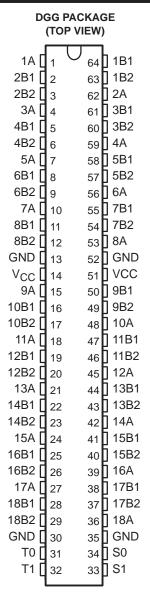
SN74CBTLV16235 LOW-VOLTAGE 18-BIT 1-OF-2 FET MULTIPLEXER/DEMULTIPLEXER

SCDS060D - MARCH 1998 - REVISED MAY 2000

- 4-Ω Switch Connection Between Two Ports
- Isolation Under Power-Off Conditions
- Break-Before-Make Feature
- Packaged in Plastic Thin Shrink Small-Outline Package

NOTE: For tape and reel order entry:

The DGGR package is abbreviated to GR.


description

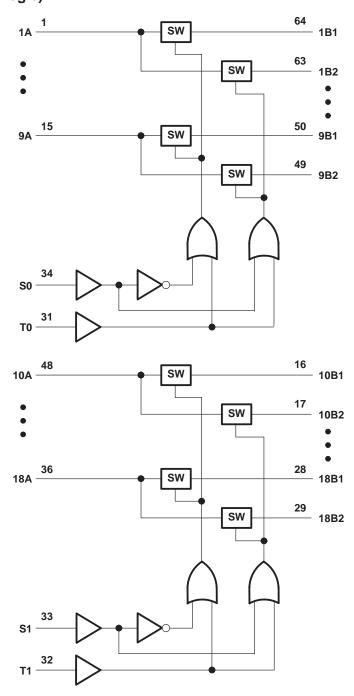
The SN74CBTLV16235 is an 18-bit 1-of-2 FET multiplexer/demultiplexer used in applications in which two separate data paths must be multiplexed onto, or demultiplexed from, a single path. This device can be used for memory interleaving, where two different banks of memory need to be addressed simultaneously.

The device is organized as a dual 9-bit 1-of-2 multiplexer/demultiplexer with separate control inputs. It can be used as two 9-bit multiplexers/demultiplexers or as one 18-bit multiplexer/demultiplexer. Two select (S0 and S1) inputs control the data flow. When the test (T0 and T1) inputs are asserted, port A is connected to both ports B1 and B2. The control inputs can be driven with a low-voltage TTL or an SSTL_3 driver.

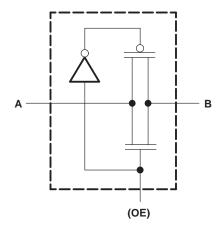
The SN74CBTLV16235 is specified by the break-before-make design to have no through current when switching directions.

The SN74CBTLV16235 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE (each 9-bit multiplexer/demultiplexer)


INPUTS		FUNCTION				
T	S	FUNCTION				
L	L	A port = B1 port				
L	Н	A port = B2 port				
Н	X	A port = B1 port = B2 port				

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


PRODUCT PREVIEW

PRODUCT PREVIEW

simplified schematic, each FET switch

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	0.5 V to 4.6 V
Continuous channel current	128 mA
Input clamp current, $I_{ K }(V_{ I } < 0)$	–50 mA
Package thermal impedance, θ _{JA} (see Note 2)	55°C/W
Storage temperature range, T _{stg}	−65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT	
Vcc	Supply voltage				V	
VIH	High-level control input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		V .	
VIL	V _{CC} = 2.3 V to 2.7 V		0.7	V		
	Low-level control input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	v	
TA	Operating free-air temperature		-40	85	°C	

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to TI application report *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

^{2.} The package thermal impedance is calculated in accordance with JESD 51.

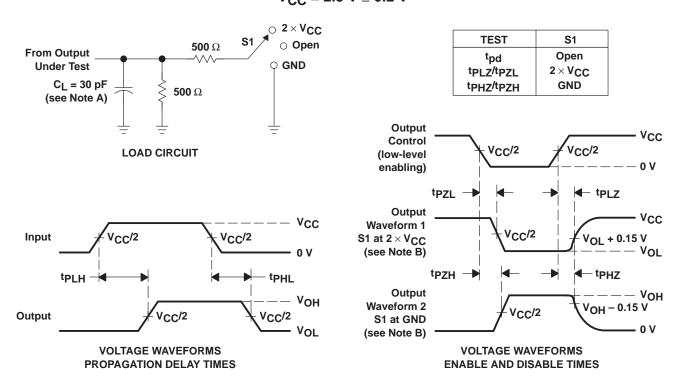
SCDS060D - MARCH 1998 - REVISED MAY 2000

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
VIK		V _{CC} = 3 V,	I _I = -18 mA				-1.2	V
II		$V_{CC} = 3.6 \text{ V},$	$V_I = V_{CC}$ or GND				±5	μΑ
l _{off}		$V_{CC} = 0$,	V_{I} or $V_{O} = 0$ to 3.6	V			10	μΑ
Icc		$V_{CC} = 3.6 \text{ V},$	I _O = 0,	$V_I = V_{CC}$ or GND			10	μΑ
∆lcc [‡]	Control input	V _{CC} = 3.6 V,	One input at 3 V,	Other inputs at V _{CC} or GND			300	μΑ
Ci	Control input	V _I = 3 V or 0						pF
Cio(OFF) A port B port	A port	V _O = 3 V or 0						pF
	B port							ρι·
		T., 00.V	V _I = 0	I _I = 64 mA				
8		$V_{CC} = 2.3 \text{ V},$ TYP at $V_{CC} = 2.5 \text{ V}$	V = 0	I _I = 24 mA				Ω
			V _I = 1.7 V,	I _I = 15 mA				
r _{on} §	V _{CC} = 3 V	V. 0	I _I = 64 mA					
		V _{CC} = 3 V	V _I = 0	I _I = 24 mA				
			V _I = 2.4 V,	I _I = 15 mA				

 $[\]dagger$ All typical values are at V_{CC} = 3.3 V (unless otherwise noted), T_A = 25°C.

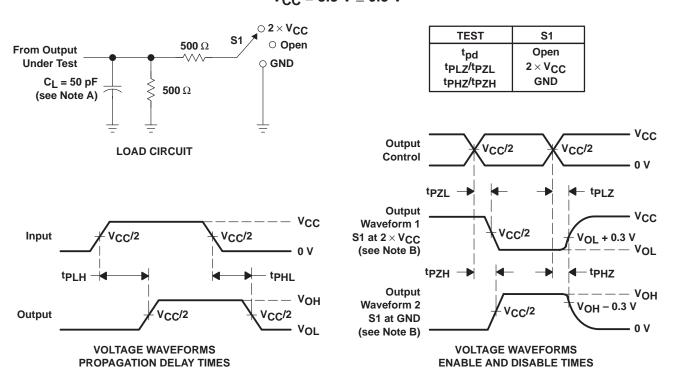
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 and 2)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
	(INFOT)		MIN	MAX	MIN	MAX	
tpd¶	A or B	B or A					ns
t _{en}	S	A or B					ns
^t dis	S	A or B					ns
t _{en}	Т	A or B					ns
^t dis	Т	A or B					ns

[¶] The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

[‡] This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

[§] Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.


PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V \pm 0.2 V

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50~\Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. $\,$ tpzL and tpzH are the same as $t_{\mbox{\footnotesize en}}.$
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated