


Pin Descriptions

| Pin Name | Description |
| :---: | :---: |
| $\overline{\mathrm{OE}}$ | Bus Switch Enable |
| S | Select Input |
| A | Bus A |
| $\mathrm{B}_{1}-\mathrm{B}_{2}$ | Bus B |

## Connection Diagrams

Pin Assignments for QSOP and TSSOP


Pad Assignments for DQFN
(Preliminary)


## Truth Table

| $\mathbf{S}$ | $\overline{\mathbf{O E}}$ | Function |
| :---: | :---: | :---: |
| $X$ | $H$ | Disconnect |
| $L$ | $L$ | $A=B_{1}$ |
| $H$ | $L$ | $A=B_{2}$ |



AC Electrical Characteristics

| Symbol | Parameter | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  | Units | Conditions |  | $\begin{array}{\|c\|} \hline \text { Figure } \\ \text { Number } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | $\begin{array}{\|c\|} \hline \text { Typ } \\ \text { (Note 7) } \end{array}$ | Max |  |  |  |  |
| $\mathrm{t}_{\mathrm{ON}}$ | Turn ON Time S-to-Bus B | 4.5 to 5.5 |  | 4.0 | 6.0 | ns | $\mathrm{VB}=2.0 \mathrm{~V}$ |  | $\begin{gathered} \text { Figures } \\ 8,9 \end{gathered}$ |
|  | Output Enable Time OE-to-A or B | 4.5 to 5.5 |  | 3.5 | 5.5 |  |  |  |  |
| $\mathrm{t}_{\text {OFF }}$ | Turn OFF Time S-to-Bus B | 4.5 to 5.5 |  | 1.5 | 3.5 | ns | $\mathrm{VB}=2.0 \mathrm{~V}$ |  | Figures 8, 9 |
|  | Output Disable Time OE-to-A or B | 4.5 to 5.5 |  | 1.5 | 3.5 |  |  |  |  |
| DG | Differential Gain | 4.5 to 5.5 |  | 0.2 |  | \% | $\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{f}=3.58 \mathrm{MHz}$ |  | Figure 2 |
| DP | Differential Phase | 4.5 to 5.5 |  | 0.1 |  | Degree | $\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{f}=3.58 \mathrm{MHz}$ |  | Figure 3 |
| $\mathrm{O}_{\text {IRR }}$ | Non-Adjacent OFF-Isolation | 4.5 to 5.5 |  | -60.0 |  | dB | $f=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=75 \Omega$ |  | $\begin{array}{\|c} \hline \text { Figures } \\ 4,10 \\ \hline \end{array}$ |
| $\mathrm{X}_{\text {TALK }}$ | Non-Adjacent Channel Crosstalk | 4.5 to 5.5 |  | -75.0 |  | dB | $\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{f}=10 \mathrm{MHz}$ |  | $\begin{gathered} \hline \text { Figures } \\ 5,11 \end{gathered}$ |
| BW | -3dB Bandwidth | 4.5 to 5.5 |  | 800 |  | MHz | $\mathrm{R}_{\mathrm{L}}=50 \Omega$ (DQFN) |  | $\begin{gathered} \hline \text { Figures } \\ 1,12 \end{gathered}$ |
|  |  | 4.5 to 5.5 |  | 700 |  |  | $\mathrm{R}_{\mathrm{L}}=50 \Omega$ (QSOP and TSSOP) |  | $\begin{aligned} & \text { Figure } \\ & 12 \end{aligned}$ |
|  |  | 4.5 to 5.5 <br> 4.515 .5 |  | 650 |  |  | $\mathrm{R}_{\mathrm{L}}=75 \Omega$ (DQFN) |  |  |
|  |  | 4.5 to 5.5 |  | 600 |  |  | $\mathrm{R}_{\mathrm{L}}=75 \Omega$ (QSOP and TSSOP) |  |  |
| Note 7: Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Capacitance |  |  |  |  |  |  |  |  |  |
| Symbo | Parameter |  |  | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  | Units | Conditions |  |
|  |  |  |  | Typ |  |  |  |  |  |  |
| $\mathrm{C}_{\text {IN }}$ | Control Pin Input Capacitance |  |  | 3.0 |  |  | pF | $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$ |  |
| $\mathrm{Con}^{\text {On }}$ | A/B ON Capacitance |  |  | 8.5 |  |  | pF | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \overline{\mathrm{OE}}=0 \mathrm{~V}$ |  |
| $\mathrm{C}_{\text {OFF }}$ | Port B OFF Capacitance |  |  | 3.0 |  |  | pF | $\mathrm{V}_{\mathrm{CC}}$ and $\overline{\mathrm{OE}}=5.0 \mathrm{~V}$ |  |



FIGURE 1. Gain vs. Frequency


FIGURE 2. Differential Gain vs. dc bias


FIGURE 4. OFF Isolation


FIGURE 5. OFF Crosstalk vs. Frequency




TAPE DIMENSIONS inches (millimeters)


NOTES: unless otherwise specified

1. Cummulative pitch for feeding holes and cavities (chip pockets) not to exceed $0.008[0.20]$ over 10 pitch span.
2. Smallest allowable bending radius.
3. Thru hole inside cavity is centered within cavity
4. Tolerance is $\pm 0.002$ [ 0.05 ] for these dimensions on all 12 mm tapes

5 . Ao and Bo measured on a plane $0.120[0.30$ ] above the bottom of the pocket.
6. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
7. Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole.
8. Controlling dimension is millimeter. Diemension in inches rounded.

REEL DIMENSIONS inches (millimeters)


| Tape Size | A | B | C | D | N | W1 | W2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 mm | 13.0 | 0.059 | 0.512 | 0.795 | 7.008 | 0.488 | 0.724 |
|  | $(330)$ | $(1.50)$ | $(13.00)$ | $(20.20)$ | $(178)$ | $(12.4)$ | $(18.4)$ |

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AB
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

MLP016ErevA


Physical Dimensions inches (millimeters) unless otherwise noted (Continued)


16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package Number MTC16

## Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
