

1310 nm, 1550 nm 270 Mbps PIN Preamplifier for SDI Digital Television

Data Sheet

December 2003

Features

- Data rate up to 270 Mbps
- 1310 nm, 1550 nm PIN
- TIA with AGC
- · Handles DC-unbalanced signals
- Wide dynamic range
- TO-46 assembly
- 3.3 V power supply
- SMF and MMF

Applications

ANSI/SMPTE 259M

Ordering Information ZL60012TBD TO-46 with lens -40°C to +85°C

Description

This optical receiver is designed for SDI (Serial Digital Interface) digital television transmission systems where optical fiber replaces coaxial cable, to increase transmission distance. It is designed in conjunction with the ANSI/SMPTE 259 M standard and is capable of handling DC-unbalanced (pathological) signals.

The receiver operates at 3.3 V and contains an InGaAs PIN photodiode and a transimpedance amplifier with AGC (Automatic Gain Control), assembled in a TO-46 package. Its double-lens optical system is designed for use with single-mode fiber as well as multi-mode fiber with a core diameter up to 62.5 μ m. Reliability assurance is based on Telecordia GR-468-CORE.

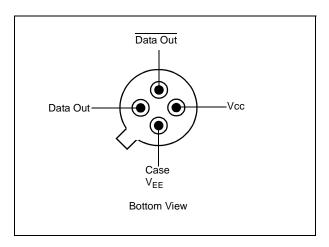


Figure 1 - Pin Diagram

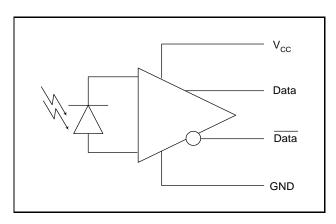


Figure 2 - Functional Schematic

ZL60012 Data Sheet

Optical and Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test condition
Responsivity, differential	R	10	30	50	kV/W	λ = 1310 nm R _L = 100 Ω , Note 1
Output Voltage differential amplitude	$\Delta V_{\rm O}$		130		mV, p-p	R _L = 100 Ω Note 2
Data rate	f _R			270	Mbps	$R_L = 100 \Omega$
Optical Saturation Level (average)	P _{sat}		0		dBm	λ = 1310 nm, ER = ∞ Note 5
Noise-Equivalent Power	NEP		-45		dBm	λ = 1310 nm
Dynamic Range			32		dB	
Sensitivity (BER10 ⁻⁹)	S _{OMA}		1.2	2.5	μW	λ = 1310 nm, Note 3 and 4
Sensitivity (BER10 ⁻⁹)	S		-32	-29	dBm	λ = 1310 nm, ER = ∞ Note 5
Output Resistance (single-ended)	R _O	36	44	57	Ω	
Power Dissipation	P _D			180	mW	
Power Supply Current	I _{DD}	20	35	50	mA	

Test conditions: 25°C Case Temperature/3.3 V Supply Voltage. Fiber: Single-mode to multi-mode 62.5/125 μm

Note 1: Pf = 2 μ W Peak-Peak power at 10 MHz/50% duty cycle.

Note 2: Pf = $500 \mu W$ Peak-Peak power at 10 MHz/50% duty cycle.

Note 3: Measured using DC-unbalanced patterns with 5% and 95% duty cycles, respectively at 270 Mbps.

Note 4: An OMA value has been quoted as this is more meaningful for DC unbalanced signals.

Note 5: Measured with a DC balanced signal with a 2²³-1 PRBS at 270 Mbps.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Supply Voltage	V _{CC}	-0.5	5.5	V
Storage Temperature	T _{stg}	-55	125	°C

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max	Unit
Supply Voltage	V _{CC}	3		5.5	V
Output Differential Load	R_{L}		100		Ω
Operating Temperature	T _{op}	-40		85	°C

Typical Responsivity

		Fiber Core/Cladding Diameter Numerical Aperture			
	Wavelength	10/125 NA = 0.11	50/125 NA = 0.20	62.5/125 NA = 0.275	
Differential responsitivity	1310 nm	30 kV/W	30 kV/W	30 kV/W	
Differential responsitivity	1550 nm	36 kV/W	36 kV/W	36 kV/W	

Figure 3 - Typical Responsivity vs Axial Displacement for a Multi-mode Fiber

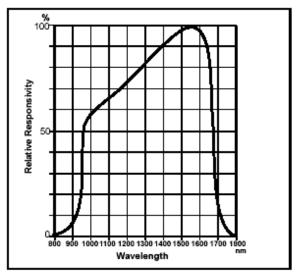


Figure 4 - Responsivity vs. Wavelength of Coupled Input Power

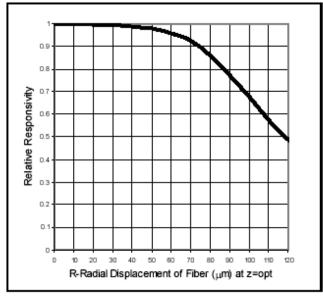


Figure 5 - Typical Responsivity vs Radial Displacement for a Multi-mode Fiber

ZL60012 Data Sheet

Application Guidelines

ESD Handling

The receiver is sensitive to electrostatic discharges. When handling the device, precaution for ESD sensitive devices should be taken. These precautions include use of ESD protected work area with wrist straps, controlled work benches, floors etc.

Power Supply Filter

Power Supply decoupling capacitors are recommended for optimal performance of the receiver. A filter is recommended to minimise power supply noise. See Figure 6.

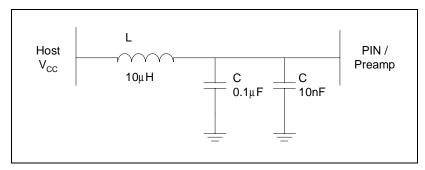
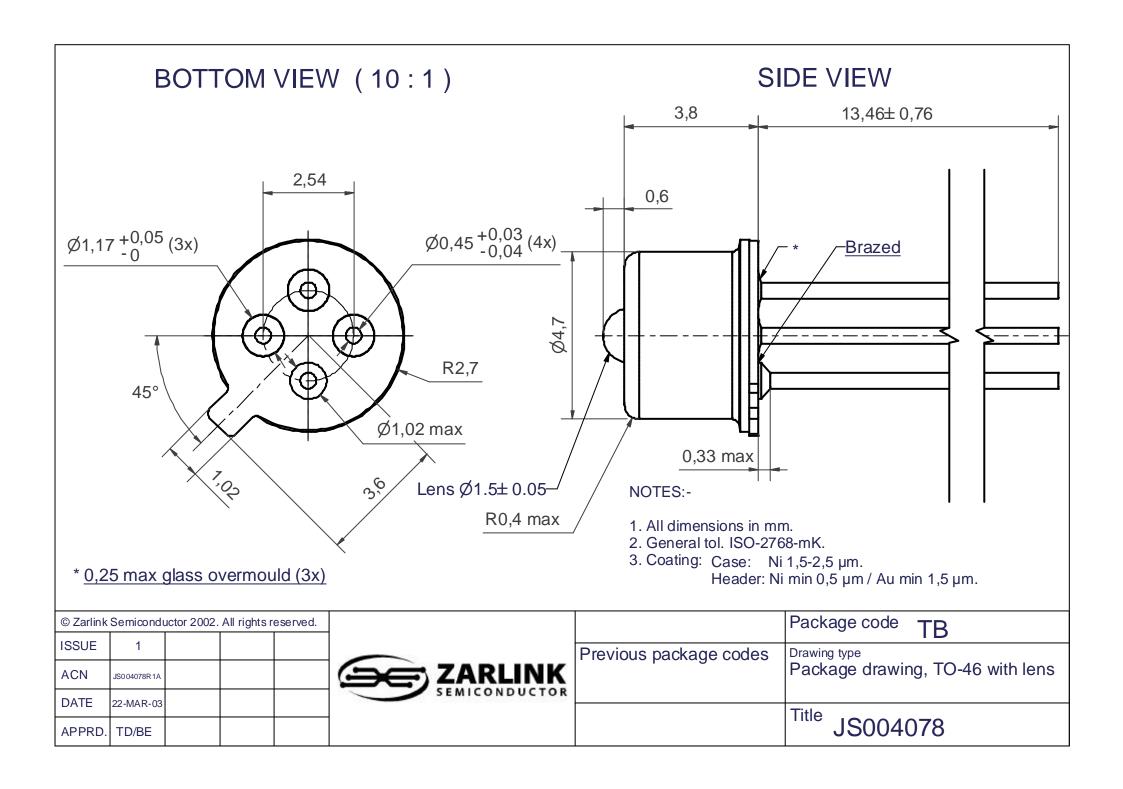



Figure 6 - Recommended Power Supply Filter

For more information about all Zarlink products visit our Web Site at www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's I²C components conveys a licence under the Philips I²C Patent rights to use these components in and I²C System, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.

Copyright Zarlink Semiconductor Inc. All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE