

AKD4520A

Evaluation board Rev.B for AK4520A

General description

AKD4520A is an evaluation board for the digital stereo audio 20bit A/D and D/A converter, AK4520A. The A/D converter section includes the input buffer circuits. The AKD4520A can evaluate A/D converter and D/A converter separately in addition to loopback mode(A/D → D/A). The A/D section can be evaluated by interfacing with AKM's DAC evaluation boards(AKD4328, AKD4319, AKD4320 and AKD4321) directly. The AKD4520A has the interface with AKM's wave generator using ROM data and AKM's ADC evaluation boards (AKD5391, AKD5390, AKD5350 and AKD5352/1). Therefore, it is easy to evaluate the D/A section. The AKD4520A also has the digital audio interface and can achieve the interface with digital audio systems via opt-connecter.

Ordering guide

AKD4520A

--- Evaluation board for AK4520A

Function

- ☐ On-Board analog input buffer circuit
- ☐ On-board clock generator
- ☐ Compatible with the following 2 types of interface
 - 1)Direct interface with AKM's A/D and D/A converter, and direct interface with a signal generator(AKD43XX) by 10pin Header
 - 2)DIT/DIR with optical input/output
- □ A BNC connector for an external clock input

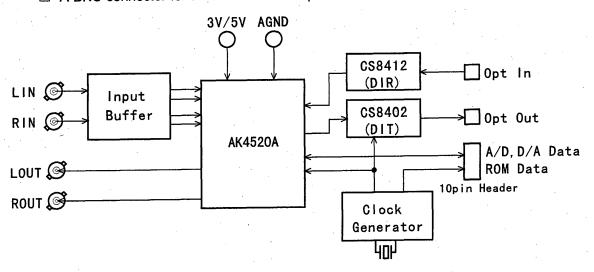
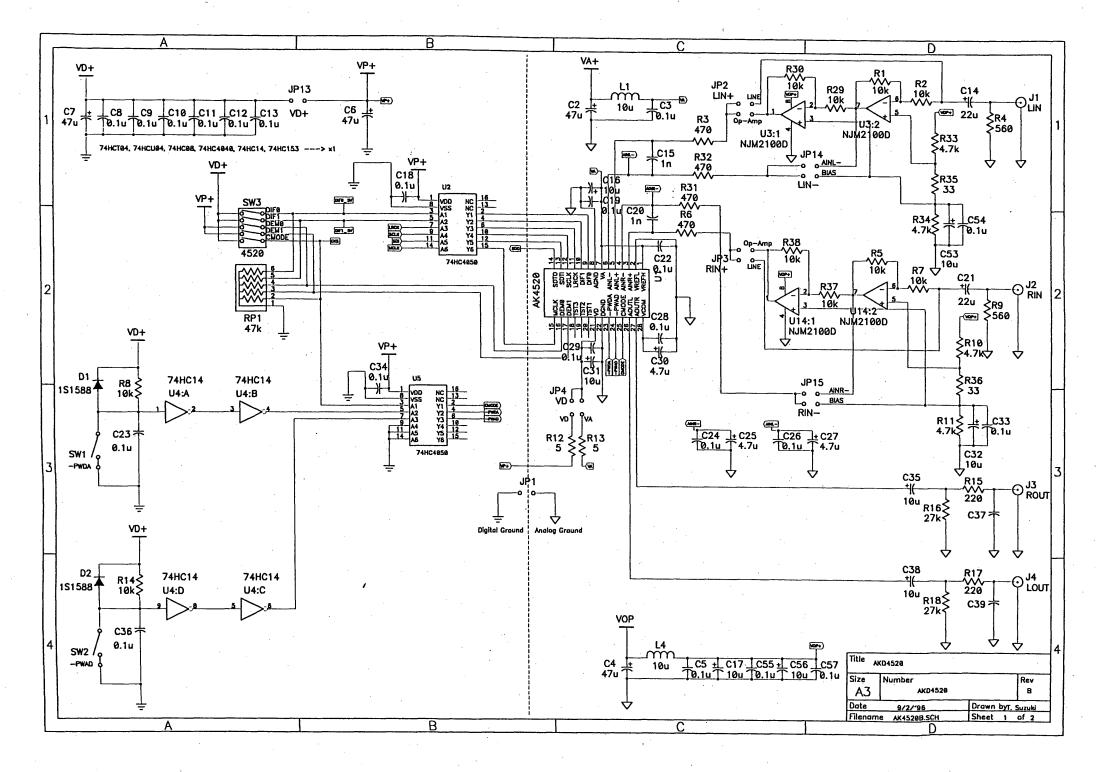
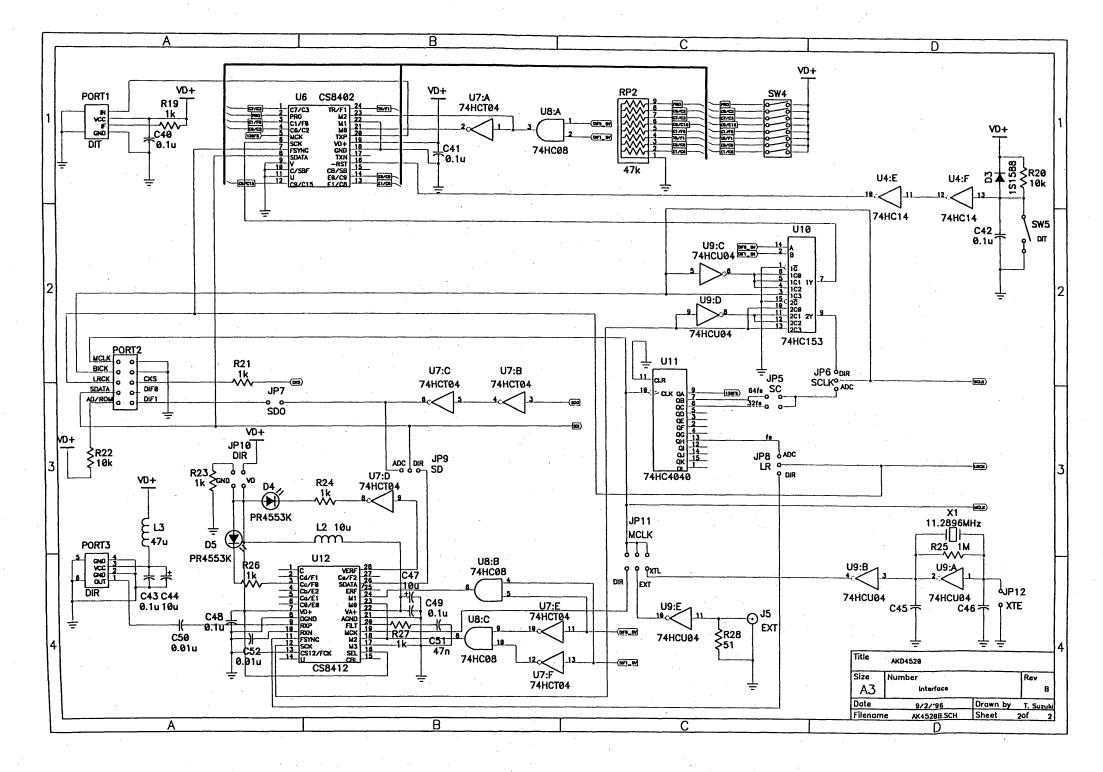




Figure 1. AKD4520A Block Diagram

ASAHI KASEI [AKD4520A]

Input Buffer Circuit

The ADC inputs are Full-differential and internally biased to the ADC voltage pins, VRADR & VRADL with 30k ohms(typ) resistance. The input signal range scales with the supply voltage and nominally 0.3V x (VREFH-VREFL) Vp-p. The signal is input from either positive or negative input and the input signal range scales with the supply voltage and nominally 0.6 x (VREFH-VREFL)Vpp. In case of Single-ended input, the distortion around full scale degrades compared with Full-differential input. The AK4520A can accept input voltages from AGND to VA.

The Input Buffer Circuit on the board is able to input Full-differential and Single-ended of gain 1. External analog signal fed through the BNC connector is terminated by a resistor of 560 ohms. The resistor value should be properly selected in order to meet the output impedance of the signal source. The 'Cin' is an important part in the buffer circuit design. (Example circuit: fc = 150kHz). A large 'Cin' can improve the distortion of the converter because it lowers the effect of feed through noise from the device. However, the larger 'Cin' becomes heavier load for the input buffer amp and increases its distortion. The actual value should be decided by taking a balance between both factors. And please consider the frequency response within audio band.

AK4520A has -110 \sim -115dB Tone Level. Idle Tone Level depends on digital noise coupling from external circuits and this noise can be reduced by application circuit. The Idle Tone Level can be reduced by which method.

First, there is method of dropping digital power supply voltage(VD). This can be reduced digital noise, as a result, Idle Tone Level is buried in noise floor.

Second, approximately -30mV(@VA=5.0V) offset is added at AIN pins of the AK4520A to move tone outside the audio band frequency. In the circuit example(Figure 2.), the bias voltage of Op-amp in the circuit is divided by the resistor as difference between BIAS+ and BIAS-, which is about 17mV at all times. -34mV offset is added at AIN pins of the AK4520A. On the board, bias voltages of left channel and right channel are distributed from differential source. In case of the common source bias voltage, the crosstalk occurs corresponding to the AC impedance of the bias circuit.

Adding offset as aforesaid, "pop" noise is generated by HPF(fc=1Hz, @fs=48kHz) in the AK4520A at reset. The offset of 34mV is -39dBFS against 3.0Vp-p input voltage.

For example, it takes "t = -170.46[ms] $x \ln(0.089) = 412$ [ms] (@fs=48kHz, VA=5.0V)" to decrease until -60dBFS (8.9% against -39dBFS).

External mute should consider above.

1. In case of Full-differential inputs (Default)

[JP2, JP3] : Op-amp [JP14] : AINL-[JP15] : AINR-C24,C25,C26,C27 : None R35, R36 : 33Ù C15, C20 : 1nF

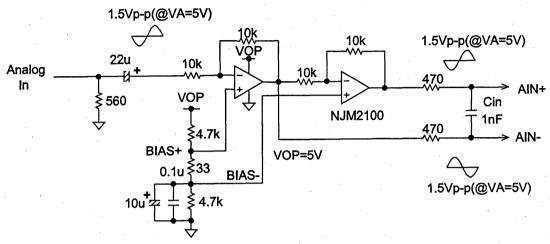


Figure 2.Full-differential Input Buffer Circuit Example

2. In case of Single-ended Input (bias voltage input)

In case of worrying Idle Tone Level, adds offset from external and moves it outside the audio band frequency.

Two inverted op-amps are connected on the evaluation board, however, do not need 2nd op-amp. In this case, if inverted op-amp is input to AIN- pin, can be corresponded with polarity.

[JP2, JP3] : Op-amp [JP14, JP15] : BIAS C24,C25,C26,C27 : None R35, R36 : 68Ù C15, C20 : 1nF

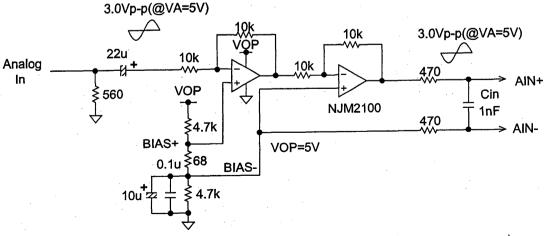


Figure 3. Single-ended Input Buffer Circuit Example (Bias voltage input)

3. In case of Single-ended Input (no input bias)

Analog signal is directly input from BNC connector and this case can reduce the part of input buffer circuit. In case of comparing Full-differential Input circuit(Figure 2.) or Single-ended Input circuit(Figure 3.) with no input buffer circuit shown in Figure 4., as "pop" noise is large at reset, external mute should be taken enough time.

[JP2, JP3] : LINE: Analog signal is input via BNC connector directly.
In this case, U3 and U14 of Op-amp should be taken off.

[JP14, JP15] : Open C24, C26 : 0.1uF C25, C27 : 4.7uF C15, C20 : 2.2nF R31, R32 : none

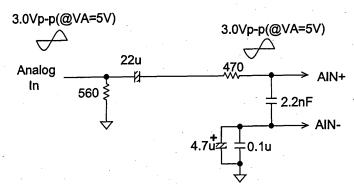


Figure 4. Single-ended Input Buffer Circuit Example (no input buffer)

* AKM assumes no responsibility for the trouble when using the above circuit examples.

Analog Output

The analog outputs are also single-ended and centered the VCOM voltage. The input signal range scales with the supply voltage and nominally 0.6 x VA Vp-p. The DAC includes a combination of switched-capacitor filter(SCF) and continuous-time filter(CTF), so any external filters are not required. However, the DAC has DC offset about a few mV, it is usually eliminated by the capacitor. And the output level of DAC is about 3.1Vp-p at VREF=5V.

Grounding and Power Supply Decoupling

The AK4520A requires careful attenuation to power and grounding arrangements. VD should be supplied from analog power supply. AGND and DGND of the AK4520A should be connected to analog ground plane. System analog ground and digital ground should be connected together near to where the supplies are brought onto the printed circuit board.

Decoupling capacitors should be as near to the AK4520A as possible, with the small value ceramic capacitor being the nearest.

Operation sequence

- ① Set up the power supply lines.

 VA+=VP+=VD+=2.7 ~ 3.6V or 4.5 ~ 5.5V, AGND=DGND=0V

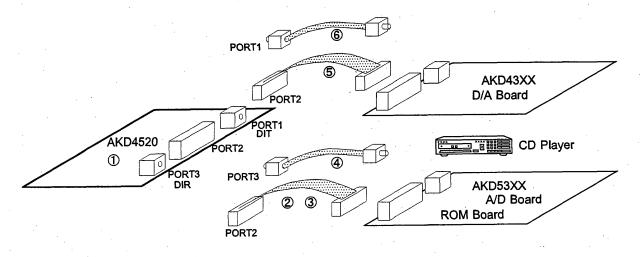
 Each supply line should be distributed from the power unit.

 The only CS8402 and CS8412 on the board needs VD+≥ 3.2V.

 When changing the voltages of VP+ and VD+, JP13 should be open.
- ② Set up the evaluation modes and jumper pins. (See the next item)

 There are many jumper pins to cover many evaluation mode.

 Please take care of setting.
- ③ Set up the DIP switch. (See the next item)
 Set up the DIT. This does not affect AK4520A operation.
- Power on.
 The AK4520A are placed in the power-down mode by turning each power down pin,
 -PWAD(SW1) -PWDA(SW2) "off" independently.
- (5) The AK4520A can be reset by SW1 and SW2 during operation.


 "off" resets the device, "on" is for normal operation.

■ The evaluation modes and corresponding jumper pin setting.

1.Evaluation mode

Applicable Evaluation Mode

- ① Loopback mode (Default)
- ② Using A/D converted data from ideal sine wave generated by ROM data.
- 3 Using A/D converted data
- 4 DIR(Optical Link)
- (5) Using D/A converted data
- 6 DIT(Optical Link)
- ② All interface signals including master clock are fed externally.

ring cables corresponded some evaluation modes

① Loopback mode (Default)

Don't connect PORT2 and PORT3. In case of using external clock through a BNC connector, selects EXT on JP11(MCLK) and shorts JP12(XTE).

When SCLK is 64fs, Audio Serial Interface Format is not corresponded to Mode 0 and Mode 1.

Mode 1 → ADC:16bit, MSB justified, DAC: 16bit, LSB justified.

Mode 2 \rightarrow ADC:20bit, MSB justified, DAC: 20bit LSB justified.

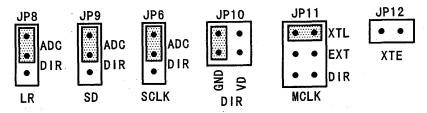


Figure 6. Jumper set up (Loopback mode)

F W ② Using A/D converted data from ideal sine wave generated by ROM data
Digital signals generated by AKD43XX are used. PORT2 is used for the interface with
AKD43XX. Master clock is sent from AKD4520A to AKD43XX and LRCK, SCLK, SDTO are
done from AKD43XX to AKD4520A. In case of using external clock through a BNC connector,
selects EXT on JP11(MCLK), shorts JP12(XTE) and opens JP7(SDO). Audio Serial Interface
Format is not corresponded Mode 1.

Mode 1 → DAC: 20bit, LSB justified

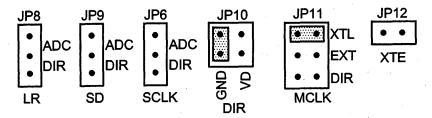


Figure 7. Jumper Set up (ROM)

3 Using A/D converted data

It is possible to make evaluation in the form of analog inputs and analog outputs by interfacing with various AKM's A/D evaluation boards (AKD5391, AKD5390, AKD5350 and AKD5352/1) with PORT2. In case of using external clock through a BNC connector, selects EXT JP11(MCLK) and shorts JP12(XTE). Then JP7(SDO) should be open.

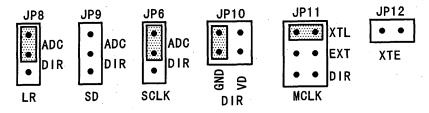


Figure 8. Jumper Set up (A/D)

4 DIR (Optical Link)

PORT3 is used. DIR generates MCLK, SCLK and LRCK from the received data through optical connector(TORX174). Used for the evaluation using CD test disk. Nothing should be connected to PORT1 and PORT2. CS8412(DIR) needs the operating voltage of VD+≥ 3.2V. Audio Serial Interface Format is not corresponded to Mode 1.

Mode → DAC: 20bit, LSB justified

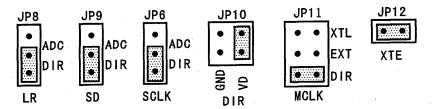


Figure 9. Jumper Set up (DIR)

⑤ Using D/A converted data

It is possible to make evaluation in the form of analog inputs and analog outputs by interfacing with various AKM's D/A evaluation boards (AKD4328, AKD4319, AKD4320 and AKD4321) with PORT2. Then JP7(SDO) should be open.

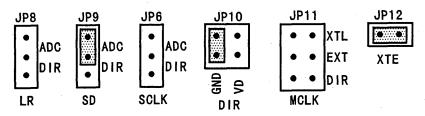


Figure 10. Jumper Set up (D/A)

6 DIT (Optical Link)

PORT1 is used. DIT generated SDATA from received data and which is output through optical connector(TOTX174). It is possible to connect AKM's evaluation boards (AKD4321, AKD4320, AKD4319 and AKD4328), digital-amplifier and etc. Nothing should be connected to PORT2 and PORT3. This set-up is the same ① as it. CS8402(DIT) needs the operating voltage of VD+≥ 3.2V .SW1 is kept the "off" during normal operation.

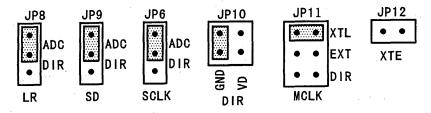


Figure 11. Jumper Set up (DIT)

All interfacing signals including master clock are fed externally.

Under the following set-up, all external signals needed for the AK4520A to operate could be fed through PORT2. In case of interfacing external sources to D/A converter, JP9(SD) should be open. And in case of using A/D data to externally, JP9(SD) is set ADC position. When JP9(SD) is open, the A/D data can be output from the DIF0 pin of PORT2 at the same time if JP12(XTE) is shortened.

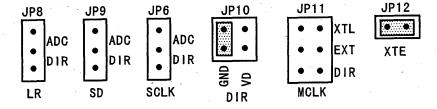


Figure 12. Jumper Set up (EXT)

2. BIT CLK (SC) set up

[JP5] The bit clock(SCLK) sets up 32: 32fs, 64: 64fs Figure shows 64fs example.

3. Jumper-set up and explanation

[JP13] Shorts VD+ and VP+.

In case of separating VD+ and VP+ supplies, JP13 should be open.

■ The function of the toggle SW.

[SW1] Resets a part of the A/D. Keep "on" during normal operation.

[SW2] Resets a part of the D/A. Keep "on" during normal operation.

[SW5] Resets the CS8402."off" resets the internal counter of CS8402, then Bi-phase signal is not output. Keep "on" during normal operation.

■ The indication content for LED.

[D4] Monitors VERF pin of the CS8412. LED turns on when some error has occurred to CS8412.

[D5] Indicates whether the input data is pre-emphasized or not. LED turns on when the data is pre-emphasized.

■ DIP switch set up

1.SW3: This switch sets up the operation mode of the AK4520A.

Confirm the set up of the DIP-SW before evaluation starts. ON means "H" and OFF,"L".

No.	PIN	ON	OFF			
1	DIF0	See the Table 3.				
2	DIF1	Serial Data Modes				
3	DEM0	See the Table 1.				
4	DEM1	De-emphasis Frequency				
5	CMODE	384fs	256fs			

Table 2. DIP SW set-up the AK4520A

DEM1	DEM0	Frequency
OFF	OFF	0: 44.1kHz
OFF	ON	1: OFF
ON.	OFF	2: 48kHz
ON	ON	3: 32kHz

Table 1. De-emphasis Frequency

DIF1	DIF0	MODE	SDTO (ADC)	SDTI (DAC)	L/R	SCLK
OFF	OFF	0	16bit, MSB justified	16bit, LSB justified	H/L	≧ 32fs
OFF	ON	1	20bit, MSB justified	20bit, LSB justified	H/L	≧ 32fs
ON	OFF	2	20bit, MSB justified	20bit, MSB justified	H/L	≧ 40fs
ON	ON	3	IIS (I2S)	IIS (I2S)	L/H	32fs or ≧ 40fs

Table 3. Serial Data Modes

[AKD4520A]

2. SW4: This switch sets the C-bit of CS8402. (Default is the consumer mode)

This set up does not affect the evaluation of the AK4520A. In case of using DIT, need to set it up correctly. For more detailed configurations, please refer to the CS8402 data-sheet.

OFF=0,ON=1	Contents
PRO=0	Professional mode, C0=1
C6 , C7	C6,C7 - Sampling frequency
11	00 - Not indicated. Receiver default to 48kHz. 01 - 48kHz
0 1 0 0	10 - 44.1kHz 11 - 32kHz
C9	C8,C9,C10,C11 - 1bit of channel mode
1	0000 - Mode not indicated. Receiver default to
~	2-channel mode.
0	0100 - Stereophonic.
<u>C1</u>	C1 - Audio mode
1	0 - Normal audio
0	1 - Not audio
TRNPT	Transparent mode *CS8402 is CRE
0	Normal mode
1	Transparent mode
EM1,EM0	C2,C3,C4 - Encoded audio signal emphasis
1 1	000 - Emphasis not indicated. Receiver defaults to no emphasis with manual override enable.
10	100 - None
01	110 - 50/15usec 111 - CCITT J.17
	PRO=0 C6,C7 1 1 1 0 0 1 0 0 C9 1 0 TRNPT 0 1 EM1,EM0 1 1

Table 4. DIP switch set up of CS8402

Switch	OFF=0,ON=1	Contents		
1	PRO=1	Consumer mode, C0=0 (Default)		
2	C2	C2 - Copy		
	1	0 - Copy inhibited		
Default	0	1 - Copy permitted		
3	C3	C3,C4,C5 - Pre-emphasis		
Default	1	000 - None		
	0	100 - 50/15usec		
4	C15	C15 - Generation Status		
	1	0 - See the standard		
Default	0	1 - See the standard		
6,5	FC1,FC0	C24,C25,C26,C27- Sampling frequency		
	0 0	0000 - 44.1kHz		
Default	0 1	0100 - 48kHz		
]	1 0	1100 - 32kHz		
	11	0000 - 44.1kHz, CD mode		
8,7	<u>C8,C9</u>	C8-C14 - Category code		
Default	11	0000000 - General		
	10	0100000 - PCM encoder/decoder 1000000 - CD		
	0 0	1100000 - CD 1100000 - DAT		

Table 5. DIP switch set up of CS8402 (Consumer mode)

AK4520A Measurement Results

(RHODE & SCHWARZ, UPD04) No.1

[Measurement condition]

· Measurement unit

: ROHDE & SCHWARZ, UPD04

· MCLK · BICK

: 256fs : 64fs : 20bit

• Bit

: 44.1kHz

Power Supply

: VA=VD=3V & 5V

Interface

: DIT/DIR

· Room temp.

1. A/D Output (Full-differential inputs, refer to Figure 2.)

_	land signal	Management Filter	Results		
Parameter	Input signal	Measurement Filter	VA=VD=5V	VA=VD=3V	
S/ (N+D)	1kHz,-0.5dB	20kLPF	91.6dB	88.7dB	
Dynamic	1kHz,-20dB	20kLPF	96.5dB	93.0dB	
Range		20kLPF,A-weight	100.5dB	96.7dB	
Dynamic	1kHz,-60dB	20kLPF	96.7dB	93.1dB	
Range		20kLPF,A-weight	100.4dB	96.5dB	
S/N	1kHz,0dB/GND IN	20kLPF	96.2dB	92.6dB	
	, ,	20kLPF,A-weight	100.5dB	96.7dB	
•		CCIR-ARM	96.2dB	92.3dB	

2. A/D Output (Single-ended inputs, refer to Figure 3. or Figure 4.)

		S. S. C.	Results		
Parameter	Input signal	Measurement Filter	VA=VD=5V	VA=VD=3V	
S/ (N+D)	1kHz,-0.5dB	20kLPF	83.2dB	84.9dB	
Dynamic	1kHz,-20dB	20kLPF	dB	94.3dB	
Range		20kLPF,A-weight	dB	97.7dB	
Dynamic	1kHz,-60dB	20kLPF	dB	94.5dB	
Range		20kLPF,A-weight	dB	98.0dB	
S/N	1kHz,0dB/GND IN	20kLPF	dB	94.1dB	
-,		20kLPF,A-weight	dB	97.8dB	
		CCIR-ARM	96.6dB	93.6dB	

3. D/A Output

			Resi	ults
Parameter	Input signal	Measurement Filter	VA=VD=5V	VA=VD=3V
S/ (N+D)	1kHz,0dB	20kLPF	90.6dB	92.0dB
Dynamic	1kHz,-20dB	20kLPF	97.1dB	93.0dB
Range		20kLPF,A-weight	100.5dB	96.4dB
Dynamic	1kHz,-60dB	20kLPF	97.3dB	93.0dB
Range	, <u>.</u> ,	20kLPF,A-weight	100.3dB	96.1dB
S/N	1kHz,0dB/"0" IN	20kLPF	95.5dB	92.3dB
] 5/	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20kLPF,A-weight	100.2dB	96.0dB
		CCIR-ARM	96.4dB	92.0dB

4. A/D \rightarrow D/A Loopback Output (A/D: Full-differential inputs, refer to Figure 2.)

	In much alamat	Manager Tiltor	Results		
Parameter	Input signal	Measurement Filter	VA=VD=5V	VA=VD=3V	
S/ (N+D)	1kHz,-0.5dB	20kLPF	89.1dB	89.5dB	
Dynamic	1kHz,-20dB	20kLPF	95.7dB	91.0dB	
Range		20kLPF,A-weight	98.7dB	94.5dB	
Dynamic	1kHz,-60dB	20kLPF	95.8dB	91.2dB	
Range	1.	20kLPF,A-weight	98.7dB	94.1dB	
S/N	1kHz,0dB/GND IN	20kLPF	94.6dB	92.0dB	
		20kLPF,A-weight	98.0dB	96.0dB	
		CCIR-ARM	94.8dB	90.3dB	

No.2 (Audio Precision, System One)

[Measurement condition]

· Measurement unit : Audio Precision, System One (RMS mode)

MCLK : 256fs
 BICK : 64fs
 Bit : 20bit
 Bandwidth : 22kHz

• fs : 44.1kHz • Power Supply : VA=VD=3V & 5V

• Interface : DIT/DIR

· Room temp.

1. A/D Output (Full-differential inputs,refer to Figure 2.)

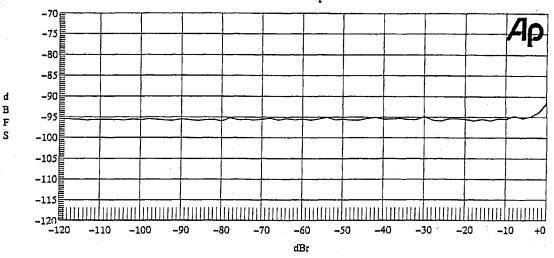
		Management Filter	Results		
Parameter	eter Input signal Measurement Filter		VA=VD=5V	VA=VD=3V	
S/ (N+D)	1kHz,-0.5dB		91.7dB	88.0dB	
			(90.7dB)		
Dynamic	1kHz,-20dB		96.7dB	93.0dB	
Range			(93.7dB)		
Dynamic	1kHz,-60dB		95.6dB	93.0dB	
Range			(93.3dB)		
S/N	1kHz,0dB/GND IN	A-weight	100.3dB	92.8dB	
		A-weight	(97.9dB)	<u> </u>	

 ^{* ()} shows the performance with 16bit data.

2. A/D Output (Single-ended inputs, refer to Figure 3. or Figure 4.)

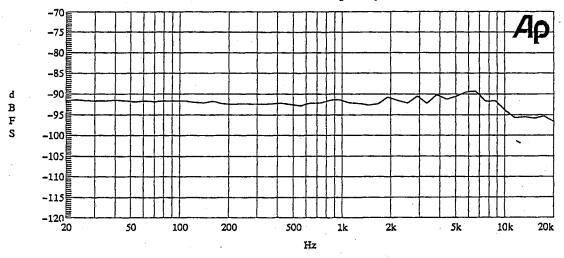
		A4.	Results		
Parameter	Input signal	Measurement Filter	VA=VD=5V	VA=VD=3V	
S/ (N+D)	1kHz,-0.5dB		82.5dB	83.6dB	
Dynamic Range	1kHz,-20dB		96.4dB	93.4dB	
Dynamic Range	1kHz,-60dB		96.4dB	93.5dB	
S/N	1kHz,0dB/GND IN		96.3dB	93.6dB	
0/11		A-weight	100.5dB	98.1dB	

3. D/A Output


			Results			
Parameter	Input signal	Measurement Filter		VA=VD=5V		VA=VD=3V
	,		32kHz	44.1kHz	48kHz	44.1kHz
S/(N+D)	1kHz,0dB	20kLPF	91.2dB	90.8dB	90.4dB	89.0dB
				(89.0dB)		
		22kHz	65.5dB	90.3dB	90.3dB	88.3dB
		30kHz	57.4dB	82.2dB	86.0dB	81.7dB
,		A-Weight	69.1dB	88.8dB	89.9dB	88.7dB
		22kLPF, A-weight	81.1dB	91.3dB	91.0dB	91.4dB
Dynamic	1kHz,-20dB	20kLPF	93.0dB	93.8dB	93.4dB	89.5dB
Range		22kLPF	84.8dB	93.5dB	93.3dB	89.3dB
		30kLPF	76.8dB	90.9dB	91.4dB	87.5dB
		A-weight	87.4dB	95.3dB	95.3dB	91.9dB
		22kLPF, A-weight	95.1dB	96.4dB	96.1dB	92.5dB
1				(93.2dB)		
S/N	1kHz,	20kLPF	92.5dB	94.0dB	93.6dB	89.5dB
	0dB/"0"data IN	22kLPF	91.8dB	93.6dB	93.3dB	89.4dB
}		30kLPF	86.1dB	91.5dB	91.6dB	87.8dB
	·	A-weight	91.5dB	95.6dB	95.4dB	92.0dB
		22kLPF, A-weight	95.0dB	96.7dB	96.0dB	92.5dB

4. A/D \rightarrow D/A Loopback Output (A/D: Full-differential inputs, refer to Figure 2.)

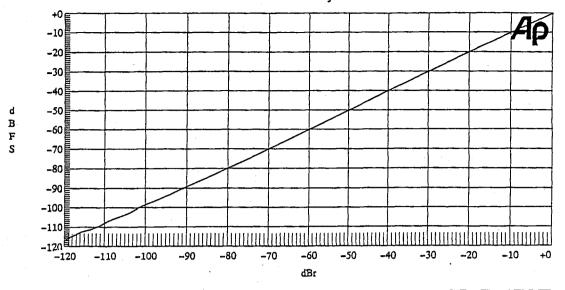
		Adama A Filhar	Resu	ilts
Parameter	Input signal	Measurement Filter	VA=VD=5	VA=VD=3V
S/(N+D)	1kHz,-0.5dB	20kLPF	89.1dB	dB
		22kLPF	88.7dB	dB
l '		30kLPF	82.2dB	dB
		A-weight	88.8dB	dB
		22kLPF, A-weight	90.3dB	dB
Dynamic	1kHz,-20dB	20kLPF	91.0dB	dB
Range		22kLPF	91.1dB	dB
1	` .	30kLPF	89.6dB	dB
		A-weight	93.3dB	dB⊢
	- '	22kLPF,A-weight	94.0dB	dB
S/N	1kHz,0dB/GND IN	20kLPF	91.0dB	dB
		22kLPF	91.1dB	dB
1. 1		30kLPF	89.6dB	dB
		A-weight	93.6dB	dB
·	·	22kLPF,A-weight	94.2dB	dB


THD+N vs. Input Level

Line Style	Thick	Data	Axis	
Solid	3 .	Genanir,THD+N Ab	s. Left	1
[Conditions] Device: AK Measuremer Power suppl MCLK: 256 BICK: 64fs Interface: DI fs: 44.1kHz Bandwidth: fin: 1kHz Temperature Full-Differe	4520 (ADC 1t Unit: Au y: VA=VE fs T 22kHz : Room te	dio Precision, System ⊫SV mperature	One	

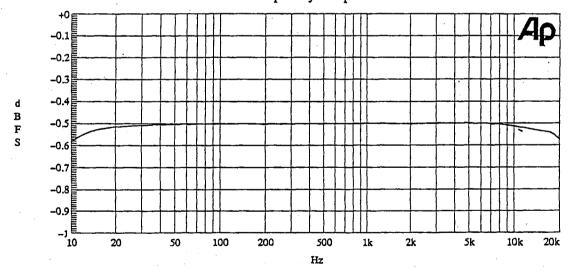
THD+N vs. Frequency

(Genanir.THD+N Abs.	Left		
1 (A DC)				
	o Precision, System One			
r	(ADC)		(ADC) iit: Audio Precision, System One	(ADC) sit: Audio Precision, System One


MCLK: 256fs BICK: 64fs

Interface: DIT fs: 44.1kHz Band width: 22kHz

Level: -0.5dBFS
Temperature: Room temperature
Full-Differential Inputs


Linearity

Line Style	Thick	Data	Axis		
Solid	3	Genanir.Bandpass	Left		
Measureme Power supp MCLK: 25 BICK: 64f: Interface: I fs: 44.1kH: fin: 1kHz	K4520 (ADent Unit: Anoly: VA=VI 6fs DIT z	udio Precision, System D=SV	One	<i>i</i>	

Frequency Response

Line Style	Thick	Data	Axis	
Solid	3	Genanir.Level B	Left	

[Conditions]

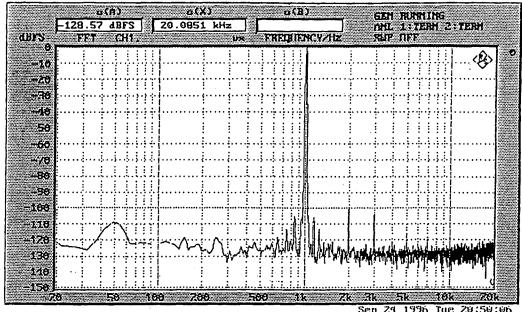
Device: AK4520 (ADC)

Measurement Unit: Audio Precision, System One

Power supply: VA=VD=SV

MCLK: 256fs BICK: 64fs

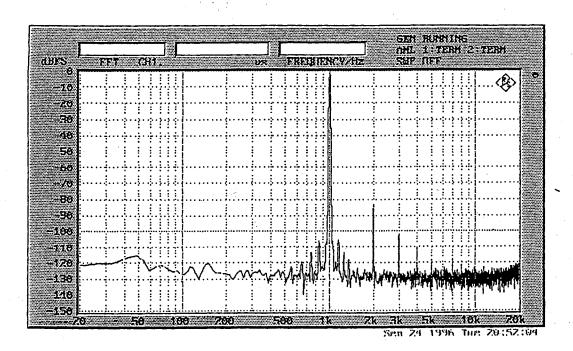
Interface: DIT


fs: 44.1kHz Level: -0.5dBFS@1kHz

Temperature: Room temperature Full-Differential Inputs

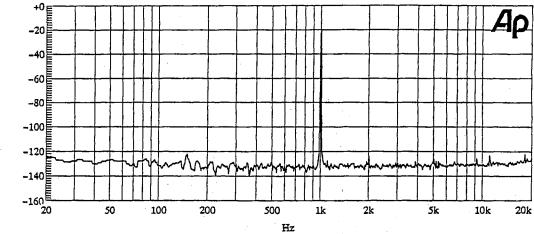
* Total Frequency Response

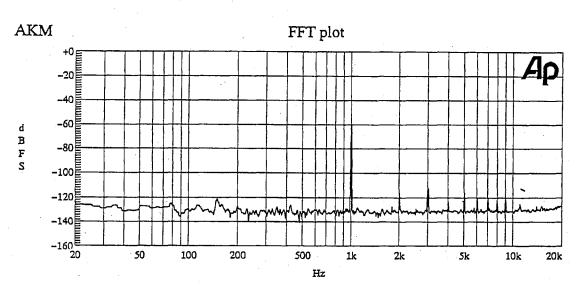
Evaluation board's HPF: fc=0. 7Hz

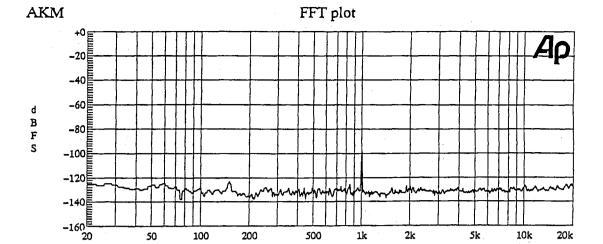

AK4520's HPF: fc=0. 9Hz(@fs=44. 1kHz)

Sen 24 1996 Tue 20:50:06

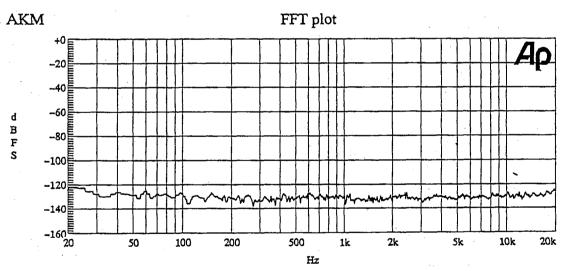
[Conditions] Device: AK4520 (ADC) Measurement Unit: ROHDE & SCHWARZ, UPD04 Power Supply: VA=VD=5V MCLK: 256fs BICK: 64fs Interface: DIT fs: 44. 1kHz Points: 8192 Averageing: 4 fin: lkHz@-0. 5dBFS Temperature: Room temperature


Full-differential inputs


[Conditions] Device: AK4520 (ADC) Measurement Unit: ROHDE & SCHWARZ, UPD04 Power Supply: VA=VD=5V MCLK: 256fs BICK: 64fs Interface: DIT fs: 44. lkHz Points: 8192 Averageing: 4 fin: 1kHz@-0. 5dBFS Temperature: Room temperature Single-ended inputs


d B F S

Line Style	Thick	Data	Axis				
Solid	3	Fftgen.Ch.1 Ampl	Left			•	
[Conditions]				 			
Device: AK	4520 (AD)					
Measureme	nt Unit: At	idio Precision, System	One				
Power suppi	y; VA≠VI)=5V					
MCLK: 256	fs						
BICK: 64fs							
Interface: D							
fs: 44.1kHz							
Points: 8192							
Averaging;							
fin: 1kHz@-		(
Temperature							
EII TVIEE	etial Input	•					



Line Style	Thick	Data	Axis				
Solid	3 .	Fftgen.Ch.1 Ampl	Left				
[Conditions]	· · · · · · · · · · · · · · · · · · ·				 ·	 	
Device: AK		C)					
		idio Precision, System	Опе				
Power suppl							
MCLK: 256	fs						
BICK: 64fs							
Interface: D	IT ·						
fs: 44,1kHz							
Points: 8192	2						
Averaging:	4	*	`				+
fin: 1kHz@-	-60dBFS						
Temperature	: Room te	mperature		*		•	
Full-Differe	ntial Input	3					

Line Style	Thick	Data	Axis				,
Solid	3	Fftgen, Ch. 1 Ampl	l · Left		 		
[Conditions]				····	 		
Device: AK		ຕ)					
		idio Precision, System	m One				
Power suppl							
MCLK: 256	fs						
BICK: 64fs							
Interface: Di	IT						
fs: 44.1kHz							
Points: 8192	2						
Averaging:	4					-	
fin: 1kHz@-							
Temperature							
Full-Differe	neial Innut	•					

Hz

Line Style	Thick	Data	13	Axis			
Solid	3	Ffigen.C	.1 Ampl	Left			
(Conditions)					 		
Device; AK		C)					
Measureme	nt Unit: A	idio Precisio	on, System	One			
Power suppl	y: VA#VI)=5V					
MCLK: 256	ifs		*				
BICK: 64fs							
Interface: D	ΙT						
fs; 44.1kHz						*	
Points: 8193	2			•			
Averaging:	4	a.					
Naise floor							
Temperature							
Full-Differe	ential Innut	•					

AK4520A DAC part

Conditions:

AVDD = DVDD = 5.0V or 3.0V,
fs = 44.1kHz, MCLK = 256fs, BICK = 64fs,
Measurement unit = ROHDE & SCHWARZ UPD04
Interface = DIR
Contents:
① 5.0V (p.2~6)
Fig. 1 : THD+N vs. Input levelp.2
Fig. 2 : THD+N vs. Input frequency
Fig. 3 : Frequency responsep.3
Fig. 4 : Linearity
Fig. 5 : Cross talkp.4
Fig. 6 : FFT (input signal=1kHz,0dBFS)
Fig. 7 : FFT (input signal=1kHz,-20dBFS)p.5
Fig. 8 : FFT (input signal=1kHz,-60dBFS)
Fig. 9 : FFT (noise floor)p.6
Fig.10 : FFT (outband noise ~100kHz)
② 3.0V (p.7~11)
Fig.11 : THD+N vs. Input levelp.7
Fig.12: THD+N vs. Input frequency
Fig.13 : Frequency response
Fig.14 : Linearity
Fig.15 : Cross talkp.9
Fig.16 : FFT (input signal=1kHz,0dBFS)
Fig.17: FFT (input signal=1kHz,-20dBFS)p.10
Fig.18 : FFT (input signal=1kHz,-60dBFS)
Fig.19 : FFT (noise floor)p.1
Fig 20 : FET (outband noise ~100kHz)

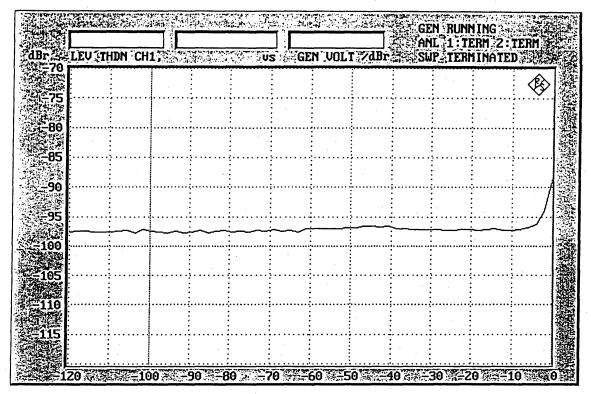


Fig.1: THD+N vs. Input level (fin: 1kHz)

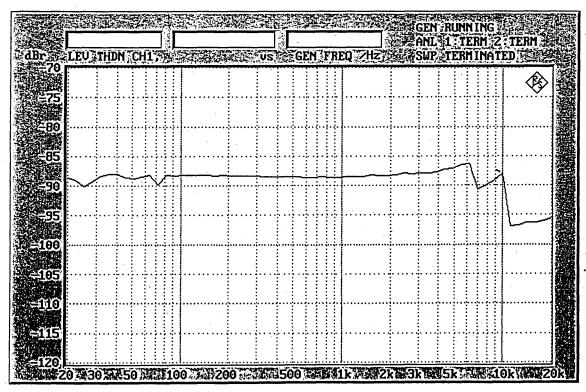


Fig.2: THD+N vs. Input frequency (input level: 0dBFS)

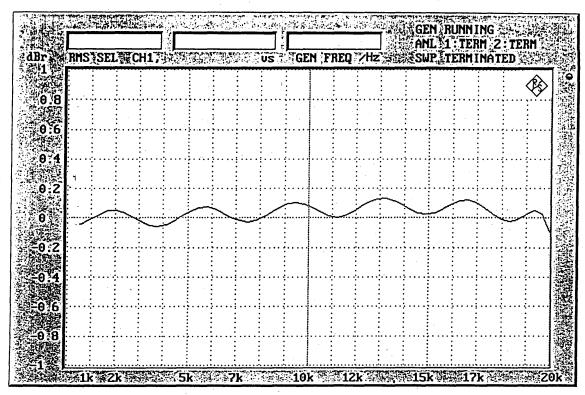


Fig.3: Frequency response (level: 0dBr @1kHz)

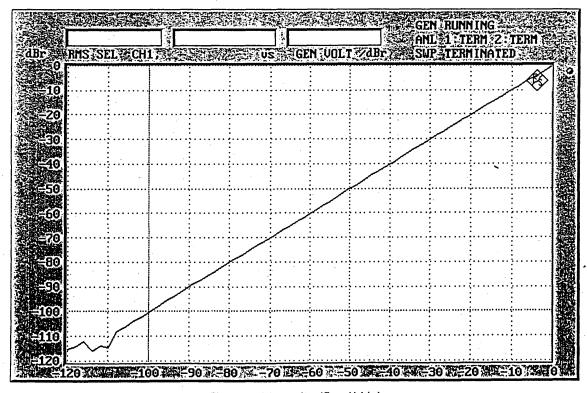


Fig.4: Linearity (fin: 1kHz)

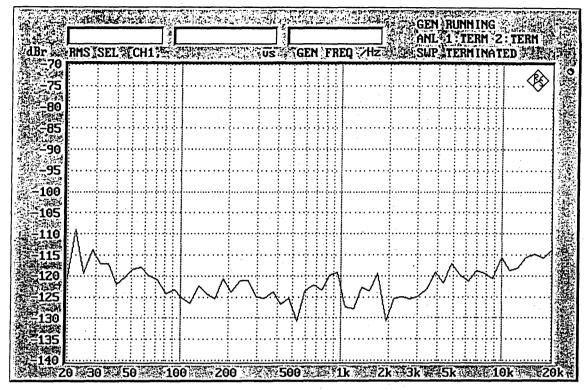


Fig.5: Cross talk

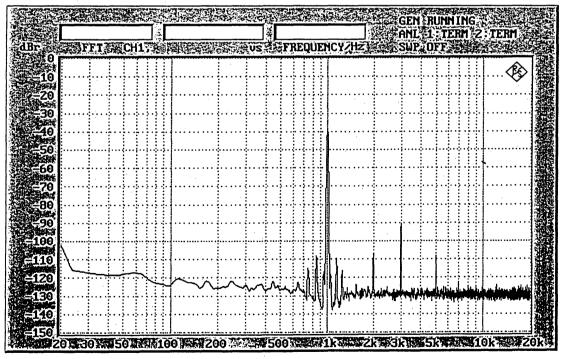


Fig.6: FFT (input signal: 1kHz,0dBFS, FFT points: 8192, averaging: 16, 30dB Notch filter: on)

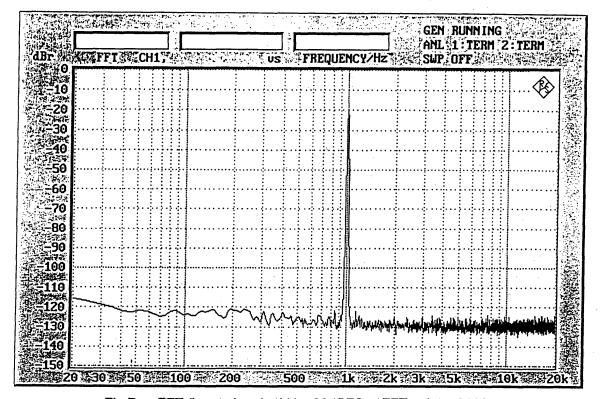


Fig.7: FFT (input signal: 1kHz,-20dBFS, FFT points: 8192, averaging: 16)

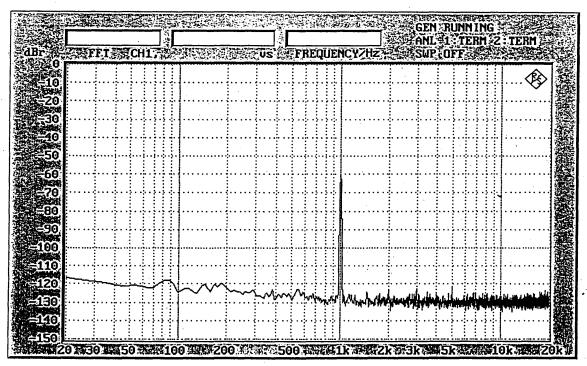


Fig.8: FFT (input signal: 1kHz,-60dBFS, FFT points: 8192, averaging: 16)

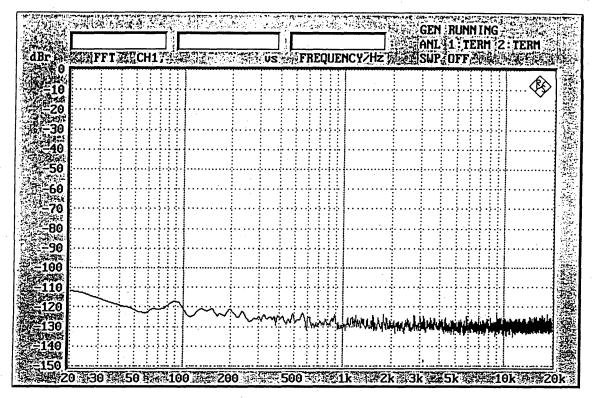


Fig.9: FFT (noise floor. FFT points: 8192, averaging: 16)

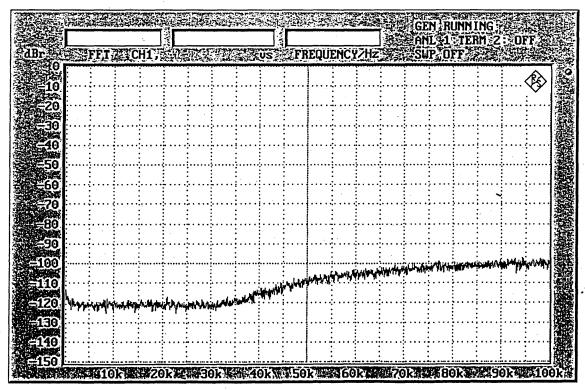


Fig.10: FFT (outband noise. FFT points: 8192,

averaging: 16, ~100kHz)

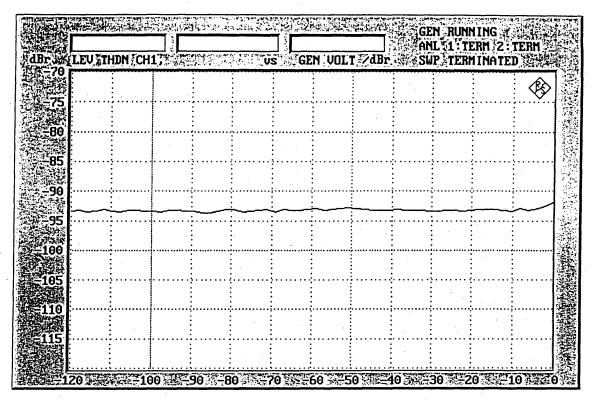


Fig.11: THD+N vs. Input level (fin: 1kHz)

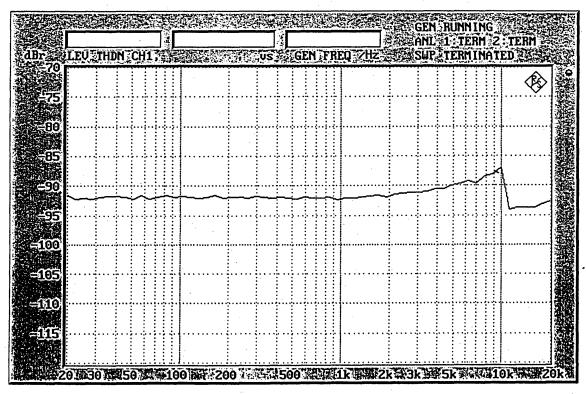


Fig.12: THD+N vs. Input frequency (input level: 0dBFS)

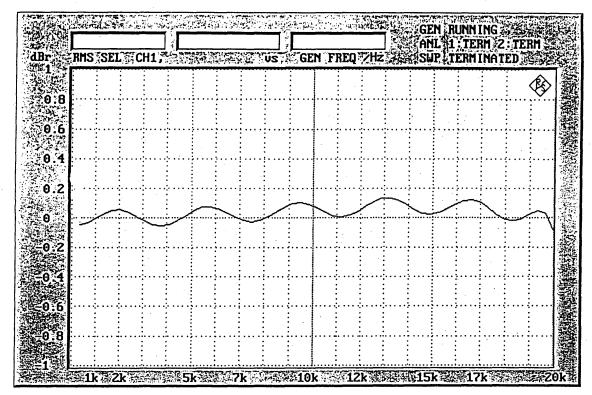


Fig.13: Frequency response (level: 0dBr @1kHz)

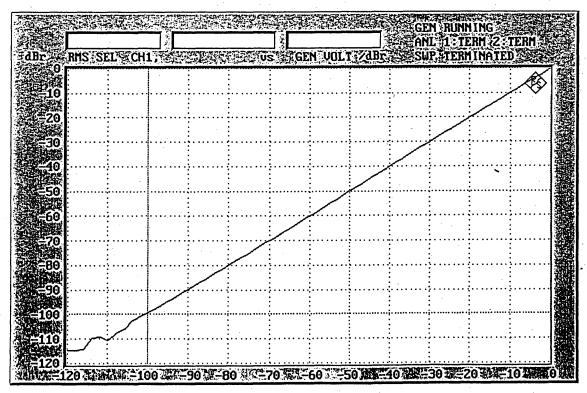


Fig.14: Linearity (fin: 1kHz)

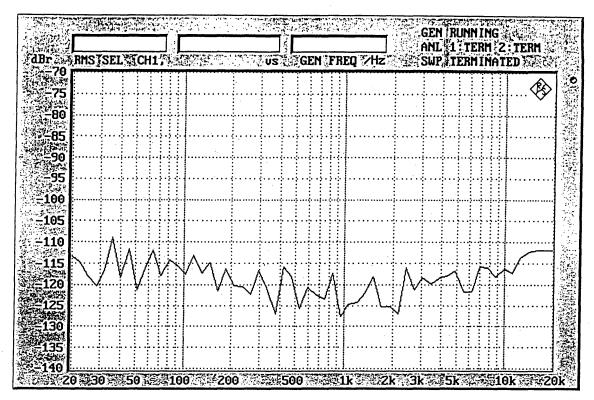


Fig.15: Cross talk

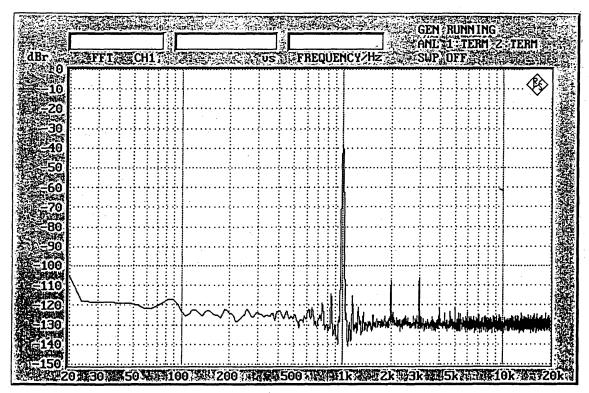


Fig.16: FFT (input signal: 1kHz,0dBFS, FFT points: 8192, averaging: 16, 30dB Notch filter: on)

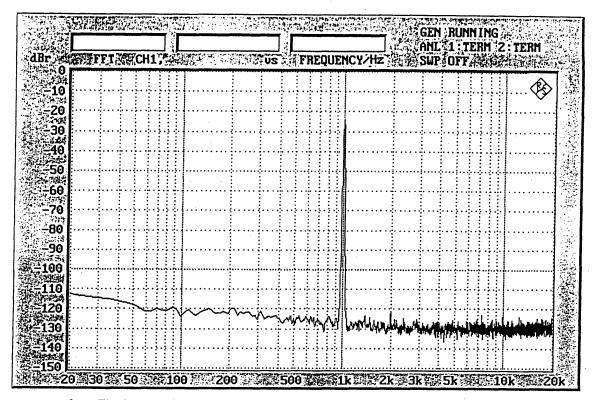


Fig.17: FFT (input signal: 1kHz,-20dBFS, FFT points: 8192, averaging: 16)

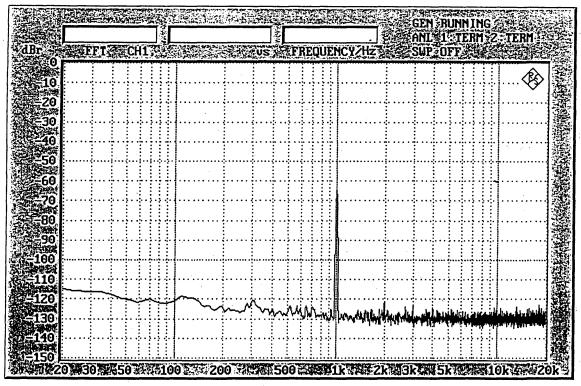


Fig.18: FFT (input signal: 1kHz,-60dBFS, FFT points: 8192, averaging: 16)

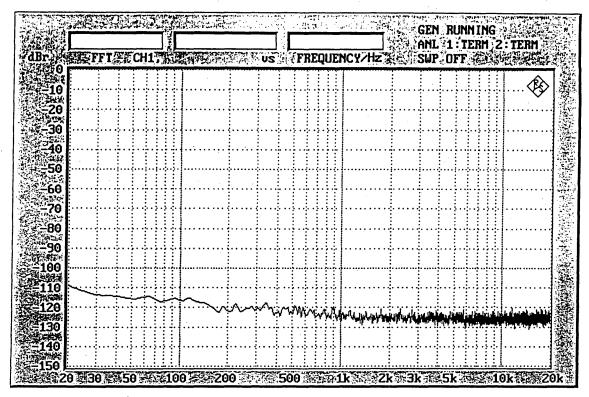


Fig.19: FFT (noise floor. FFT points: 8192, averaging: 16)

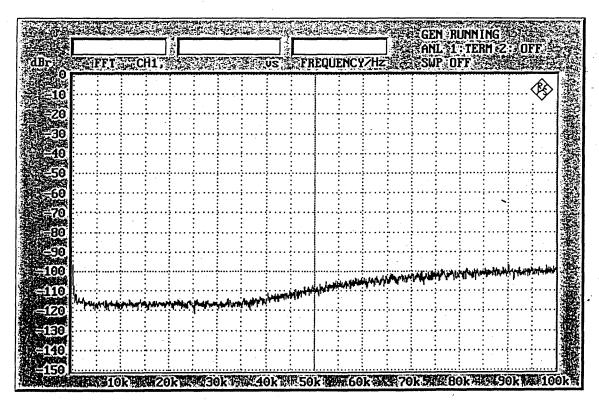
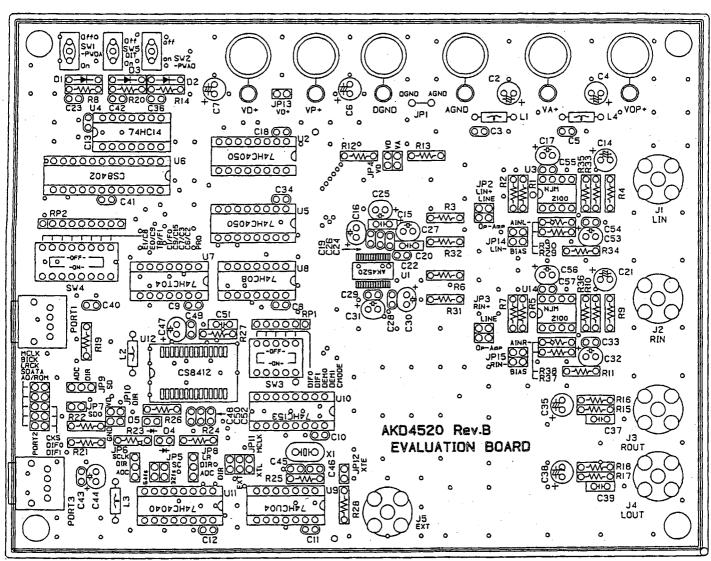
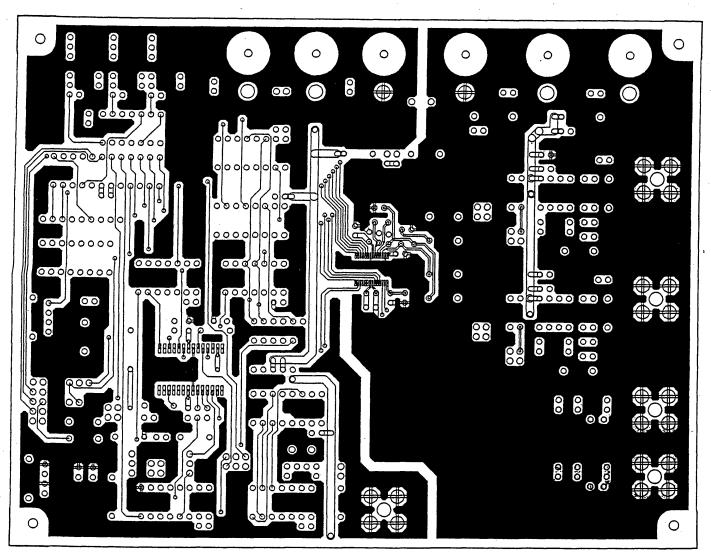
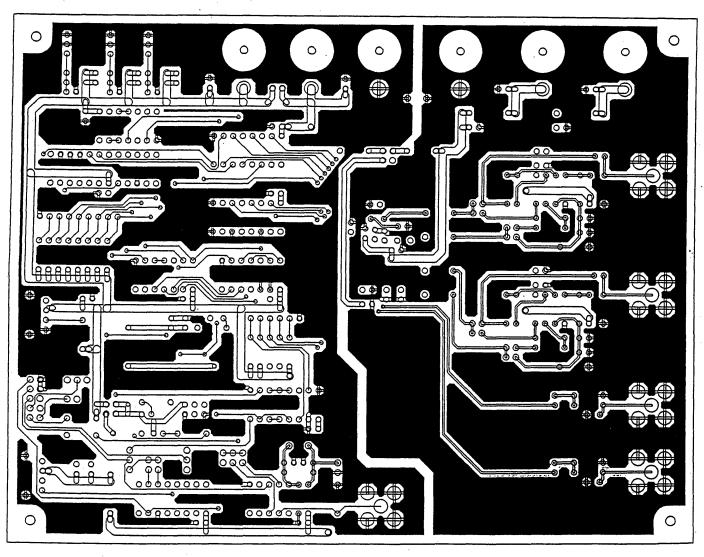




Fig.20: FFT (outband noise. FFT points: 8192,


averaging: 16, ~100kHz)

AKD4520 Rev.B LI SRK

AKD4520 Rev.B L1

AKD4520 Rev.B L2

IMPORTANT NOTICE -

- These products and their specifications are subject to change without notice. Before considering any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized distributor concerning their current status.
- AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an
 export license or other official approval under the law and regulations of the country of
 export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other hazard related device or system, and AKM assumes no responsibility relating to any such use, except with the express written consent of the Representative Director of AKM. As used here:
- (a) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
- (b) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
- It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places the product with a third party to notify that party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.