

Product Description

Sirenza Microdevices' SBA-5086 is a high performance InGaPA GaAs Heterojunction Bipolar Transistor MMIC Amplifier. A Darlington configuration designed with InGaP process technology provides broadband performance up to 5 GHz with excellent thermal perforance. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in higher suppression of intermodulation products. Only a single positive supply voltage, DC-blocking capacitors, a bias resistor, and an optional RF choke are required for operation.

The matte tin finish on Sirenza's lead-free package utilizes a post annealing process to mitigate tin whisker formation and is RoHS compliant per EU Directive 2002/95. This package is also manufactured with green molding compounds that contain no antimony trioxide nor halogenated fire retardants.

SBA-5086

SBA-5086Z (Pb) RoHS Compliant & Green Package

DC-5 GHz, Cascadable InGaP/GaAs HBT MMIC Amplifier

Product Features

- Now available in Lead Free, RoHS Compliant, & Green Packaging
- IP3 = 34.0dBm @ 1950MHz
- Pout=13.3dBm @-45dBc ACP IS-95 1950MHz
- Robust 1000V ESD, Class 1C
- Operates From Single Supply
- Patented Thermal Design

Applications

- PA Driver Amplifier
- Cellular, PCS, GSM, UMTS
- IF Amplifier
- Wireless Data, Satellite Terminals

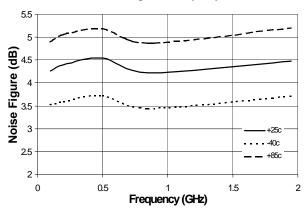
Symbol	P a r a m e t e r	U n its	Frequency	M in .	Тур.	Мах.
G	Small Signal Gain	d B	850 MHz 1950 MHz	17.5 15.7	19.0 17.2	20.5 18.7
P _{1dB}	Output Power at 1dB Compression		850 MHz 1950 MHz	18	19.5 19.5	
O IP ₃	OIP ₃ Output Third Order Intercept Point		850 MHz 1950 MHz	32.0	36.9 34.0	
Роит	Output Power @ -45dBc ACP IS-95 9 Forward Channels	d B m	1950 MHz		13.3	
Bandwidth	Determined by Return Loss (>10dB)	MHz			5000	
IR L	Input Return Loss	d B	1950 MHz	11.0	13.0	
ORL	Output Return Loss	dB	1950 MHz	14.0	19.0	
NF	Noise Figure	d B	1950 MHz		4.5	5.5
V _D	V _D Device Operating Voltage			4 .7	4.9	5.3
I _D	Device Operating Current			72	80	88
R _{TH} , j-I	Thermal Resistance (junction to lead)	°C/W			102	

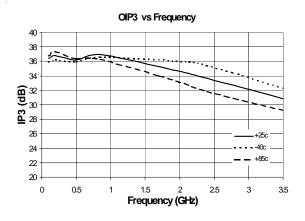
Test Conditions:

 $R_{BIAS} = 39 \text{ Ohms}$

 $I_D = 80 \text{ mA Typ.}$ $T_{L} = 25^{\circ}C$

OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 dBm $Z_s = Z_1 = 50 \text{ Ohms}$

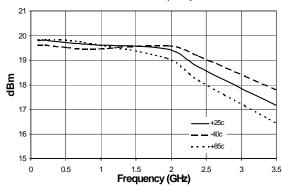

Performance tests and ratings for Sirenza Microdevices' products were performed internally by Sirenza and measured using specific computer systems and/or and components and reflect the approximate performance of the products as measured by those tests. Any difference in circuit implementation, test software or test equipment may affect actual performance. The information provided herein is believed to be reliable at press time and Sirenza Microdevices assumes no responsibility for the use of this information. All such use shall be user's own risk. Prices and specifications for Sirenza Microdevices' products are subject to change without notice. Buyers should consult Sirenza Microdevices' standard terms and conditions of sale for Sirenza's limited warranty with regard to its products. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any product for use in life-support devices and/or systems.



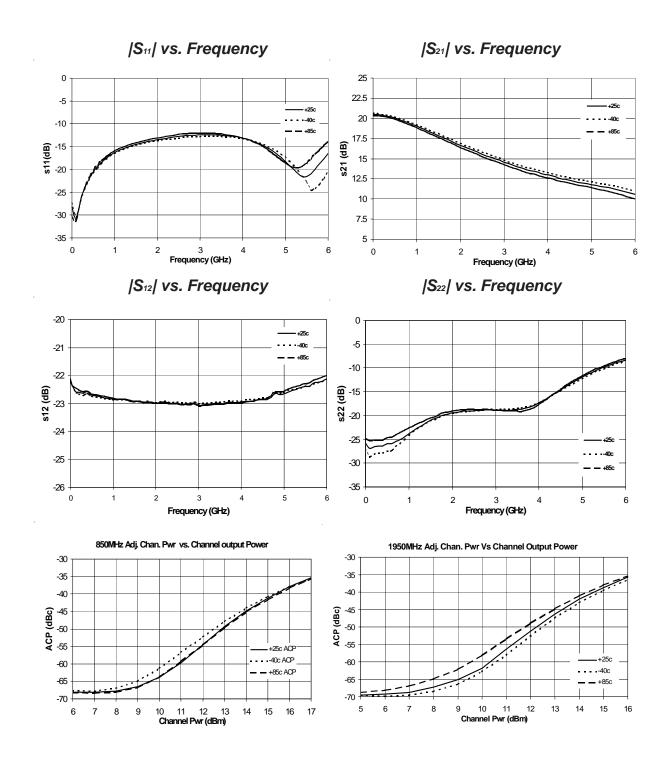
Typical RF Performance at Key Operating Frequencies

			Frequency (MHz)					
Symbol	Parameter	Unit	100	500	850	1950	2400	3500
G	Small Signal Gain	dB	20.4	20.1	19.0	17.2	15.8	13.7
OIP ₃	Output Third Order Intercept Point	dBm	36.4	36.2	36.9	34.0	33.7	30.8
P_{1dB}	Output Power at 1dB Compression	dBm	19.8	19.7	19.5	19.5	18.7	17.1
IRL	Input Return Loss	dB	31	20	17.5	13.0	12.9	12.4
ORL	Output Return Loss	dB	26	26	25	19.0	19	18.7
S ₁₂	Reverse Isolation	dB	22.5	22.8	23	23	23	23
NF	Noise Figure	dB	4.2	4.5	4.2	4.4		
Tes	t Conditions: $V_s = 8 \text{ V}$ $R_{BIAS} = 39 \text{ Ohms}$	$I_D = 8$ $T_L = 2$	0 mA Typ. 5°C	3	ne Spacing = 50 Ohms	= 1 MHz, Po	out per tone	= 0 dBm

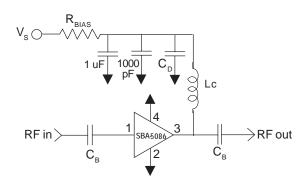
Noise Figure vs Frequency

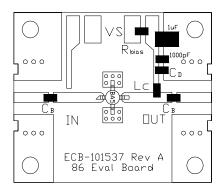

Absolute Maximum Ratings

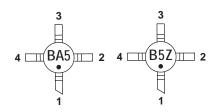
Parameter	Absolute Limit
Max. Device Current (I _D)	130 mA
Max. Device Voltage (V _D)	6 V
Max. RF Input Power	+17 dBm
Max Operating Dissipated Power	0.65 W
Max. Junction Temp. (T _J)	+150°C
Operating Temp. Range (T _L)	-40°C to +85°C
Max. Storage Temp.	+150°C


Operation of this device beyond any one of these limits may cause permanent damage. For reliable continous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Bias Conditions should also satisfy the following expression: $I_{_D}V_{_D}<(T_{_J}-T_{_L})\ /\ R_{_{TH'}}\ j\text{-}I \qquad T_{_L}=T_{_{LEAD}}$






Basic Application Circuit

Part Identification Marking

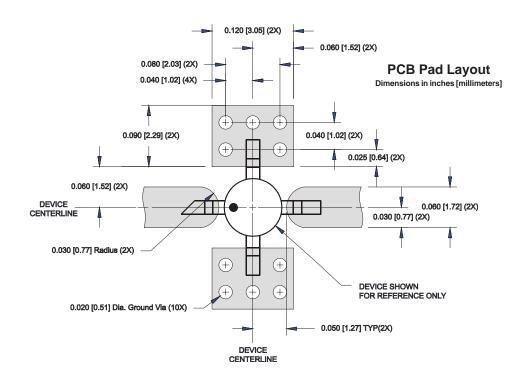
The part will be marked with an "BA5" or "B5Z" designator on the top surface of the package.

Application Circuit Element Values

Reference	Frequency (Mhz)					
Designator	500	850	1950	2400	3500	
C _B	220 pF	100 pF	68 pF	56 pF	39 pF	
C _D	100 pF	68 pF	22 pF	22 pF	15 pF	
L _c	68 nH	33 nH	22 nH	18 nH	15 nH	

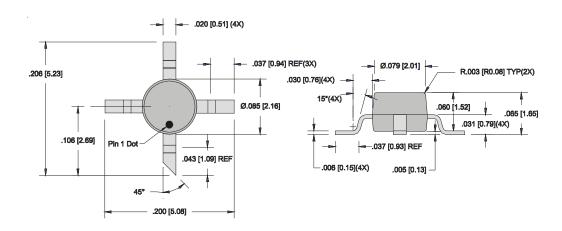
Recommended Bias Resistor Values for I_p =80mA $R_{\rm BIAS}$ =($V_{\rm S}$ - $V_{\rm D}$) / $I_{\rm D}$					
Supply Voltage(V _s)	7.5 V	8 V	10 V	12 V	
R _{BIAS}	33 Ω	39 Ω	68 Ω	91 Ω	
Note: R _{BIAS} provides DC bias stability over temperature.					

Mounting Instructions


- 1. Use a large ground pad area under device pins 2 and 4 with many plated through-holes as shown.
- We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31 mil thick FR-4 board with 1 ounce copper on both sides.

Pi	n #	Function	Description
	1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
2,	, 4	GND	Connection to ground. Use via holes for best performance to reduce lead inductance as close to ground leads as possible.
•	3	RF OUT/ BIAS	RF output and bias pin. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper operation.

Part Number Ordering Information


Part Number	Reel Size	Devices/Reel
SBA-5086	7"	1000
SBA-5086Z	7"	1000

Nominal Package Dimensions

Dimensions in inches [millimeters]
Refer to drawing posted at www.sirenza.com for tolerances.

