

300–MHz Quadrature Modulator

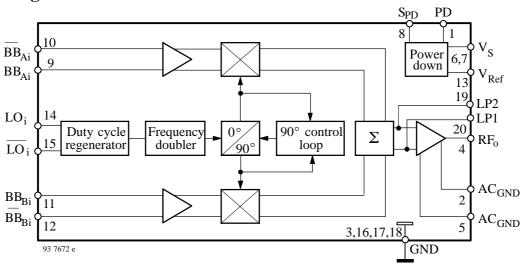
Description

The IC U2793B is a 300-MHz quadrature modulator that uses Atmel Wireless & Microcontrollers' advanced UHF process. It features low current consumption, singleended RF ports and adjustment-free application, which makes the device suitable for all digital radio systems, e.g., GSM, PCN, JDC and WLAN. As an option, output level and spurious products are adjustable at Pins 19

Features

- Supply voltage: 5 V (typical)
- Low power consumption: 15 mA / 5 V (typical at 0 dBm output level
- Output level and spurious products adjustable (optional)
- Excellent sideband suppression by means of duty cycle regeneration of the LO input signal
- Phase-control loop for precise 90° phase shifting
- Power-down mode
- Low LO input level: -15 dBm (typical)
- 50- Ω single-ended LO and RF port
- LO frequency range of 30 MHz to 300 MHz

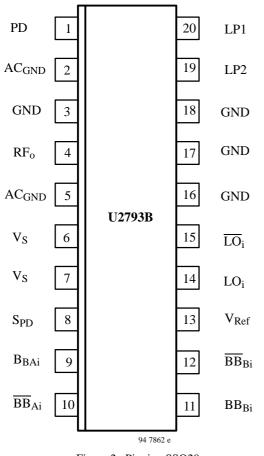
Block Diagram


and 20. In conjunction with Atmel Wireless & Microcontrollers' U2795B mixer, an up converter up to 2 GHz can be realized.

Electrostatic sensitive device. Observe precautions for handling.

Benefits

- Extended talk time due to increased battery life
- Few external components results in cost and board space saving
- Adjustment free hence saves time
- Modular system for different applications by adding U2795B reduces the costs


Figure 1. Block diagram

Ordering Information

Extended Type Number	Package	Remarks
U2793B-MFS	SSO20	Tube
U2793B-MFSG3	SSO20	Taped and reeled

Pin Description

Pin	Symbol	Function
1	PD	Power down port
2	AC _{GND}	AC ground
3	GND	Ground
4	RFo	RF output
5	AC _{GND}	AC ground
6	Vs	Supply voltage
7	Vs	Supply voltage
8	S _{PD}	Settling time power down
9	BB _{Ai}	Baseband input A
10	BBAi	Baseband input A inverse
11	BB_{Bi}	Baseband input B
12	\overline{BB}_{Bi}	Baseband input B inverse
13	V _{Ref}	Reference voltage (2.5 V)
14	LOi	Input LO
15	LOi	Input LO inverse, typically grounded
16	GND	Ground
17	GND	Ground
18	GND	Ground
19	LP2	Output low pass and power control
20	LP1	Output low pass and power control

Figure 2. Pinning SSO20

Absolute Maximum Ratings

Parameters		Symbol	Value	Unit
Supply voltage	Pins 6 and 7	Vs	6	V
Input voltage	Pins 9, 10, 11, 12, 14 and 15	Vi	0 to V _S	V
Junction temperature		Tj	125	°C
Storage temperature range		T _{stg}	-40 to +125	°C

Operating Range

Parameters	Symbol	Value	Unit
Supply voltagePins 6 and 7	Vs	4.5 to 5.5	V
Ambient temperature range	T _{amb}	-40 to +85	°C

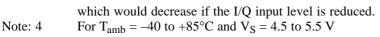
Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient SSO20	R _{thja}	140	K/W

Electrical Characteristics

Test conditions (unless otherwise specified); $V_S = 5 \text{ V}$, $T_{amb} = 25^{\circ}\text{C}$, referred to test circuit. System impedance Zo = 50 Ω , $f_{LO} = 150 \text{ MHz}$, $P_{LO} = -15 \text{ dBm}$, $V_{BBi} = 1.0 \text{ V}_{pp}$, differential

Parameters	Test conditions / Pin	Symbol	Min.	Typ.	Max.	Unit
Supply-voltage range	Pins 6 and 7	Vs	4.5	5	5.5	V
Supply current	Pins 6 and 7	IS		15		mA
Baseband inputs	Pin 9–10, 11–12	1	L	-1		-
Input-voltage range (diff.)		V _{BBi}		1000	1500	mVpp
Input impedance		Z _{BBi}		30		kΩ
Input-frequency range		f _{BBi}	0		50	MHz
LO input	Pins 14 and 15		1	1 1		1
Frequency range		f _{LOi}	30		300	MHz
Input level ¹		P _{LOi}		-15	-5	dBm
Input impedance		Z _{iLO}		2)		Ω
Voltage standing wave ratio		VSWRLO		3.5		
Duty-cycle range		DCRLO	0.4		0.6	
RF output	Pin 4		1	1 1		1
Output level	$f_{LO} = 150 \text{ MHz},$ $V_{BBi} = 1 \text{ V}_{pp}, \text{ differential}$	P _{RFo}	-3	-1		dBm
	$f_{LO} = 50 \text{ MHz},$ $V_{BBi} = 0.3 \text{ V}_{pp},$ differential			0		
LO suppression	$P_{LO} = -20 \text{ dBm}$	LO _{RFo}	32	45		dB
Voltage standing wave ratio		VSWR _{RF}		1.4	2	
Sideband suppression ³		SBS _{RFo}	35	45		dB
Phase error ⁴		Pe		<1		deg
Amplitude error		Ae		<±0.25		dB
Noise floor	$V_{BBi} = 2 \underline{V}, V_{\overline{BBi}} = 3 V$ $V_{BBi} = V_{\overline{BBi}} = 2.5 V$	N _{FL}		-137 -143		dBm/Hz
Power-down mode						
Supply current		I _{PD}		10	1	μΑ
Settling time	$\begin{array}{llllllllllllllllllllllllllllllllllll$	t _{SPD}		10		μs
Switching voltage	Pin 1					1
Power on		V _{PDon}	4			V
Power down		V _{PDdown}			1	V
Reference voltage	Pin 13	1	I	1		
Voltage range		V _{Ref}		$2.5 \pm 5\%$		V
Output impedance		Zo _{Ref}		30		Ω


Note: ¹ Required LO level is a function of the LO frequency.

Note: ² The LO input impedance is consisting of a 50 Ω resistor in series with a 15 pF capacitor

Note: ³ With the Pins 19 and 20 spurious performance especially for low frequency application can be improved by adding a chip capacitor between LP1 and LP2. In conjunction with a parallel resistor the output level can be adjusted to the following mixer stage without degration of LO suppression and noise performance

U2793B

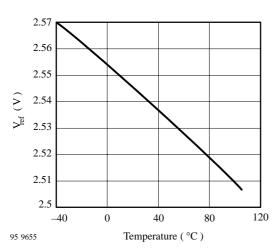


Figure 3. Reference voltage versus Tamb

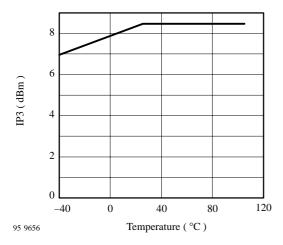


Figure 4. OIP3 versus T_{amb} , LO = 150 MHz, level -10 dBm

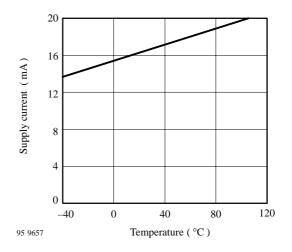


Figure 5. Supply current versus T_{amb}

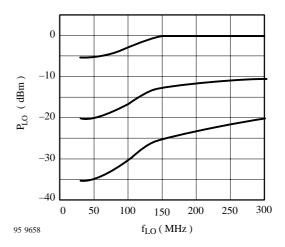


Figure 6. Recommended LO power range versus LO frequency at $T_{amb}=25^{\circ}C$

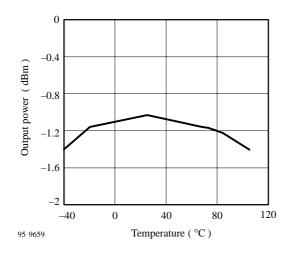
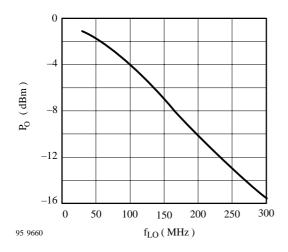
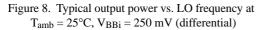




Figure 7. Output power versus Tamb

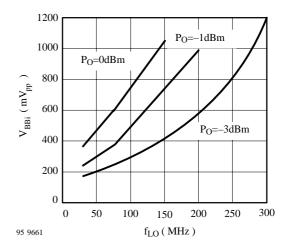


Figure 9. Typical required V_{BBi} input signal (differential) versus LO frequency for $P_O=1\ dBm$ and $P_O=-3\ dBm$

Evaluation Board Circuitry

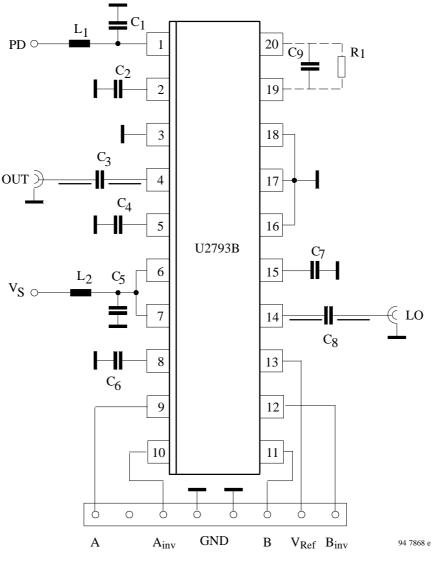


Figure 10. Evaluation board circuitry

Part list	
C1, C2, C3, C4, C6	1 nF
C7, C8	100 pF
C5	100 nF
C9, R1	1 to 10 pF
L1, L2	PCB Inductor
	50-Ω Microstrip
	optional

The above listed components result in a PD settling time of $<20~\mu s.$ Use of other component values will require consideration for time requirements in burst-mode applications.

PCB Layout Evaluation Board

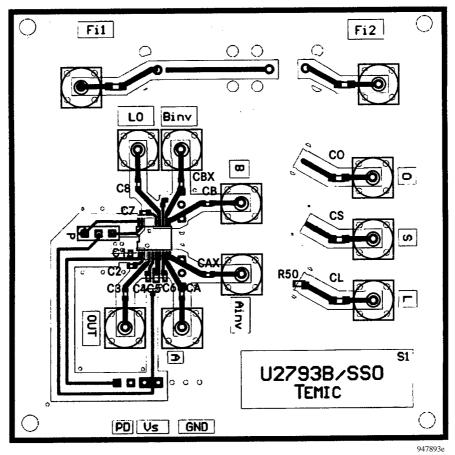


Figure 11. PCB layout

Application Circuit

Bias network for AC-coupled baseband inputs (V_{BA}, V_{BB}). R1 = 2.5 k Ω , R2 \leq 10 k Ω for \geq 35 dB LO suppression which is in reference to < 2 mV input offset.

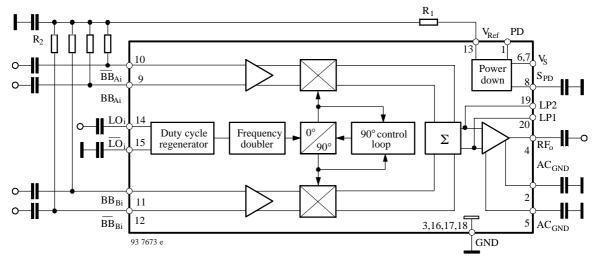


Figure 12. Application circuit with AC-coupled baseband inputs

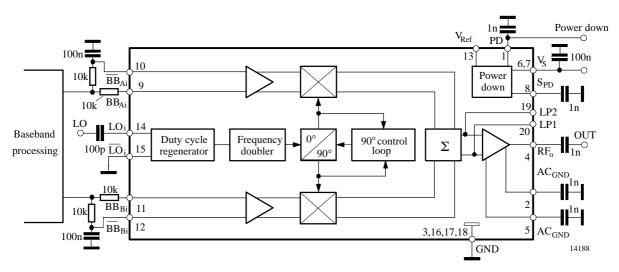
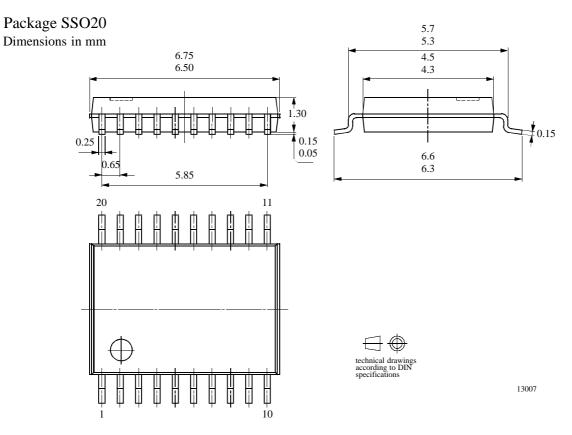



Figure 13. Application circuit with DC-coupled baseband inputs

Package Information

Ozone Depleting Substances Policy Statement

It is the policy of Atmel Germany GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Atmel Wireless & Microcontrollers products for any unintended or unauthorized application, the buyer shall indemnify Atmel Wireless & Microcontrollers against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Data sheets can also be retrieved from the Internet: http://www.atmel-wm.com

Atmel Germany GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423