) bit 0 to disable write capability of this register.

Bits	Field	Read/Write	Reset/Description
15:0	Subsystem Vendor ID	R/W	11C1h

Table 46. Subsystem ID Register (2Eh—2Fh)

The subsystem vendor ID is R/W for compliance with *Microsoft* PC98 specifications. On reset, this register is read only. System BIOS may write a 1 to Special—Subsystem Write Capability register (4Ch) bit 0 to enable write capability of this register. After configuring this register, the system BIOS must write a 0 to Special—Subsystem Write Capability register (4Ch) bit 0 to disable write capability of this register.

Bits	Field	Read/Write	Reset/Description
15:0	Subsystem ID	R/W	5803h

Table 47. Expansion ROM Base Address Register (30h—33h)

Expansion ROM not supported by the USS-344.

Bits	Field	Read/Write	Reset/Description
31:0	Expansion ROM Base	R	0000000h
	Address		

Table 48. Capabilities Pointer Register (34h)

Bits	Field	Read/Write	Reset/Description
7:0	Cap_Ptr	R	TEST1 = 0b: 50h
			TEST1 = 1b: 00h

Table 49. Interrupt Line Register (3Ch)

Bits	Field	Read/Write	Reset/Description
7:0	Interrupt Line	R/W	00h

Table 50. Interrupt Pin Register (3Dh)

If TEST0 = 0b, interrupt A is used as the PCI interrupt for this core. If TEST0 = 1b, interrupt B is used as the PCI interrupt for this core.

Bits	Field	Read/Write	Reset/Description
7:0	Interrupt Pin	R	TEST0 = 0b: 01h TEST0 = 1b: 02h

Table 51. Min_Gnt Register (3Eh)

The USS-344 can support a four DWORD master burst read or write which requires less than 500 ns.

Bits	Field	Read/Write	Reset/Description
7:0	Min_Gnt	R	03h

Table 52. Max_Lat Register (3Fh)

The USS-344 requires service at a minimum interval of 21.3 μ s.

Bits	Field	Read/Write	Reset/Description
7:0	Max_Lat	R	56h

Table 53. Special—Subsystem Write Capability (4Ch)

This is a special register implemented for compliance with *Microsoft* PC98 Specification, Chapter 9, Item 11. Bit 0 is read/write to allow the system BIOS to enable write capability of the Subsystem Vendor ID and Subsystem ID registers (refer to Tables 23 and 24).

Bits	Field	Read/Write	Reset/Description
31:1	Reserved	R	0000000h
0	Subsystem Write	R/W	0b 0 = Subsystem write disabled 1 = Subsystem write enabled

PCI Function 2—Single-Port USB Host Controller 2

Table 54. Vendor ID Register (00h-01h)

This register is fixed as the Agere Systems vendor ID assigned by the PCI SIG.

Bits	Field	Read/Write	Reset/Description
15:0	Vendor ID	R	Assigned 11C1h

Table 55. Device ID Register (02h-03h)

This register is fixed as the Agere Systems product USS-344.

Bits	Field	Read/Write	Reset/Description
15:0	Device ID	R	Assigned 5803h

Table 56. Command Register (04h-05h)

All read-only bits represent nonconfigurable features of the USS-344.

Bits	Field	Read/Write	Reset/Description
0	IO Space	R/W	0
1	Memory Space	R/W	0
2	Bus Master	R/W	0
3	Special Cycles	R	0
4	Memory Write and Invalidate Enable	R/W	0
5	VGA Palette Snoop	R	0
6	Parity Error Response	R/W	0
7	Wait Cycle Control	R	0
8	SERRN Enable	R/W	0
9	Fast Back-to-back Enable	R/W	0
15:10	Reserved	R	00000b

Table 57. Status Register (06h—07h)

All read-only bits represent nonconfigurable features of the USS-344.

Bits	Field	Read/Write	Reset/Description
3:0	Reserved	R	0000b
4	Capabilities	R	TEST1 = 0b: 1 TEST1 = 1b: 0
5	66 MHz Capable	R	0
6	UDF Support	R	0
7	Fast Back-to-back Capable	R	0
8	Data Parity Error Detected	R/W	0
10:9	DEVSEL Timing	R	01
11	Signaled Target Abort	R/W	0
12	Received Target Abort	R/W	0
13	Received Master Abort	R/W	0
14	Signaled System Error	R/W	0
15	Detected Parity Error	R/W	0

Table 58. Revision ID Register (08h)

Represents the current revision of the USS-344.

Bits	Field	Read/Write	Reset/Description
7:0	Revision ID*	R	10h

* The revision of the USS-344 can be identified either electronically or by physical markings. The revision can be identified electronically using the standard PCI Revision ID register described in this table. The revision can also be identified by physical markings using the last letter of the USS-344 identifier code printed on the device. The USS-344 identifier code will be printed using the format USS344XY, where X will identify the package type (M or T) and Y will identify the revision.

Table 59. Class Code Register (09h-0Bh)

The PCI class code for all OpenHCI host controllers is defined in the OpenHCI specification.

Bits	Field	Read/Write	Reset/Description
7:0	Programming Interface	R	10h = OpenHCI Host Controller
15:8	Subclass	R	03h = Universal Serial Bus
23:16	Base Class	R	0Ch = Serial Bus Controller

Table 60. Cache Line Size Register (0Ch)

No cache line is supported by the USS-344.

Bits	Field	Read/Write	Reset/Description
7:0	Cache Line Size	R	00h

Table 61. Latency Timer Register (0Dh)

Controls the number of clock cycles the USS-344 may remain on the PCI bus after becoming bus master.

Bits	Field	Read/Write	Reset/Description
7:0	Latency Timer		Upper 5 bits are read/write. Lower 3 bits are read only.

Table 62. Header Type Register (0Eh)

The USS-344 supports PCI header type 0 only.

Bits	Field	Read/Write	Reset/Description
7:0	Header Type	R	80h = Multifunction PCI Device

Table 63. BIST Register (0Fh)

BIST is not supported by the USS-344.

Bits	Field	Read/Write	Reset/Description
7:0	BIST	R	00h

Table 64. Base Address Register 0 (10h-13h)

The Base Address register is used to specify to the PCI operating system the memory size of the USS-344 device. As recommended by the OpenHCI specification, the lower 12 bits are read only (fixed to logic 0) to indicate 4K (2¹²) memory size.

Bits	Field	Read/Write	Reset/Description
31:0	BAR 0	R/W	Lower 12 bits are read only. Upper 20 bits are read/write.

Table 65. Base Address Register 1, 2, 3, 4, 5 (14h—17h), (18h—1Bh), (1Ch—1Fh), (20h—23h), (24h—27h)

These Base Address registers are unused by the USS-344 device.

Bits	Field	Read/Write	Reset/Description
31:0	BAR 1—5	R	0000000h

Table 66. Cardbus CIS Pointer Register (28h—2Bh)

Cardbus CIS pointer not required for the USS-344.

Bits	Field	Read/Write	Reset/Description
31:0	CardBus CIS Pointer	R	0000000h

Table 67. Subsystem Vendor ID Register (2Ch-2Dh)

The subsystem vendor ID is R/W for compliance with *Microsoft* PC98 specifications. On reset, this register is read only. System BIOS may write a 1 to Special—Subsystem Write Capability register (4Ch) bit 0 to enable write capability of this register. After configuring this register, the system BIOS must write a 0 to Special—Subsystem Write Capability register (4Ch) bit 0 to disable write capability of this register.

Bits	Field	Read/Write	Reset/Description
15:0	Subsystem Vendor ID	R/W	11C1h

Table 68. Subsystem ID Register (2Eh—2Fh)

The subsystem vendor ID is R/W for compliance with *Microsoft* PC98 specifications. On reset, this register is read only. System BIOS may write a 1 to Special—Subsystem Write Capability register (4Ch) bit 0 to enable write capability of this register. After configuring this register, the system BIOS must write a 0 to Special—Subsystem Write Capability register (4Ch) bit 0 to disable write capability of this register.

Bits	Field	Read/Write	Reset/Description
15:0	Subsystem ID	R/W	5803h

Table 69. Expansion ROM Base Address Register (30h—33h)

Expansion ROM not supported by the USS-344.

Bits	Field	Read/Write	Reset/Description
31:0	Expansion ROM Base Address	R	0000000h

Table 70. Capabilities Pointer Register (34h)

Bits	Field	Read/Write	Reset/Description
7:0	Cap_Ptr	R	TEST1 = 0b: 50h TEST1 = 1b: 00h

Table 71. Interrupt Line Register (3Ch)

Bits	Field	Read/Write	Reset/Description
7:0	Interrupt Line	R/W	00h

Table 72. Interrupt Pin Register (3Dh)

If TEST0 = 0b, interrupt A is used as the PCI interrupt for this core. If TEST0 = 1b, interrupt C is used as the PCI interrupt for this core.

Bits	Field	Read/Write	Reset/Description
7:0	Interrupt Pin	R	TEST0 = 0b: 01h
			TEST0 = 1b: 03h

Table 73. Min_Gnt Register (3Eh)

The USS-344 can support a four DWORD master burst read or write which requires less than 500 ns.

Bits	Field	Read/Write	Reset/Description
7:0	Min_Gnt	R	03h

Table 74. Max_Lat Register (3Fh)

The USS-344 requires service at a minimum interval of 21.3 μ s.

Bits	Field	Read/Write	Reset/Description
7:0	Max_Lat	R	56h

Table 75. Special—Subsystem Write Capability (4Ch)

This is a special register implemented for compliance with *Microsoft* PC98 Specification, Chapter 9, Item 11. Bit 0 is read/write to allow the system BIOS to enable write capability of the Subsystem Vendor ID and Subsystem ID registers (refer to Tables 23 and 24).

Bits	Field	Read/Write	Reset/Description
31:1	Reserved	R	0000000h
0	Subsystem Write	R/W	0b 0 = Subsystem write disabled 1 = Subsystem write enabled

PCI Function 3—Single-Port USB Host Controller 3

Table 76. Vendor ID Register (00h-01h)

This register is fixed as the Agere Systems vendor ID assigned by the PCI SIG.

	Bits	Field	Read/Write	Reset/Description
1	5:0	Vendor ID	R	Assigned 11C1h

Table 77. Device ID Register (02h-03h)

This register is fixed as the Agere Systems product USS-344.

Bits	Field	Read/Write	Reset/Description
15:0	Device ID	R	Assigned 5803h

Table 78. Command Register (04h-05h)

All read-only bits represent nonconfigurable features of the USS-344.

Bits	Field	Read/Write	Reset/Description
0	IO Space	R/W	0
1	Memory Space	R/W	0
2	Bus Master	R/W	0
3	Special Cycles	R	0
4	Memory Write and	R/W	0
	Invalidate Enable		
5	VGA Palette Snoop	R	0
6	Parity Error Response	R/W	0
7	Wait Cycle Control	R	0
8	SERRN Enable	R/W	0
9	Fast Back-to-back	R/W	0
	Enable		
15:10	Reserved	R	00000b

Table 79. Status Register (06h—07h)

All read-only bits represent nonconfigurable features of the USS-344.

Bits	Field	Read/Write	Reset/Description
3:0	Reserved	R	0000b
4	Capabilities	R	TEST1 = 0b: 1
			TEST1 = 1b: 0
5	66 MHz Capable	R	0
6	UDF Support	R	0
7	Fast Back-to-back	R	0
	Capable		
8	Data Parity Error	R/W	0
	Detected		
10:9	DEVSEL Timing	R	01
11	Signaled Target Abort	R/W	0
12	Received Target Abort	R/W	0
13	Received Master Abort	R/W	0
14	Signaled System Error	R/W	0
15	Detected Parity Error	R/W	0

Table 80. Revision ID Register (08h)

Represents the current revision of the USS-344.

Bits	Field	Read/Write	Reset/Description
7:0	Revision ID*	R	10h

* The revision of the USS-344 can be identified either electronically or by physical markings. The revision can be identified electronically using the standard PCI Revision ID register described in this table. The revision can also be identified by physical markings using the last letter of the USS-344 identifier code printed on the device. The USS-344 identifier code will be printed using the format USS344XY, where X will identify the package type (M or T) and Y will identify the revision.

Table 81. Class Code Register (09h—0Bh)

The PCI class code for all OpenHCI host controllers is defined in the OpenHCI specification.

Bits	Field	Read/Write	Reset/Description
7:0	Programming Interface	R	10h = OpenHCI Host Controller
15:8	Subclass	R	03h = Universal Serial Bus
23:16	Base Class	R	0Ch = Serial Bus Controller

Table 82. Cache Line Size Register (0Ch)

No cache line is supported by the USS-344.

Bits	Field	Read/Write	Reset/Description
7:0	Cache Line Size	R	00h

Table 83. Latency Timer Register (0Dh)

Controls the number of clock cycles the USS-344 may remain on the PCI bus after becoming bus master.

Bits	Field	Read/Write	Reset/Description
7:0	Latency Timer		Upper 5 bits are read/write. Lower 3 bits are read only.

Table 84. Header Type Register (0Eh)

The USS-344 supports PCI header type 0 only.

Bits	Field	Read/Write	Reset/Description
7:0	Header Type	R	80h = Multifunction PCI Device

Table 85. BIST Register (0Fh)

BIST is not supported by the USS-344.

Bits	Field	Read/Write	Reset/Description
7:0	BIST	R	00h

Table 86. Base Address Register 0 (10h-13h)

The Base Address register is used to specify to the PCI operating system the memory size of the USS-344 device. As recommended by the OpenHCI specification, the lower 12 bits are read only (fixed to logic 0) to indicate 4K (2^{12}) memory size.

Bits	Field	Read/Write	Reset/Description
31:0	BAR 0	R/W	Lower 12 bits are read only. Upper 20 bits are read/write.

Table 87. Base Address Register 1, 2, 3, 4, 5 (14h—17h), (18h—1Bh), (1Ch—1Fh), (20h—23h), (24h—27h)

These base address registers are unused by the USS-344 device.

Bits	Field	Read/Write	Reset/Description
31:0	BAR 1—5	R	0000000h

Table 88. Cardbus CIS Pointer Register (28h—2Bh)

Cardbus CIS pointer not required for the USS-344.

Bits	Field	Read/Write	Reset/Description
31:0	CardBus CIS Pointer	R	0000000h

Table 89. Subsystem Vendor ID Register (2Ch-2Dh)

The subsystem vendor ID is R/W for compliance with *Microsoft* PC98 specifications. On reset, this register is read only. System BIOS may write a 1 to Special—Subsystem Write Capability register (4Ch) bit 0 to enable write capability of this register. After configuring this register, the system BIOS must write a 0 to Special—Subsystem Write Capability register (4Ch) bit 0 to disable write capability of this register.

Bits	Field	Read/Write	Reset/Description
15:0	Subsystem Vendor ID	R/W	11C1h

Table 90. Subsystem ID Register (2Eh—2Fh)

The subsystem vendor ID is R/W for compliance with *Microsoft* PC98 specifications. On reset, this register is read only. System BIOS may write a 1 to Special—Subsystem Write Capability register (4Ch) bit 0 to enable write capability of this register. After configuring this register, the system BIOS must write a 0 to Special—Subsystem Write Capability register (4Ch) bit 0 to disable write capability of this register.

Bits	Field	Read/Write	Reset/Description
15:0	Subsystem ID	R/W	5803h

Table 91. Expansion ROM Base Address Register (30h—33h)

Expansion ROM not supported by the USS-344.

Bits	Field	Read/Write	Reset/Description
31:0	Expansion ROM Base Address	R	0000000h

Table 92. Capabilities Pointer Register (34h)

Bits	Field	Read/Write	Reset/Description
7:0	Cap_Ptr	R	TEST1 = 0b: 50h TEST1 = 1b: 00h

Table 93. Interrupt Line Register (3Ch)

Bits	Field	Read/Write	Reset/Description
7:0	Interrupt Line	R/W	00h

Table 94. Interrupt Pin Register (3Dh)

If TEST0 = 0b, interrupt A is used as the PCI interrupt for this core. If TEST0 = 1b, interrupt D is used as the PCI interrupt for this core.

Bits	Field	Read/Write	Reset/Description
7:0	Interrupt Pin	R	TEST0 = 0b: 01h
			TEST0 = 1b: 04h

Table 95. Min_Gnt Register (3Eh)

The USS-344 can support a four DWORD master burst read or write which requires less than 500 ns.

Bits	Field	Read/Write	Reset/Description
7:0	Min_Gnt	R	03h

Table 96. Max_Lat Register (3Fh)

The USS-344 requires service at a minimum interval of 21.3 μ s.

Bits	Field	Read/Write	Reset/Description
7:0	Max_Lat	R	56h

Table 97. Special—Subsystem Write Capability (4Ch)

This is a special register implemented for compliance with *Microsoft* PC98 Specification, Chapter 9, Item 11. Bit 0 is read/write to allow the system BIOS to enable write capability of the Subsystem Vendor ID and Subsystem ID registers (refer to Tables 23 and 24).

Bits	Field	Read/Write	Reset/Description
31:1	Reserved	R	0000000h
0	Subsystem Write	R/W	0b 0 = Subsystem write disabled 1 = Subsystem write enabled

USB Registers

Table 98. USB Operational Registers Summary

Each PCI Function has one set of USB operational registers available through the memory mapped Base Address register 0. Each set of USB operational registers represents one single-port USB host controller. Refer to Tables 99—120 for more details on each of these registers.

Offset	Register Name
00h	HcRevision
04h	HcControl
08h	HcCommandStatus
0Ch	HcInterruptStatus
10h	HcInterruptEnable
14h	HcInterruptDisable
18h	HcHCCA
1Ch	HcPeriodCurrentED
20h	HcControlHeadED
24h	HcControlCurrentED
28h	HcBulkHeadED
2Ch	HcBulkCurrentED
30h	HcDoneHead
34h	HcFmInterval
38h	HcFmRemaining
3Ch	HcFmNumber
40h	HcPeriodicStart
44h	HcLSThreshold
48h	HcRhDescriptorA
4Ch	HcRhDescriptorB
50h	HcRhStatus
54h	HcRhPortStatus1
100h	HceControl
104h	HceInput
108h	HceOutput
10Ch	HceStatus

Table 99. HcRevision Register (00h)

Bits	Field	Reset	HCD (Host Controller Driver)	HC (Host Controller)
7:0	Revision (REV)	10h	R	R
8	Legacy (L)	1b	R	R

Table 100. HcControl Register (04h)

Bits	Field	Reset	HCD (Host Controller Driver)	HC (Host Controller)
1:0	Control Bulk Service Ratio (CBSR)	00b	R/W	R
2	Periodic List Enable (PLE)	0b	R/W	R
3	Isochronous Enable (IE)	0b	R/W	R
4	Control List Enable (CLE)	0b	R/W	R
5	Bulk List Enable (BLE)	0b	R/W	R
7:6	Host Controller Functional State (HCFS) 00b: UsbReset 01b: UsbResume 10b: UsbOperational 11b: UsbSuspend	00b	R/W	R/W
8	Interrupt Routing (IR)	0b	R/W	R
9	Remote Wakeup Connected (WC)	0b	R/W	R/W
10	Remote Wakeup Enable (RWE)	0b	R/W	R

Table 101. HcCommandStatus Register (08h)

Bits	Field	Reset	HCD	HC
0	Host Controller Reset (HCR)	0b	R/W	R/W
1	Control List Filled (CLF)	0b	R/W	R/W
2	Bulk List Filled (BLF)	0b	R/W	R/W
3	Ownership Change Request (OCR)	0b	R/W	R/W
17:16	Scheduling Overrun Count (SOC)	0b	R	R/W

Table 102. HcInterruptStatus Register (0Ch)

Bits	Field	Reset	HCD	HC
0	Scheduling Overrun (SO)	0b	R/W	R/W
1	Writeback Done Head (WDH)	0b	R/W	R/W
2	Start of Frame (SF)	0b	R/W	R/W
3	Resume Detected (RD)	0b	R/W	R/W
4	Unrecoverable Error (UE)	0b	R/W	R/W
5	Frame Number Overflow (FNO)	0b	R/W	R/W
6	Root Hub Status Change (RHSC)	0b	R/W	R/W
30	Ownership Change (OC)	0b	R/W	R/W

Table 103. HcInterruptEnable Register (10h)

Bits	Field	Reset	HCD (Host Controller Driver)	HC (Host Controller)
0	Scheduling Overrun (SO)	0b	R/W	R
	0—Ignore 1—Enable interrupt			
1	Writeback Done Head (WDH)	0b	R/W	R
	0—Ignore 1—Enable interrupt			
2	Start of Frame (SF)	0b	R/W	R
	0—Ignore 1—Enable interrupt			
3	Resume Detected (RD)	0b	R/W	R
	0—Ignore 1—Enable interrupt			
4	Unrecoverable Error (UE)	0b	R/W	R
	0—Ignore 1—Enable interrupt			
5	Frame Number Overflow (FNO)	0b	R/W	R
	0—Ignore 1—Enable interrupt			
6	Root Hub Status Change (RHSC)	0b	R/W	R
	0—Ignore 1—Enable interrupt			
30	Ownership Change (OC)	0b	R/W	R
	0—Ignore 1—Enable interrupt			
31	Master Interrupt Enable (MIE)	0b	R/W	R
	0—Ignored by HC 1—Enables interrupt generation due to events specified in the other bits of this register			

Table 104. HcInterruptDisable Register (14h)

Bits	Field	Reset	HCD (Host Controller Driver)	HC (Host Controller)
0	Scheduling Overrun (SO)	0b	R/W	R
	0—Ignore 1—Disable interrupt generation			
1	Writeback Done Head (WDH)	0b	R/W	R
	0—Ignore 1—Disable interrupt			
2	Start of Frame (SF)	0b	R/W	R
	0—Ignore 1—Disable interrupt			
3	Resume Detected (RD)	0b	R/W	R
	0—Ignore 1—Disable interrupt			
4	Unrecoverable Error (UE)	0b	R/W	R
	0—Ignore 1—Disable interrupt			
5	Frame Number Overflow (FNO)	0b	R/W	R
	0—Ignore 1—Disable interrupt			
6	Root Hub Status Change (RHSC)	0b	R/W	R
	0—Ignore 1—Disable interrupt			
30	Ownership Change (OC)	0b	R/W	R
	0—Ignore 1—Disable interrupt			
31	Master Interrupt Enable (MIE)	0b	R/W	R
	0—Ignored by HC 1—Disables interrupt generation due to events specified in the other bits of this register			

Table 105. HcHCCA Register (18h)

Bits	Field	Reset	HCD (Host Controller Driver)	HC (Host Controller)
31:8	Host Controller Communications Area (HCCA) Base Address	0h	R/W	R
	Bits 7:0 will always return a 0.			

Table 106. HcPeriodCurrentED Register (1Ch)

B	lits	Field	Reset	HCD	HC
31	1:4	Period Current ED (PCED) Base Address	0h	R/W	R
		Bits 3:0 will always return a 0.			

Table 107. HcControlHeadED Register (20h)

Bits	Field	Reset	HCD	НС
31:4	Control Head ED (CHED) Base Address	0h	R/W	R
	Bits 3:0 will always return a 0.			

Table 108. HcControlCurrentED Register (24h)

Bits	Field	Reset	HCD	HC
31:4	Control Current ED (CCED) Base Address	0h	R/W	R/W
	Bits 3:0 will always return a 0.			

Table 109. HcBulkHeadED Register (28h)

Bits	Field	Reset	HCD	HC
31:4	Bulk Head ED (BHED) Base Address	0h	R/W	R
	Bits 3:0 will always return a 0.			

Table 110. HcBulkCurrentED Register (2Ch)

Bits	Field	Reset	HCD	НС
31:4	Bulk Current ED (BCED) Base Address	0h	R/W	R/W
	Bits 3:0 will always return a 0.			

Table 111. HcDoneHead Register (30h)

Bits	Field	Reset	HCD	HC
31:4	Done Head ED (DH) Base Address	0h	R	R/W
	Bits 3:0 will always return a 0.			

Table 112. HcFmInterval Register (34h)

Bits	Field	Reset	HCD (Host Controller Driver)	HC (Host Controller)
13:0	Frame Interval (FI)	2EDFh	R/W	R
30:16	FS Largest Data Packet (FSMPS)	0h	R/W	R
31	Frame Interval Toggle (FIT)	0b	R/W	R

Table 113. HcFmRemaining Register (38h)

Bits	Field	Reset	HCD	HC
13:0	Frame Remaining (FR)	0h	R	R/W
31	Frame Remaining Toggle (FRT)	0b	R	R/W

Table 114. HcFmNumber Register (3Ch)

Bits	Field	Reset	HCD	НС
15:0	Frame Number (FN)	0h	R	R/W

Table 115. HcPeriodicStart Register (40h)

Bits	Field	Reset	HCD	НС
13:0	Periodic Start (PS)	0h	R/W	R

Table 116. HcLSThreshold (44h)

Bits	Field	Reset	HCD	НС
11:0	LS Threshold	628h	R/W	R

Table 117. HcRhDescriptorA Register (48h)

Bits	Field	Reset	HCD	НС
7:0	Number Downstream Ports (NDP)	01h	R	R
8	Power Switching Mode (PSM)	1b	R/W	R
9	No Power Switching (NPS)	Ob	R/W	R
10	Device Type (DT)	0b	R	R
11	Overcurrent Protection Mode (OCPM)	1b	R/W	R
12	No Overcurrent Protection (NOCP)	Ob	R/W	R
24:31	Power On to Power Good Time (POTPGT)	10h	R/W	R

Table 118. HcRhDescriptorB Register (4Ch)

Bits	Field	Reset	HCD (Host Controller Driver)	HC (Host Controller)
15:0	Device Removable (DR)	0000h	R/W	R
17:16	Port Power Control Mask (PPCM)	0002h	R/W	R

Table 119. HcRhStatus Register (50h)

Bits	Field	Reset	HCD	НС
0	Local Power Status (LPS)	0b	R/W	R
1	Overcurrent Indicator (OCI)	0b	R	R/W
15	Device Remote Wakeup Enable (DRWE)	0b	R/W	R
16	Local Power Status Change (LPSC)	0b	R/W	R
17	Overcurrent Indicator Change (OCIC)	0b	R/W	R/W
31	Clear Remote Wakeup Enable (CRWE)	0b	W	R

Table 120. HcRhPortStatus1 Register (54h)

Bits	Field	Reset	HCD	НС
0	Current Connect Status (CCS)	0b	R/W	R/W
1	Port Enable Status (PES)	0b	R/W	R/W
2	Port Suspend Status (PSS)	0b	R/W	R/W
3	Port Overcurrent Indicator (POCI)	0b	R/W	R/W
4	4 Port Reset Status (PRS)		R/W	R/W
8	Port Power Status (PPS)	0b	R/W	R/W
9	Low-speed Device Attached (LSDA)	0b	R/W	R/W
16	Connect Status Change (CSC)	0b	R/W	R/W
17	Port Enable Status Change (PESC)	0b	R/W	R/W
18	Port Suspend Status Change (PSSC)	0b	R/W	R/W
19	Port Overcurrent Indicator Change (OCIC)	0b	R/W	R/W
20	Port Reset Status Change (PRSC)	0b	R/W	R/W

Legacy Support Registers

The legacy support function and all registers described in this section are available on all four embedded USB host controllers. Four operational registers are used to provide the legacy support. Each of these registers is located on a 32-bit boundary. The offset of these registers is relative to the base address of the respective host controller core operational registers with HceControl located at offset 100h.

Offset	Register	Description
100h	HceControl	Used to enable and control the emulation hardware and report various status information.
104h	HceInput	Emulation side of the Legacy Input Buffer register.
108h	HceOutput	Emulation side of the Legacy Output Buffer register where keyboard and mouse data is to be written by software.
10Ch	HceStatus	Emulation side of the Legacy Status register.

Table 121. Legacy Support Registers

Three of the operational registers (HceStatus, HceInput, HceOutput) are accessible at I/O address 60h and 64h when emulation is enabled. Reads and writes to the registers using I/O addresses have side effects as outlined in the Table 122.

Table 122. Emulated Registers

I/O Address	Cycle Type	Register Contents Accessed/Modified	Side Effects
60h	IN	HceOutput	IN from port 60h will set OutputFull in HceStatus to 0.
60h	OUT	HceInput	OUT to port 60h will set InputFull to 1 and CmdData to 0 in HceStatus.
64h	IN	HceStatus	IN from port 64h returns current value of HceStatus with no other side effect.
64h	OUT	HceInput	OUT to port 64h will set InputFull to 0 and CmdData in HceStatus to 1.

HceInput Register

Table 123. Hcelnput Register (104h)

Bit	Field	R/W	Description
7:0	InputData	R/W	This register holds data that is written to I/O ports 60h and 64h.
31:8	Reserved	_	—

I/O data that is written to ports 60h and 64h is captured in this register when emulation is enabled. This register may be read or written directly by accessing it with its memory address in the host controller's operational register space. When accessed directly with a memory cycle, reads and writes of this register have no side effects.

Legacy Support Registers (continued)

HceOutput Register

Table 124. HceOutput Register (108h)

Bit	Field	R/W	Description
7:0	OutputData	R/W	This register hosts data that is returned when an I/O read of port 60h is per- formed by application software.
31:8	Reserved		_

The data placed in this register by the emulation software is returned when I/O port 60h is read and emulation is enabled. On a read of this location, the OutputFull bit in HceStatus is set to 0.

HceStatus Register

Table 125. HceStatus Register (10Ch)

Bit	Field	R/W	Description
0	OutputFull	R/W	The HC sets this bit to 0 on a read of I/O port 60h. If IRQEn is set and Aux- OutputFull is set to 0, then an IRQ1 is generated as long as this bit is set to 1. If IRQEn is set and AuxOutputFull is set to 1, then an IRQ12 is generated as long as this bit is set to 1. While this bit is 0 and CharacterPending in Hce- Control is set to 1, an emulation interrupt condition exists.
1	InputFull	R/W	Except for the case of a Gate A20 sequence, this bit is set to 1 on an I/O write to address 60h or 64h. While this bit is set to 1 and emulation is enabled, an emulation interrupt condition exists.
2	Flag	R/W	Nominally used as a system flag by software to indicate a warm or cold boot.
3	CmdData	R/W	The HC sets this bit to 0 on an I/O write to port 60h and to 1 on an I/O write to port 64h.
4	Inhibit Switch	R/W	This bit reflects the state of the keyboard inhibit switch and is set if the keyboard is not inhibited.
5	AuxOutputFull	R/W	IRQ12 is asserted whenever this bit is set to 1 and OutputFull is set to 1 and the IRQEn bit is set.
6	Time-out	R/W	Used to indicate a time-out.
7	Parity	R/W	Indicates parity error on keyboard/mouse data.
31:8	Reserved		

The contents of the HceStatus register are returned on an I/O Read of port 64h when emulation is enabled. Reads and writes of port 60h and writes to port 64h can cause changes in this register. Emulation software can directly access this register through its memory address in the host controller's operational register space. Accessing this register through its memory address produces no side effects.

Legacy Support Registers (continued)

HceControl Register

Table 126. HceControl Register (100h)

Bit	Field	Reset	R/W	Description
0	EmulationEnable	0b	R/W	When set to 1, the HC is enabled for legacy emulation. The HC decodes accesses to I/O registers 60h and 64h and generates IRQ1 and/or IRQ12 when appropriate. Additionally, the HC generates an emulation interrupt at appropriate times to invoke the emulation software.
1	EmulationInterrupt	—	R	This bit is a static decode of the emulation interrupt condi- tion.
2	CharacterPending	0b	R/W	When set, an emulation interrupt is generated when the Out- putFull bit of the HceStatus register is set to 0.
3	IRQEn	0b	R/W	When set, the HC generates IRQ1 or IRQ12 as long as the OutputFull bit in HceStatus is set to 1. If the AuxOutputFull bit of HceStatus is 0, then IRQ1 is generated; if it is 1, then an IRQ12 is generated.
4	ExternalIRQEn	0b	R/W	When set to 1, IRQ1 and IRQ12 from the keyboard controller causes an emulation interrupt. The function controlled by this bit is independent of the setting of the EmulationEnable bit in this register.
5	GateA20Sequence	0b	R/W	Set by HC when a data value of D1h is written to I/O port 64h. Cleared by HC on write to I/O port 64h of any value other than D1h.
6	IRQ1Active	0b	R/W	Indicates that a positive transition on IRQ1 from keyboard controller has occurred. SW may write a 1 to this bit to clear it (set it to 0). SW write of a 0 to this bit has no effect.
7	IRQ12Active	0b	R/W	Indicates that a positive transition on IRQ12 from keyboard controller has occurred. SW may write a 1 to this bit to clear it (set it to 0). SW write of a 0 to this bit has no effect.
8	A20State	0b	R/W	Indicates current state of gate A20 on keyboard controller. Used to compare against value written to 60h when GateA20Sequence is active.
31:9	Reserved	_	_	Must read as 0s.

Connection Instructions

Figure 6 shows a typical connection of the USS-344 to provide four USB ports and full legacy support to a PCI-based system. For each of the following sections, refer to Figure 6 for guidance.

PCI Connection Instructions

The USS-344 interfaces directly with any 32-bit, 33 MHz PCI bus simply by connecting all PCI related signals directly to the signals on the host motherboard or card edge of an expansion card. The PCI signaling level for all PCI signals of the USS-344 is selected by connecting the VIO signal to the signaling voltage on the motherboard or VIO pin on the card edge of the expansion card. The VIO pin will select the PCI signaling level as indicated in Table 127. A 5 V reference voltage is not required for the USS-344 to be 5 V compatible.

Table 127. PCI Signaling Levels

VIO Pin Input Voltage	USS-344 PCI Signaling Level (All PCI Signals)		
4.75 V—5.25 V	5 V signaling		
3.0 V—3.6 V	3.3 V signaling		

Connection Instructions (continued)

USB Connection Instructions

The USS-344 is a port-powered OHCI host controller (refer to OHCI specification) requiring an external switchable power regulator to supply downstream USB port power controlled by the USS-344. The power regulator interface has been designed to interface directly with commonly used USB power regulators with very little additional circuitry. The PRTPWR[0, 1, 2, 3] output signal is used as the switch for the power regulator. The PRTPWR[0, 1, 2, 3] signal must be bootstrapped with a pull-up or pull-down resistor to select the appropriate power switch polarity. Bootstrapping with a pull-up resistor will select an active-low power switch while bootstrapping with a pull-down will select an active-high power switch. Figure 3 depicts a typical board connection for both power regulator enable polarities.

The PWRFLT[0, 1, 2, 3]N can be connected directly to an active-low power fault regulator output to inform the USS-344 of a USB port overcurrent condition.

DPLS[0, 1, 2, 3] and DMNS[0, 1, 2, 3] are related to the integrated USB transceiver and are connected directly to the USB port connector through a 28 Ω —32 Ω series resistor for each signal. Figure 5 shows complete detail of the USS-344 connection to USB.

CLK48 must be connected to a 48 MHz oscillator to provide a suitable USB clock to the USS-344. If CLK48STOP signal is used to disable the external oscillator during D3 Power Management state, CLK48STOP must be bootstrapped with a pull-up or pull-down resistor to select the appropriate disable polarity. Bootstrapping with a pull-up resistor will select an active-low disable while bootstrapping with a pulldown will select an active-high disable. Figure 4 depicts a typical board connection for both oscillator enable polarities. CLK48STOP must be pulled to a stable logic value with a resistor if CLK48STOP is not used. Figure 4 also shows the typical board connection when CLK48STOP is not used.

Test Mode Connection Instructions

TEST[3:0] input pins present various options and test modes for the USS-344. These pins can be connected directly to VDD or ground as needed. One test mode (NAND tree mode) is available for a system designer to implement. For a system designer who wishes to implement NAND tree mode, it is recommended that a pull-down resistor be used on TEST2 input. This will allow an in-circuit tester to drive TEST2 high and activate NAND tree mode (see NAND Tree Mode section). TEST3, TEST1, and TEST0 can be grounded without a resistor.

It is also recommended that all NAND tree pins have a corresponding PWB trace that can be driven by the incircuit tester during NAND tree mode.

Table 128. Test Mode Decodes

TEST[3:0]	Description
00X0	Share Interrupt A. All four controllers return a 01h in the Interrupt Pin register (3Dh) and use the PCI interrupt A pin.
00X1	Individual Interrupt. Controller 0 returns 01h in the Interrupt Pin register (3Dh) and uses the PCI interrupt A pin.
	Controller 1 returns 02h in the interrupt pin register (3Dh) and uses the PCI interrupt B pin.
	Controller 2 returns 03h in the Interrupt Pin register (3Dh) and uses the PCI inter- rupt C pin.
	Controller 3 returns 04h in the Interrupt Pin register (3Dh) and uses the PCI inter- rupt D pin.
000X	Power Management Interface Enabled. Power management interface enabled in all four controllers.
001X	Power Management Interface Disabled. Power management interface disabled in all four controllers.
01XX	NAND Test.

Connection Instructions (continued)

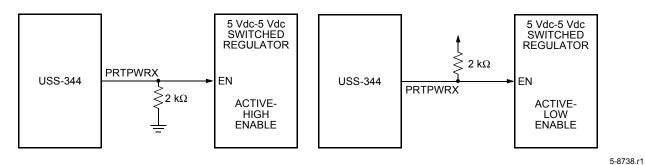


Figure 3. Typical Board Connection for Both Power Regulator Enable Polarities

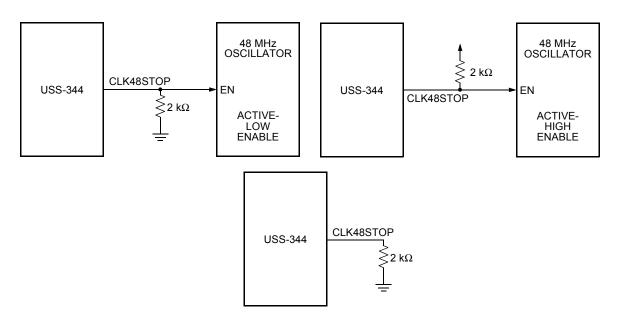


Figure 4. Typical Board Connection for Both Oscillator Enable Polarities or Without Oscillator

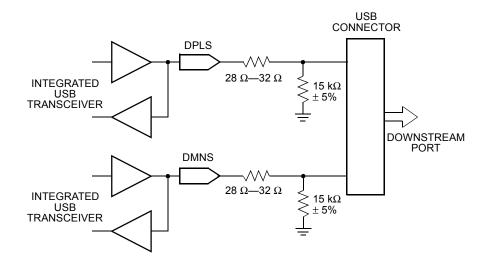


Figure 5. USB Transceiver Connection

5-8739

Legacy Configuration

Also included in the USS-344 is the legacy PS/2 mouse and keyboard interface as defined in the *OpenHCI Open Host Controller Interface Specification for USB Release 1.0a*. This legacy interface along with standard USB BIOS drivers allows USB mice and keyboards to operate in *MS-DOS** mode. Legacy support need not be implemented by the system designer if not desired. If not implemented, A20I, MIRQ12I, and KIRQ12I must be connected to a stable logic level. Figure 6 shows the typical legacy support connection to the USS-344. Figure 7 shows the typical connection of the unused legacy support signals when legacy support is not desired.

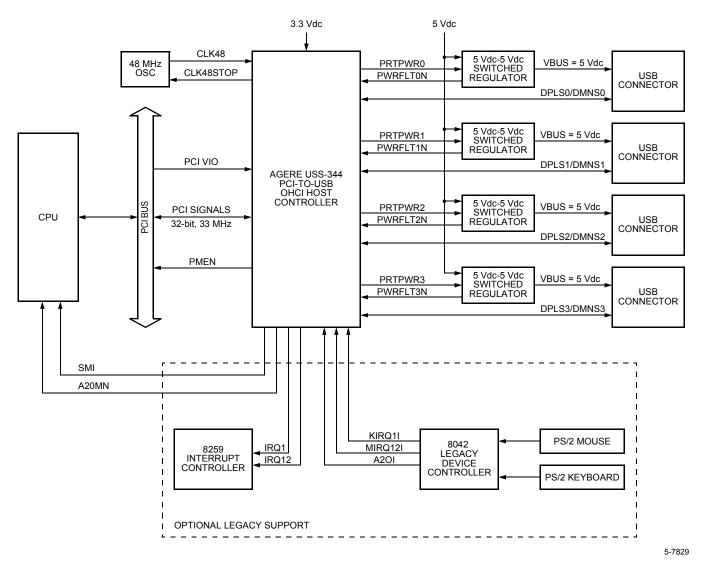
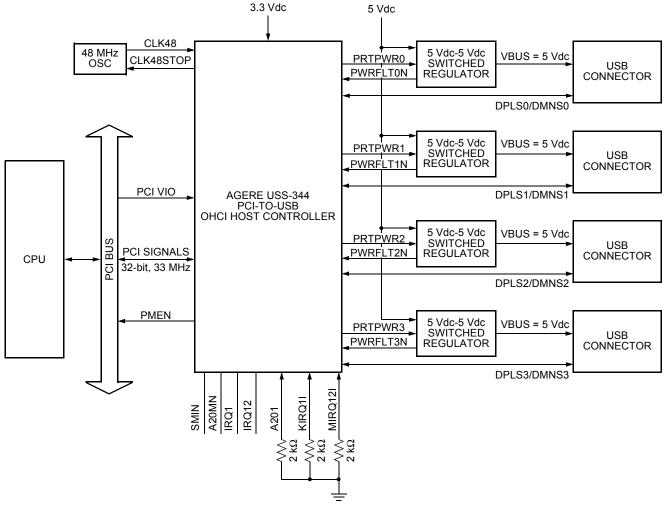



Figure 6. Typical Legacy Support Connection

^{*} MS-DOS is a registered trademark of Microsoft Corporation.

Legacy Configuration (continued)

5-8740

Figure 7. Typical Connection When Not Using Legacy Support

Power Connection Recommendations

The USS-344 is a 3.3 V device. Therefore, all VDD inputs must be connected to an appropriate 3.3 V source. VDDT provides all transceiver power and must be connected to a 3.3 V source. It is recommended that the system designer undertake special board routing and filtering of VDDT and VSST to isolate these power inputs from noise induced by other components.

Power Management Interface

An advanced power management capabilities interface compliant with *PCI Bus Power Management Interface Specification Revision 1.1* has been incorporated into each of the USS-344 controllers. This interface allows the USS-344 to be placed in various power management states offering a variety of power savings for a host system.

Table 129 highlights the USS-344 support for power management states and features supported for each of the power management states. The USS-344 has the ability to internally gate-off the CLK48 input, disable the USB transceivers, and assert USB resume signaling asynchronously (without active CLK48) in response to upstream USB resume being detected. The USS-344 will assert PMEN and retain chip context in accordance with the rules defined in the *PCI Bus Power Management Interface Specification Revision 1.1.*

Power Management State	State Required/ Optional	Clk48 Active Internally	CLK48 STOP Active	USB Trans- ciever Active	Async Resume Logic Active	PMEN Assert Enabled	Chip Context Main- tained	Comments
D0	Required	Х		Х	—	—	Х	Fully awake backwards com- patible state. All logic in full- power mode.
D1	Optional	Х		x	_	х	x	Fully awake state with PCI bus master capabilities turned off by host. All logic in full- power mode because of low latency returning to D0 State.
D2	Optional	_		_	X*	Х	Х	USB sleep state with PCI bus master capabilities turned off by host. PCI clocks may be turned off by the system.
D3hot	Required	_	Х		X*	X	_	Deep USB sleep state with PCI bus master capabilities turned off by host. PCI clocks may be turned off by the sys- tem.
D3cold	Required							Fully asleep backwards com- patible state. All power turned off. Reset required to recover to D0 state. All downstream devices disconnected because of power loss.

* Asynchronous resume logic active only when PME_Enable register bit is active.

A wakeup event (power management event) detected by a USB host controller is considered either an upstream resume detected or a connect status change (device disconnecting/connecting) detected. Any of these events detected by the USS-344 while the power management event is enabled will cause PMEN to be issued.

This power management feature is considered an extension of the PCI Specification and is only present when enabled by the TEST1 input pin. While the TEST1 input pin is logic 0 (or ground), the power management function is enabled, the Power Management registers and Capabilities Pointer register are accessible, and the PCI Configuration Space Status register, bit 4, will read as logic 1 (capabilities list present). While the TEST1 input pin is logic 1, the power management function is disabled, the Power Management registers and Capabilities Pointer register are inaccessible and read as 0h, and the PCI Configuration Space Status register, bit 4, will read as logic 0 (no capabilities list).

Power Management Interface (continued)

The CLK48STOP output pin is active if all four PCI cores in the USS-344 multifunction PCI device have been placed into the D3hot state. This will allow the external 48 MHz oscillator to be disabled and in a low-power mode while in this state. CLK48STOP is only active in D3hot state since this is the only low-power state with sufficient state-change latency to allow the external oscillator to be stopped.

PMEN is an open collector output allowing wire-OR of several PMEN signals.

The following Power Management register definitions present the specific implementation of the *PCI Bus Power Management Interface Specification* for the USS-344. All the following registers are located in the PCI configuration memory space of each controller in the USS-344. All further information concerning the register functions and the system implementation of this interface should be referenced from the *PCI Bus Power Management Interface Specification Revision 1.1* available from the PCI Special Interest Group.

Configuration Space Offset 50h

Table 130. Capabilities Identifier (Cap_ID) Register

Bits	Default Value	Read/Write	Description
7:0	01h	R	This capability is for the PCI power management data structure.

Configuration Space Offset 51h

Table 131. Next Item Pointer Register

Bits	Default Value	Read/Write	Description
7:0	00h	R	No other PCI capabilities are implemented.

Power Management Interface (continued)

Configuration Space Offset 52h

Table 132. Power Management Capabilities Register

Bits	Default Value	Read/ Write	Name/Description	
15:11	01110b	R	PME_Support. Specifies the states in which the PME signal can be asserted.	
			XXXX0b—PME cannot be asserted in D0 state. XXX1Xb—PME can be asserted in D1 state. XX1XXb—PME can be asserted in D2 state. X1XXXb—PME can be asserted in D3hot state. 0XXXXb—PME cannot be asserted in D3cold state.	
10	1b	R	D2_Support. This device supports the D2 power management state.	
9	1b	R	D1_Support. This device supports the D1 power management state.	
8:6	000b	R	Aux_Current. PMEN generation is not supported by this function. Therefore, this register is not applicable and returns 000b.	
5	0b	R	DSI. No device specific initialization sequence is required before using this device.	
4	0b	R	Reserved.	
3	0b	R	PME Clock. No clocks are required for this device to issue PMEN.	
2:0	010b	R	Version. PCI Power Management Interface Specification Revision 1.1 compliant.	

Configuration Space Offset 54h

Table 133. Power Management Control/Status Register

Bits	Default Value	Read/ Write	Name/Description	
15	0b	Read/ Write- Clear	PME_Status. This bit is set when the function would normally assert the PMEN signal independent of the state of the PME_En bit. Writing a 1b to this bit will clear the PME_Status bit and force the function to stop asserting PMEN.	
14:13	See Table 136	R	Data Scale. Variable based upon data select. See Table 136.	
12:9	0000b	R/W	Data_Select. The system uses this register to select the appropriate data for reporting in the Data Scale register and Data register.	
8	0b	R/W	PME_En . When active (1b), the function is enabled to assert PMEN.	
7:2	000000b	R	Reserved.	
1:0	00b	R/W	Power_State. Represents the current power state of the function.	

Power Management Interface (continued)

Configuration Space Offset 56h

Table 134. Power Management Bridge Support Extensions

Bits	Default Value	Read/ Write	Name/Description
7	0b	R	BPCC_En (Bus Power/Clock Control Enable). This is not a PCI bridge func-
			tion.
6	0b	R	B2_B3# (B2/B3 Support for D3hot). This is not a PCI bridge function.
5:0	000000b	R	Reserved.

Configuration Space Offset 57h

Table 135. Data Register

Bits	Default Value	Read/ Write	Description
7:0	See Table 136	R	Represents the amount of power dissipated or consumed in various power management states. Variable based upon data select. See Table 136.

Power Consumption/Dissipation Reporting

Table 136. Power Consumption/Dissipation Reporting

Value In Data Select	Data Reported	Data	Data Scale	Units (Interpreting Data Scale)
0000b	D0 Power Consumed	1Fh	01b	mW * 100
0001b	D1 Power Consumed	38h	10b	mW * 100
0010b	D2 Power Consumed	66h	11b	mW
0011b	D3 Power Consumed	07h	11b	mW
0100b	D0 Power Dissipated	37h	10b	mW * 10
0101b	D1 Power Dissipated	37h	10b	mW * 10
0110b	D2 Power Dissipated	64h	11b	mW
0111b	D3 Power Dissipated	03h	11b	mW
1000b—1111b	Reserved (single-function PCI device configuration)	0000000b	00b	NA

NAND Tree Mode

The USS-344 can be placed in a NAND tree mode of operation for board-level production testing. The NAND tree is designed to allow board-level contact testing of inputs and bidirectional pins of the USS-344.

To activate the NAND tree in the USS-344, force pin 63 (TEST2) to a logic high and force pin 64 (TEST3) to a logic low. Pins 62 and 61 (TEST1 and TEST0) may be high or low. No clocks are required. When this is performed, the NAND tree will be active and follow the order of the map presented in Table 137. Figure 8 shows the NAND tree logic structure. The test mode connection instructions should be followed to place the USS-344 in NAND tree mode.

Order Assignment	Pin Number	Pin Name	Order Assignment	Pin Number	Pin Name
1 (Start)	81	CLK48STOP	41	10	AD21
2	83	XLO/CLK48	41	10	AD21 AD20
3	75	SMIN	42	11	AD20 AD19
4	75	PRTPWR0	43	12	AD19 AD18
5	70	PWRFLTON	44 45	16	AD18 AD17
6	78	PRTPWR1	45	10	AD17
7	78	PWRFLT1N	40	17	C/BEN2
8	89	DPLS0	47	18	FRAMEN
9	90	DPLS0 DMNS0	40	22	IRDYN
10	90	DMINSO DPLS1	49 50	22	TRDYN
10	91	DPLST DMNS1	50	23	
					DEVSELN
12	95	DPLS2	52	25 26	STOPN
13	96	DMNS2	53		PERRN
14	97	DPLS3	54	29	SERRN
15	98	DMNS3	55	30	PAR
16	101	PRTPWR2	56	31	C/BEN1
17	102	PWRFLT2N	57	32	AD15
18	103	PRTPWR3	58	35	AD14
19	104	PWRFLT3N	59	36	AD13
20	105	INTAN	60	37	AD12
21	108	INTBN	61	38	AD11
22	109	INTCN	62	41	AD10
23	110	INTDN	63	42	AD9
24	111	RSTN	64	43	AD8
25	113	CLK	65	44	C/BEN0
26	115	GNTN	66	47	AD7
27	116	REQN	67	48	AD6
28	119	PMEN	68	49	AD5
29	120	AD31	69	50	AD4
30	121	AD30	70	53	AD3
31	122	AD29	71	54	AD2
32	125	AD28	72	55	AD1
33	126	AD27	73	56	AD0
34	127	AD26	74	67	MIRQ12I
35	128	AD25	75	68	KIRQ1I
36	3	AD24	76	69	A201
37	4	C/BEN3	77	70	A20MN
38	5	IDSEL	78	71	IRQ1
39	6	AD23	Output Pin	72	IRQ12
40	7	AD22	·		

Table 137. NAND Tree

NAND Tree Mode (continued)

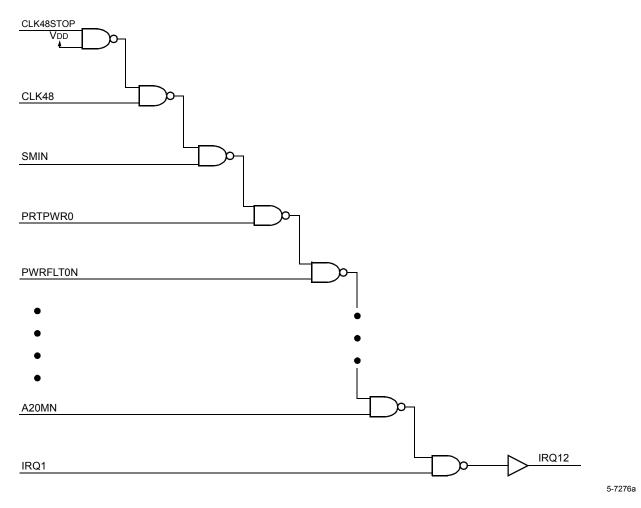


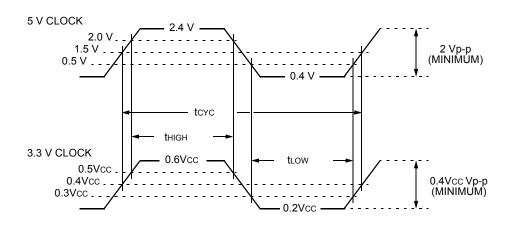
Figure 8. NAND Tree Logic Structure

Absolute Maximum Ratings

Table 138. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Ambient Operating Temperature Range	Та	0	70	۵°C
Storage Temperature	Tstg	-40	125	°C
Voltage on Any Pin with Respect to Ground	—	Vss-0.3	5.5	V
VDD	—	3.0	3.6	V
VDDT	—	3.135	3.465	V
VIO (3.3 V operation)	—	3.0	3.6	V
VIO (5 V operation)	—	4.75	5.25	V

Electrical Characteristics


Table 139. Power Dissipation

Parameter	Symbol	Min	Тур	Max	Unit
Power Dissipation	PD	283	345	410	mW

PCI Electrical Characteristics

PCI Timing Specifications

The clock waveform must be delivered to each PCI component in the system. In the case of expansion boards, compliance with the clock specification is measured at the expansion board component, not at the connector slot. Figure 9 shows the clock waveform and required measurement points for both 5 V and 3.3 V signaling environments. Table 140 summarizes the clock specifications.

5-6474

Figure 9. Clock Waveforms

Electrical Characteristics (continued)

PCI Timing Parameters

Table 140. Clock and Reset Specifications

Symbol	Parameter	Min	Мах	Unit
tcyc	CLK Cycle Time ¹	30	∞	ns
thigh	CLK High Time	11	_	ns
tLOW	CLK Low Time	11	_	ns
_	CLK Slew Rate ²	1	4	V/ns
—	RSTN Slew Rate ³	50	—	mV/ns

1. In general, all PCI components must work with any clock frequency between nominal dc and 33 MHz. Device operational parameters at frequencies under 16 MHz may be guaranteed by design rather than by testing. The clock frequency may be changed at any time during the operation of the system, as long as the clock edges remain clean (monotonic), and the minimum cycle and high and low times are not violated. The clock may only be stopped in a low state. A variance on this specification is allowed for components designed for use on the system motherboard only. These components may operate at any single fixed frequency up to 33 MHz and may enforce a policy of no frequency changes.

2. Rise and fall times are specified in terms of the edge rate measured in V/ns. This slew rate must be met across the minimum peak-to-peak portion of the clock waveform, as shown in Figure 9.

3. The minimum RSTN slew rate applies only to the rising (deassertion) edge of the reset signal and ensures that system noise cannot render an otherwise monotonic signal to appear to bounce in the switching range.

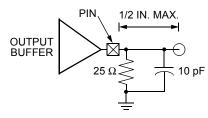
Electrical Characteristics (continued)

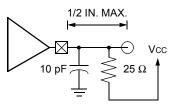
Symbol	Parameter	Min	Max	Unit
tval	CLK to Signal Valid Delay—Bused Signals ^{1, 2, 3}	2	11	ns
tVAL(ptp)	CLK to Signal Valid Delay—Point to Point ^{1, 2, 3}	2	12	ns
ton	Float to Active Delay ^{1, 7}	2		ns
tOFF	Active to Float Delay ^{1, 7}	—	28	ns
tsu	Input Setup Time to CLK—Bused Signals ^{3, 4}	7		ns
tSU(ptp)	Input Setup Time to CLK—Point to Point ^{3, 4}	10, 12	—	ns
tн	Input Hold Time from CLK ⁴	0	—	ns
trst	Reset Active Time After Power Stable ⁵	1	-	ns
trst-clk	K Reset Active Time After CLK Stable ⁵		—	ns
trst-off	Reset Active to Output Float Delay ^{5, 6, 7}		40	ns
trrsu	REQN to RSTN Setup Time	10 × tcyc	-	ns
trrh	RSTN to REQN Hold Time	0	50	ns

Table 141. 5 V and 3.3 V PCI Timing Parameters

1. See the timing measurement conditions in Figure 4-8 of PCI Specification Revision 2.1.

2. For parts compliant to the 5 V signaling environment:


Minimum times are evaluated with 0 pF equivalent load; maximum times are evaluated with 50 pF equivalent load. Actual test capacitance may vary, but results should be correlated to these specifications. Note that faster buffers may exhibit some ring back when attached to a 50 pF lump load, which should be of no consequence as long as the output buffers are in full compliance with slew rate and V/I curve specifications.


For parts compliant to the 3.3 V signaling environment:

Minimum times are evaluated with same load used for slew rate measurement (see PCI Specification, Rev. 2.1s); maximum times are evaluated with the following load circuits, for high-going and low-going edges, respectively.

TVAL(MAX) RISING EDGE

- 3. REQN and GNTN are point-to-point signals and have different output valid delay and input setup times than bused signals. GNTN has a setup time of 10 ns; REQN has a setup time of 12 ns. All other signals are bused.
- 4. See the timing measurement conditions in Figure 4-8 of PCI Specification Revision 2.1.
- 5. RSTN is asserted and deasserted asynchronously with respect to CLK.
- 6. All output drivers must be asynchronously floated when RSTN is active.
- 7. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

Electrical Characteristics (continued)

USB Electrical Characteristics

Table 142. Full-Speed Source USB Electrical Characteristics

Parameter	Symbol	Conditions ^{1, 2, 3}	Min	Мах	Unit
Driver Characteristics					
Transition Time ^{4, 5} :					
Rise Time	tR	CL = 50 pF	4	20	ns
Fall Time	tF	CL = 50 pF	4	20	ns
Rise/Fall Time Matching	t RFM	(TR/TF)	90	110	%
Output Signal Crossover Voltage	VCRS	—	1.3	2.0	V
Driver Output Resistance	Zdrv	Steady-State Drive	28	43	Ω
Data Source Timings					
Full-speed Data Rate	t DRATE	Average Bit Rate (12 Mbits/s ± 0.25%)	11.97	12.03	Mbits/s
Frame Interval	t FRAME	1.0 ms ± 0.05%	0.9995	1.0005	ms

1. All voltages measured from the local ground potential, unless otherwise specified.

2. All timings use a capacitive load (CL) to ground of 50 pF, unless otherwise specified.

3. Full-speed timings have a 1.5 $k\Omega$ pull-up to 2.8 V on the D+ data line.

4. Measured from 10% to 90% of the data signal.

5. The rising and falling edges should be smoothly transitioning (monotonic).

Table 143. Low-Speed Source USB Electrical Characteristics

Parameter	Symbol	Conditions	Min	Мах	Unit
Driver Characteristics	1 1				
Transition Time ^{1, 2} :					
Rise Time	tR	CL = 50 pF	75		ns
		CL = 350 pF		300	ns
Fall Time	tF	CL = 50 pF	75		ns
		CL = 350 pF	—	300	ns
Rise/Fall Time Matching	t RFM	(TR/TF)	80	120	%
Output Signal Crossover Voltage	VCRS	_	1.3	2.0	V
Data Source Timings			•		
Low-speed Data Rate	t DRATE	Average Bit Rate	1.4775	1.5225	Mbits/s
		(1.5 Mbits/s ± 1.5%)			

1. Measured from 10% to 90% of the data signal.

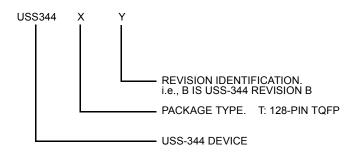
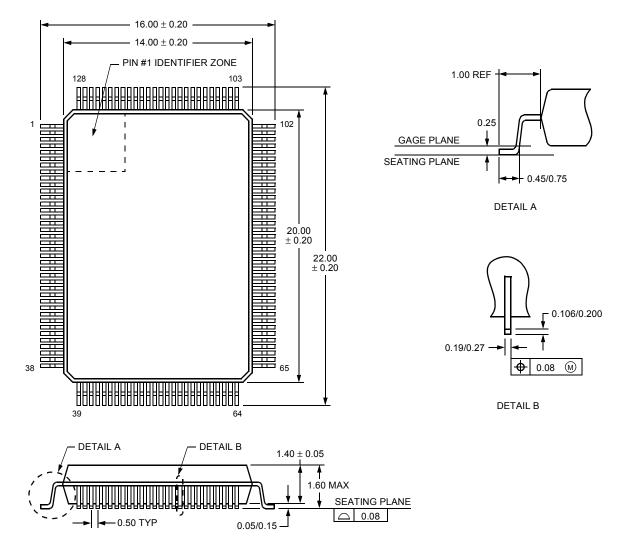

2. The rising and falling edges should be smoothly transitioning (monotonic).

Table 144. CLK48 Clock Specification

Parameter	Symbol	Min	Мах	Unit
CLK Cycle Time	tcyc	20.8 - 0.01%	20.8 + 0.01%	ns
CLK High Time	thigh	8.32	12.48	ns
CLK Low Time	t∟ow	8.32	12.48	ns

Physical Markings

Each USS-344 will be physically marked as follows:



5-8116a

Outline Diagram

128-Pin TQFP

Dimensions are in millimeters.

Ordering Information

Device Code	Package	Comcode
USS344S-DB	128-Pin TQFP	108556937

For additional information, contact your Agere Systems Account Manager or the following: INTERNET: http://www.agere.com E-MAIL: docmaster@micro.lucent.com N. AMERICA: Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286 1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106) ASIA PACIFIC: Agere Systems Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256 Tel. (65) 778 8833, FAX (65) 777 7495 CHINA: Agere Systems (Shanghai) Co., Ltd., 33/F Jin Mao Tower, 88 Century Boulevard Pudong, Shanghai 200121 PRC Tel. (86) 21 50471212, FAX (86) 21 50472266 Agere Systems Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan JAPAN: Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700 Data Requests: DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148 **FUROPE** Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot), FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 3507670 (Helsinki), ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)

Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. *QuadraBus* is a trademark of Agere Systems Inc.

Copyright © 2001 Agere Systems Inc. All Rights Reserved Printed in U.S.A.

