

MICROCIRCUIT DATA SHEET

MNCLC409A-X REV 0A0

Original Creation Date: 08/05/98 Last Update Date: 02/24/99 Last Major Revision Date: 11/12/98

VERY WIDEBAND, LOW DISTORTION MONOLITHIC OP AMP

General Description

The CLC409 is a very wideband, DC coupled monolithic operational amplifier designed specifically for wide dynamic range systems requiring exceptional signal fidelity. Benefiting from Comlinear's current feedback architecture, the CLC409 offers a gain range of ± 1 to ± 10 while providing stable, oscillation free operation without external compensation, even at unity gain.

With its 350MHz small signal bandwidth (Vout = 2Vpp), 10-bit distortion levels through 20MHz (Rl = 1000hms), 8-bit distortion levels through 60Mhz, 2.2nV/SqRtHz input referred noise and 13.5mA supply current, the CLC409 is the ideal driver or buffer for high speed flash A/D and D/A converters.

Wide dynamic range systems such as radar and communication receivers requiring a wideband amplifier offering exceptional signal purity will find the CLC409's low input referred noise and low harmonic and intermodulation distortion make it an attractive high speed solution.

Industry Part Number

CLC409A

CLC409AE-QML** CLC409AJ-OML*

NS Part Numbers

Prime Die

UB1927B

Controlling Document

5962-9203401MPA*, M2A**

_		
Pro	cess	ınq

MIL-STD-883, Method 5004

Quality Conformance Inspection

MIL-STD-883, Method 5005

Subgrp	Description	Temp	(°C)
1 2 3 4 5 6 7 8 8 8 8 9 10 11	Static tests at Static tests at Dynamic tests at Dynamic tests at Dynamic tests at Functional tests at Functional tests at Functional tests at Switching tests at Switching tests at	+25 +125 -55 +25 +125 +25 +125 +25 +125 -55 +125 -55	

Features

- 350MHz small signal bandwidth
- -65/-72dBc 2nd/3rd harmonics (20MHz)
- Low Noise
- 8ns settling to 0.1%
- 1200V/us slew rate
- 13.5mA supply current (\pm 5V)
- 70mA output current

Applications

- Flash A/D driver
- D/A transimpedance buffer
- Wide dynamic range IF amp
- Radar/communication receivers
- DDS post-amps
- Wideband inverting summer
- Line driver

С

(Absolute Maximum Ratings)

(Note 1)

Supply Voltage (Vcc)	<u>+</u> 7V dc
Common Mode Input Voltage (Vcm)	<u>+</u> Vcc
Differential Input Voltage	+10V dc
Output Current (Io)	<u>+</u> 70mA
Power Dissipation (Pd) (Note 2)	
	1.2W
Junction Temperature (Tj)	+175 C
Lead Temperature (soldering, 10 seconds)	+300 C
Storage Temperature Range	-65 C to +125
Thermal Resistance ThetaJA (Junction to Ambient) CERAMIC DIP (Still Air) (500 LFPM) LCC (Still Air) (500 LFPM) ThetaJC (Junction to Case) CERAMIC DIP LCC	132 C/W 77 C/W 97 C/W 67 C/W 26 C/W 27 C/W
Package Weight (Typical) CERAMIC DIP LCC	1070 mg 465 mg
ESD Tolerance (Note 3) ESD Rating	500 V

- Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions see the Electrical Characteristics. The guaranteed specifications apply when the device is not operated under the listed test conditions.
- Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance, and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax - TA)/ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower. Note 3: Human body model, 1.5K Ohms in series with 100pF.

Recommended Operating Conditions

Supply Voltage (Vcc)	<u>+</u> 5V dc
Gain Range	<u>+</u> 1 to <u>+</u> 10
Ambient Operating Temperature Range (Ta)	-55 C to +125 C

AC/DC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: Rl = 100 Ohms, Vcc = \pm 5V dc, Av = +2, feedback resistor (Rf) = 250 Ohms, gain resistor (Rg) = 250 AC: Ohms -55 C \leq Ta \leq +125 C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Ibn	Input Bias Current.				-22	+22	uA	1, 2
	Noninverting				-44	+44	uA	3
DIbn	Input Bias Current, Average		1		-125	+125	nA/C	2
	Temperature Coefficient, Noninverting		1		-275	+275	nA/C	3
Ibi	Input Bias Current				-20	+20	uA	1
	Inverting				-30	+30	uA	2
					-36	+36	uA	3
DIbi	Input Bias Current Average		1		-100	+100	nA/C	2
	Temperature Coefficient, Inverting		1		-200	+200	nA/C	3
Vio	Input Offset Voltage				-4.5	+4.5	mV	1
					-9.5	+9.5	mV	2
					-8.5	+8.5	mV	3
DVio	Input Offset Voltage, Average		1		-50	+50	uV/C	2
	Temperature Coefficient		1		-50	+50	uV/C	3
Icc	Supply Current, no load					14.2	mA	1, 2, 3
PSRR	Power Supply Rejection Ratio	-Vcc = -4.5V to $-5.0V$, $+Vcc = +4.5V$ to $+5.0V$			45		dB	1, 2, 3
+Io	Output Current		1		+50		mA	1, 2
			1		+36		mA	3
-Io	Output Current		1			-50	mA	1, 2
			1			-36	mA	3
+Vo	Output Voltage		1		+3.2		V	1, 2
			1		+3.0		V	3
-Vo	Output Voltage Range		1			-3.2	V	1, 2
			1			-3.0	V	3

AC/DC PARAMETERS(Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: Rl = 100 Ohms, Vcc = \pm 5V dc, Av = +2, feedback resistor (Rf) = 250 Ohms, gain resistor (Rg) = 250 AC: Ohms -55 C \leq Ta \leq +125 C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Rin	Noninverting		1		500		KOhms	\$ 1
	Input Resistance		1		1000		KOhms	; 2
			1		250		KOhms	3
Cin	Noninverting Input Capacitance		1			2	pF	4, 5, 6
Ro	Output Impedance		1			0.2	Ohms	1, 2
			1			0.3	Ohms	3
CMRR	Common Mode Rejection Ratio	$Vcm = \pm 1.0V$	1		45		dB	4, 5, 6
SSBW	Small Signal	-3dB bandwidth, Vout < 2Vpp	1		250		MHz	4, б
	Ballowidtli		1		200		MHz	5
LSBW	Large Signal	-3dB bandwidth, Vout < 5Vpp	1		90		MHz	4, б
	Bandwidth		1		80		MHz	5
GFPL	Gain Flatness	0.1MHz to 75MHz, Vout < 0.5Vpp				0.4	dB	4
Peaking		2			0.4	dB	5,б	
GFPH	Gain Flatness	> 75MHz, Vout < 0.5Vpp				0.8	dB	4
	Peaking		2			0.8	dB	5, б
GFR1	Gain Flatness	0.1MHz to 125MHz				1.0	dB	4
	ROIIOII		2			1.0	dB	5,б
GFR2	Gain Flatness	At 200MHz				2.2	dB	4
	ROIIOII		2			3.0	dB	5
			2			2.0	dB	б
LPD	Linear Phase Deviation	.01MHz to 100MHz	1			0.8	Degre e	е4,б
			1			1.0	Degre e	2 5
DG	Differential Gain	Rl = 150 Ohms, 3.58MHz, 4.43MHz	1			.06	8	4, 5
			1			.07	8	6
DP	Differential Phase	Rl = 150 Ohms, 3.58MHz, 4.43MHz	1			.02	Degre e	e 4, 5, 6
HD2	2nd Harmonic	2Vpp at 20MHz				-52	dBc	4
	21010101011		2			-52	dBc	5,6

AC/DC PARAMETERS(Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: Rl = 100 Ohms, Vcc = \pm 5V dc, Av = +2, feedback resistor (Rf) = 250 Ohms, gain resistor (Rg) = 250 AC: Ohms -55 C \leq Ta \leq +125 C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	МІМ	MAX	UNIT	SU GRO	IB- DUPS
HD2L	2nd Harmonic Distortion	2Vpp at 5MHz	1			-81	dBc	4,	5
	Dibcorcion		1			-78	dBc	6	
HD2H	2nd Harmonic	2Vpp at 60MHz	1			-44	dBc	4,	5
	Dibcorcion		1			-41	dBc	6	
HD3	3rd Harmonic	2Vpp at 20MHz				-65	dBc	4	
	Discortion		2			-65	dBc	5,	6
HD3L	3rd Harmonic Distortion	2Vpp at 5MHz	1			-76	dBc	4, 6	5,
ндзн	3rd Harmonic Distortion	2Vpp at 60MHz	1			-52	dBc	4, 6	5,
Trs	Rise and Fall Time	2V step, Cl < 10pF, measured between 10% and 90% points	1			1.6	ns	9, 11	10,
Trl	Rise and Fall	5V step, Cl < 10pF, measured between	1			4.2	ns	9,	11
	TIME		1			4.6	ns	10	
Ts	Settling Time	Cl < 10pF, 2V step at 0.1% of the final value	1			12	ns	9, 11	10,
OS	Overshoot	2V step, Cl < 10pF	1			18	00	9,	10
			1			15	00	11	-
SR	Slew Rate	Vout = 4V step, Cl < 10pF, measured at $\pm 1V$	1		1000		V/us	4, 6	5,
VN	Equivalent Input Noise, Noninverting	> 1MHz	1			2.8	nV/So Rt	14,	6
	Voltage		1			3.1	nV/Sq Rt	<u>1</u> 5	
ICN	Equivalent Input Noise, Inverting	> 1MHz	1			18	pA/So Rt	14,	6
			1			20	pA/So Rt	1 5	
NCN	Equivalent Input Noise,	> 1MHz	1			4.0	pA/So Rt	¥4,	6
	Current		1			4.5	pA/So Rt	<u>1</u> 5	
SNF	Equivalent Input Noise, Total Noise Floor	> 1MHz	1			-155	dBm 1Hz	4,	6
	10196 LIOOL		1			-154	dBm 1Hz	5	

AC/DC PARAMETERS(Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: Rl = 100 Ohms, Vcc = $\pm 5V$ dc, Av = +2, feedback resistor (Rf) = 250 Ohms, gain resistor (Rg) = 250 AC: Ohms -55 C \leq Ta \leq +125 C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
INV	Equivalent Input Noise, Total	1MHz to 150MHz	1			47	uV	4,6
	Integrated Noise		1			52	uV	5

Note 1: Guaranteed, if not tested.

Note 2: This parameter is group A sample tested only and is excluded from final electrical

testing, but is guaranteed to the limits specified. The algebraic convention, whereby the most negative value is a minimum and most positive is a maximum, is used in this table. Negative current shall be defined as Note 3: convential current flow out of a device terminal.

GRAPHICS#	DESCRIPTION
07077HRA2	CERDIP (J), 8 LEAD (B/I CKT)
07086HRA2	LCC (E), TYPE C, 20 TERMINAL (B/I CKT)
E20ARE	LCC (E), TYPE C, 20 TERMINAL(P/P DWG)
J08ARL	CERDIP (J), 8 LEAD (P/P DWG)
P000406A	CERDIP (J), 8 LEAD (PINOUT)
P000446A	LCC (E), TYPE C, 20 TERMINAL (PINOUT)

Graphics and Diagrams

See attached graphics following this page.

CLC409J 8 - LEAD DIP CONNECTION DIAGRAM TOP VIEW P000406A

2900 SEMICONDUCTOR DRIVE SANTA CLARA, CA 95050

CLC409E 20 - LEAD LCC CONNECTION DIAGRAM TOP VIEW P000446A

National Semiconductor⁻ MIL/AEROSPACE OPERATIONS 2900 SEMICONDUCTOR DRIVE

SANTA CLARA, CA 95050

Revision History

Rev	ECN #	Rel Date	Originator	Changes
0A0	M0003257	02/24/99	Shaw Mead	Initial MDS Release