

SANYO Semiconductors

DATA SHEET

LB11948T

Monolithic Digital IC

PWM Constant Current Control 1-2 Phase Excitation Stepping Motor Driver

Overview

The LB11948T is a low saturation voltage output PWM current control bipolar drive stepping motor driver. It is optimal for use as the driver for the miniature low-voltage stepping motors used in portable electronic equipment such as portable thermal printers.

Features

- PWM current control (external excitation)
- Simultaneous on state prevention function (through current prevention)
- Thermal shutdown circuit
- Noise canceller function
- Low-power mode control pin

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
VS supply voltage	VS		-0.3 to +18	V
Logic system supply voltage	V _{CC}		-0.3 to +18	٧
Peak output current	I _O peak	tW ≤ 20 μS	0.5	Α
Continuous output current	I _O max		0.4	Α
Emitter output voltage	VE		1.0	V
Input voltage	VIN		−0.3 to V _{CC}	V
Allowable power dissipation	Pdmax	Mounted on the specified PCB*	1.2	W
Operating temperature	Topg		-20 to +85	°C
Storage temperature	Tstg		-40 to +150	°C

Note *: Specified PCB: 114.3 \times 76.1 \times 1.6 mm

Recommended Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
VS supply voltage	VS		3.0 to 15	V
V _{CC} supply voltage	V _{CC}		3.0 to 15	V
Reference voltage	V_{REF}		0.0 to 0.5	V

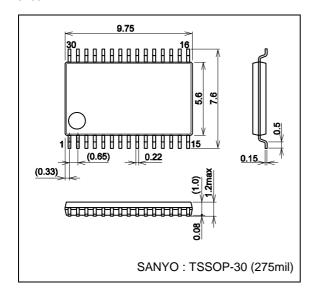
- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

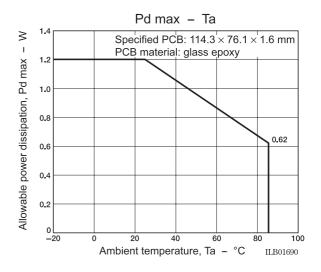
LB11948T

Electrical Characteristics at $Ta=25^{\circ}C,\ V_S=V_{CC}=5\ V,\ V_{REF}=0.3\ V$

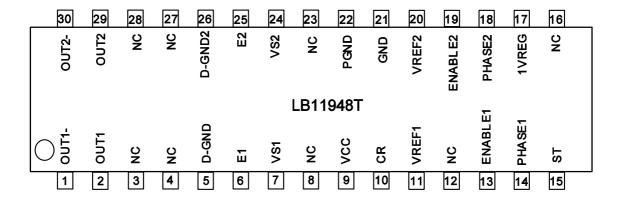
Parameter	Symbol	Conditions		Ratings		Unit
i didiffetei	Gymbol	Conditions	min	typ	max	Oill
[Output Block]						
	I _{VS} OFF	PH1 = PH2 = 0 V, EN1 = EN2 = 3.0 V ST = 3.0 V			5	μΑ
V _S system supply current	I _{VS} ON	PH1 = PH2 = EN1 = EN2 = 0 V ST = 3.0 V	28	40	52	mA
	I _{VS} wt	PH1 = PH2 = EN1 = EN2 = ST = 0 V			1	μΑ
Output saturation voltage 1	V _O (sat) 1	$I_O = +0.2A$ (source)		0.2	0.4	V
Output saturation voltage 2	V _O (sat) 2	$I_O = +0.4A$ (source)		0.3	0.5	V
Output saturation voltage 3	V _O (sat) 3	$I_O = -0.2A \text{ (sink)}$		0.2	0.4	V
Output saturation voltage 4	V _O (sat) 4	$I_O = -0.4A \text{ (sink)}$		0.3	0.5	V
Output leakage current	I _O 1 (leak)	$V_O = V_{BB}$ (sink)			50	μΑ
Output leakage current	I _O 2 (leak)	V _O = 0 V (source)	-50			μΑ
Upper and lower side output diodes						
Forward voltage 1 (upper side)	VF1	I = 400 mA	0.9	1.1	1.3	V
Forward voltage 2 (lower side)	VF2	I = 400 mA	0.9	1.1	1.3	V
[Logic Block]						
	I _{CC} OFF	PH1 = PH2 = 0 V, EN1 = EN2 = 3.0 V ST = 3.0 V	6.5	10	13.5	mA
V _{CC} system supply current	I _{CC} ON	PH1 = PH2 = EN1 = EN2 = 0 V ST = 3.0 V	7	11	15	mA
	I _{CC} wt	PH1 = PH2 = EN1 = EN2 = ST = 0 V			1	μΑ
lanut voltage	VI on		2.0			V
Input voltage	VI off				0.8	V
Input current	I _{IN}	VIN = 5 V	70	100	130	μΑ
Reference voltage: 1 V	V1V	$I_O = 1 \text{ mA}$	0.95	1	1.05	V
Current setting reactive current	IE		-22	-17	-10.5	mA
Reference current	IREF	V _{REF} = 0.3 V, VE = 0.3 V	-1			μА
CR pin current 1	ICR1	CR = 0.5 V	-2			μΑ
CR pin current 2	ICR2	CR = 3 V	1.65	2.2	2.75	mA
Sense voltage 1	VSEN1	V _{REF} = 0.5 V	0.475	0.5	0.525	٧
Thermal shutdown temperature *	TS	*		170		°C

Note *: Design guarantee value


Truth Table

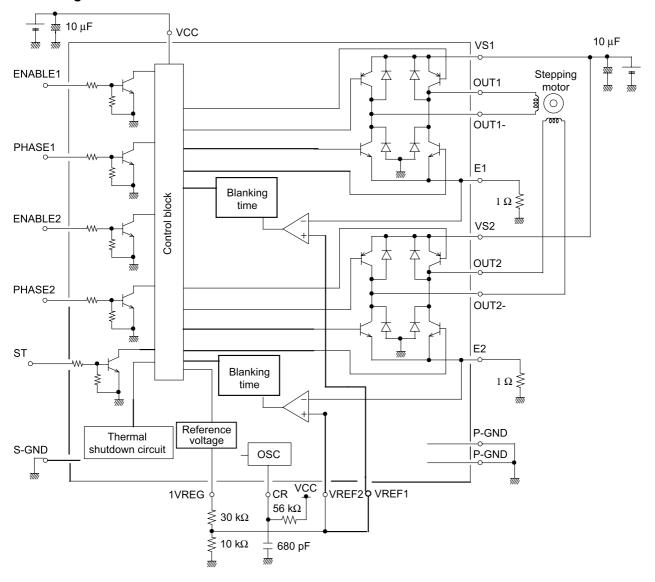

		Char	nel 1		Channel 2			
Input	Input		Output		Input		Output	
ST	PHASE1	ENABLE1	OUTA-	OUTA	PHASE2	ENABLE2	OUTB-	OUTB
Н	L	L	Н	L	L	L	Н	L
Н	Н	L	L	Н	Н	L	L	Н
Н	*	Н	OFF	OFF	*	Н	OFF	OFF
L	*	*	OFF	OFF	*	*	OFF	OFF

Note *: Levels shown as an asterisk (*) can be set to be either high or low.

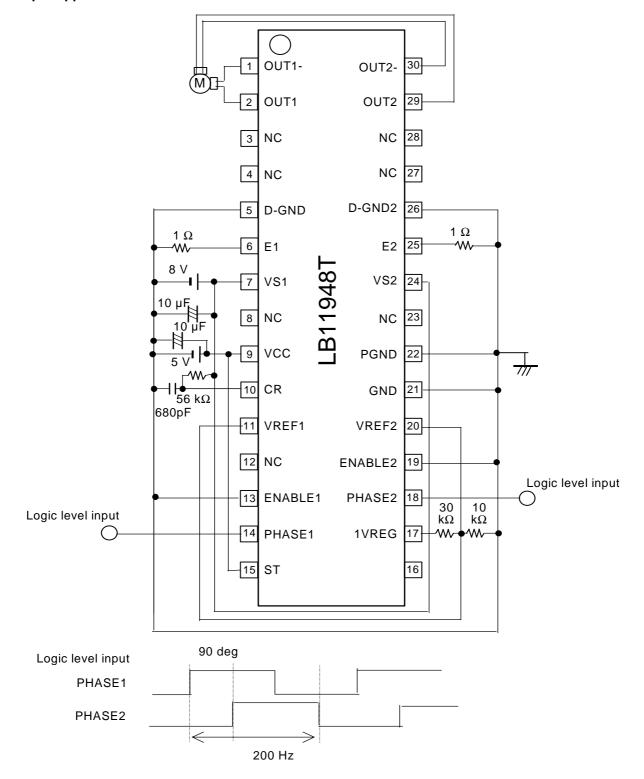

Package Dimensions

unit: mm 3259

Pin Assignment


Top view

LB11948T


Pin Functions

		1							
Pin No.	Symbol	Functional descriptions							
1	OUT1-	Output							
2	OUT1	Output							
3	NC	Unused							
4	NC	Unused							
5	D-GND	Lower side internal diode anode connection							
		Constant current control sensing							
6	E1	The motor current is set by the value of the sensing resistor Re connected between the E1 pin and ground.							
		The current is set according to the following equation: I _O = VREF/Re (A)							
7	VS1	VS power supply							
8	NC	Unused							
9	V _{CC}	V _{CC} power supply							
10	CR	RC oscillator connection							
	-	Current setting system reference voltage input							
11	VREF1	VREF1 voltage range: 0 to 0.5 V							
12	NC	Unused							
- 12	110	Logic level input							
13	ENABLE1	The output is turned off when ENABLE1 is low, and the outputs are turned on (operating state) when ENABLE2 is high.							
		Logic level input: phase switching							
14	PHASE1	When PHASE1 = high: Output pin states: OUTA: high, OUTA-: low.							
14	FRASET	When PHASE1 = low: Output pin states: OUTA: low, OUTA-: high.							
		i i i							
45	ST	Standby mode setting When ST, high the IC operates in permal apparation mode.							
15	51	When ST = high: the IC operates in normal operating mode.							
40	NO	When ST = low: the IC operates in standby mode. The V _S and V _{CC} current drain levels are under 1 μA in this mode.							
16	NC	Unused							
17	1VREG	1 V regulator circuit output							
17	TVICLG	The LB11948 includes an internal 1 V regulator circuit, and this pin is the output from that circuit. The VREF1 and VREF2 reference voltages can be set by voltage dividing the 1 V regulator output.							
		Logic level input: phase switching							
18	PHASE2	When PHASE2 = high: Output pin states: OUTA: high, OUTA-: low.							
10	TTIAGEZ	When PHASE2 = low: Output pin states: OUTA: low, OUTA-: high.							
		Logic level input							
19	ENABLE2	The output is turned off when ENABLE1 is low, and the outputs are turned on (operating state) when ENABLE2 is high.							
20	VREF2	Current setting reference voltage input VREF2 voltage range: 0 to 0.5 V							
21	GND								
21	PGND	Ground (small signal circuit system ground)							
-		Power system ground (high current circuit system ground)							
23	NC	Unused							
24	VS2	VS power supply							
	F 2	Constant current control sensing							
25	E2	The motor current is set by the value of the sensing resistor Re connected between the E2 pin and ground.							
		The current is set according to the following equation: I _O = VREF/Re (A)							
26	D-GND	Lower side internal diode anode connection							
27	NC	Unused							
28	NC	Unused							
29	OUT2	Output							
30	OUT2-	Output							

Block Diagram

Sample Application Circuit

Drive Sequence Table2 Phase Excitation Drive Sequence

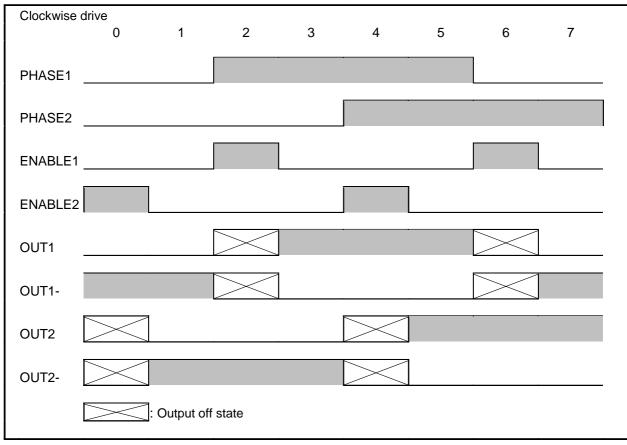
Table 1 Clockwise drive

No.	PHASE1	ENABLE1	OUT1	OUT1-	PHASE2	ENABLE2	OUT2	OUT2-
0	0	0	0	1	0	0	0	1
1	1	0	1	0	0	0	0	1
2	1	0	1	0	1	0	1	0
3	0	0	0	1	1	0	1	0

Table 2 Counterclockwise drive

No.	PHASE1	ENABLE1	OUT1	OUT1-	PHASE2	ENABLE2	OUT2	OUT2-
0	0	0	0	1	1	0	1	0
1	1	0	1	0	1	0	1	0
2	1	0	1	0	0	0	0	1
3	0	0	0	1	0	0	0	1

1-2 Phase Excitation Drive Sequence


Table 3 Clockwise drive

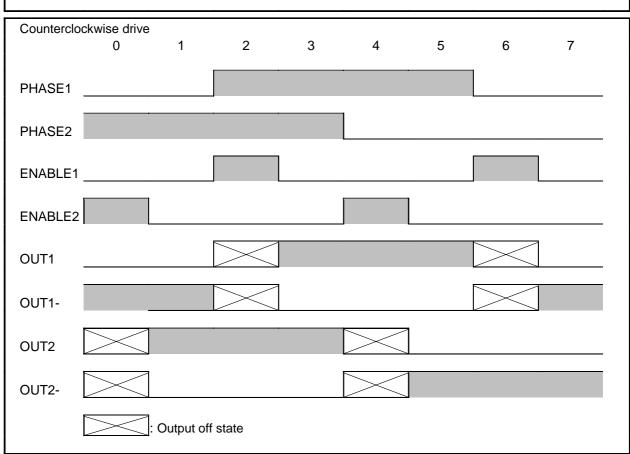
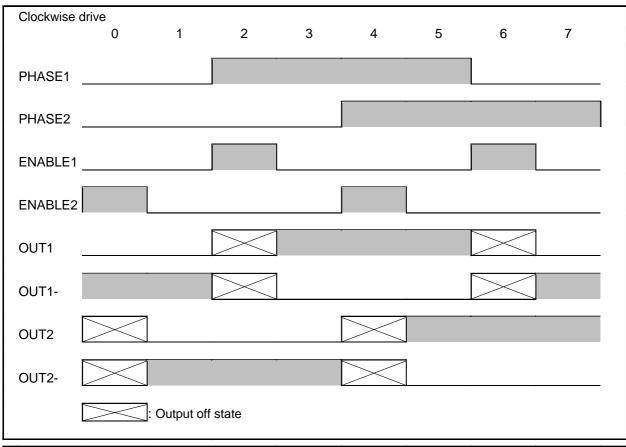
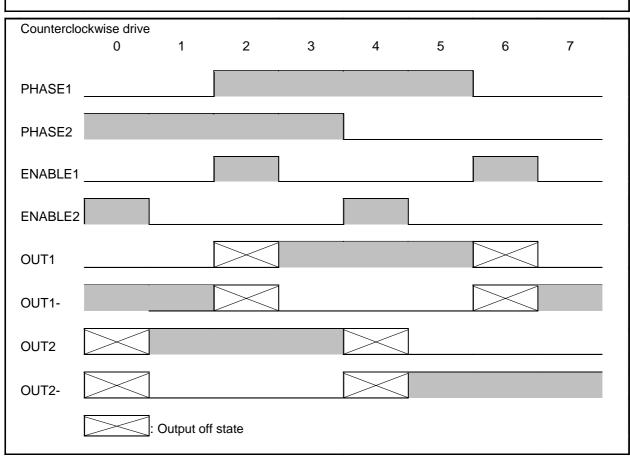
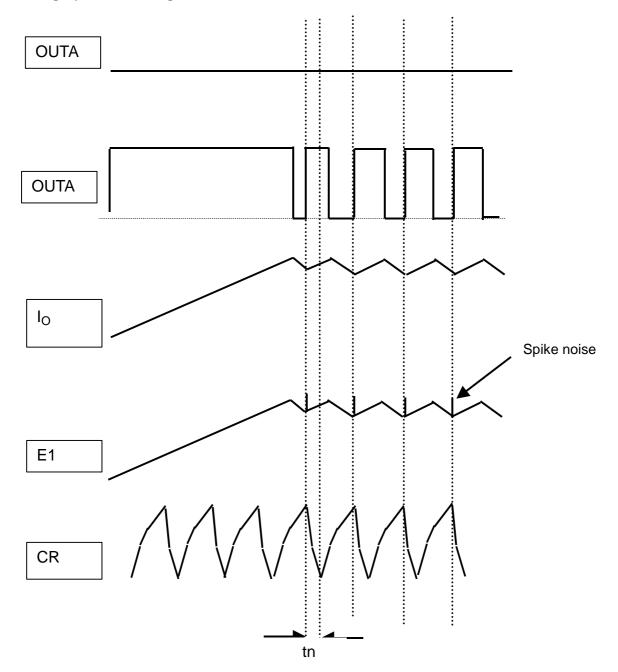

No.	PHASE1	ENABLE1	OUT1	OUT1-	PHASE2	ENABLE2	OUT2	OUT2-
0	0	0	0	1	0	1	OFF	OFF
1	0	0	0	1	0	0	0	1
2	1	1	OFF	OFF	0	0	0	1
3	1	0	1	0	0	0	0	1
4	1	0	1	0	1	1	OFF	OFF
5	1	0	1	0	1	0	1	0
6	0	1	OFF	OFF	1	0	1	0
7	0	0	0	1	1	0	1	0

Table 4 Counterclockwise drive


No.	PHASE1	ENABLE1	OUT1	OUT1-	PHASE2	ENABLE2	OUT2	OUT2-
0	0	0	0	1	1	1	OFF	OFF
1	0	0	0	1	1	0	1	0
2	1	1	OFF	OFF	1	0	1	0
3	1	0	1	0	1	0	1	0
4	1	0	1	0	0	1	OFF	OFF
5	1	0	1	0	0	0	0	1
6	0	1	OFF	OFF	0	0	0	1
7	0	0	0	1	0	0	0	1


2 Phase Excitation Drive Sequence

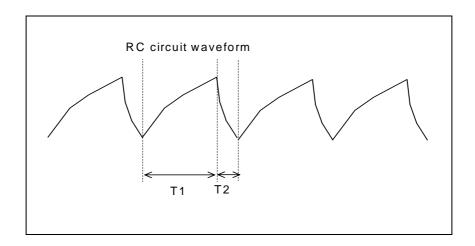


1-2 Phase Excitation Drive Sequence

Switching Operation Timing Chart

tn: The noise canceller operating time

Usage Notes


Simplified Formulas for Determining Resistor and Capacitor Values

The formulas for setting the rise time (T1) and the fall time (T2) for the RC oscillator are shown below.

T1
$$\approx 0.44$$
C·R (s)
T2 ≈ 0.72 · (C·R·100)/(R + 1000) (s)

Set the oscillator frequency using the simplified formulas shown above.

Note that the T2 triangle wave fall time is the noise canceller circuit operating time.

Setting the Constant Current Level

The reference voltage VREF1 and VREF2 can be set by voltage dividing the 1 V regulator output.

The output current is set by the voltage applied to the VREF pins and the resistors RE connected between the E1 and E2 pins and ground.

The output current is set according to the following equation: $I_O = VREF/Re(A)$

VREF voltage operating range: 0 to 1 V

E1 pin voltage range: 0 to 1 V

Notes on the VREF Pins

• Since the VREF pins are the input pins for the reference voltage used to set the current, applications must be designed so that noise that could influence circuit operation does not occur at these pins.

Notes on the Ground Pins

Since this IC switches large currents, the following notes on ground lines must be observed.

- The PCB pattern lines in areas that handle large currents must be as wide as possible so as to have low impedances, and must be kept as far as possible from the small signal systems.
- The ground terminals on the sensing resistors Re connected to the E pins (E1 and E2) must be connected as close as possible to the IC GND (pin 21), PGND (pin 22), or DGND (pins 5 and 26) pins as possible.
- The capacitors between V_{CC} and ground and between V_{BB} and ground must be as close as possible to the corresponding V_{CC} and V_{BB} pin in the pattern.

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 2004. Specifications and information herein are subject to change without notice.