2.5V / 3.3V Any Level Positive Input to -2.5V / -3.3V / -5V NECL Output Translator

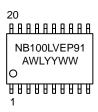
The NB100LVEP91 is a triple any level positive input to NECL output translator. The device accepts LVPECL, LVTTL, LVCMOS, HSTL, CML or LVDS signals, and translates them to differential $-2.5\ V\ /\ -3.3\ V\ /\ -5\ V\ NECL$ output signals.

To accomplish the level translation the LVEP91 requires three power rails. The V_{CC} supply should be connected to the positive supply, and the V_{EE} pin should be connected to the negative power supply. The GND pins are connected to the system ground plane. Both V_{EE} and V_{CC} should be bypassed to ground via 0.01 μF capacitors.

Under open input conditions, the \overline{D} input will be biased at $V_{CC}/2$ and the D input will be pulled to GND. These conditions will force the Q outputs to a low, ensuring stability.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

- Typical Maximum Frequency > 2.0 GHz
- 430 ps Typical Propagation Delay
- Operating Range: V_{CC} = 2.375 V to 3.8 V;
 V_{EE} = -2.375 V to -5.5 V; GND = 0 V
- Q Output will Default LOW with Inputs Open or at GND


ON Semiconducto

http://onsemi.com

SO-20 DW SUFFIX CASE 751D

A = Assembly Location WL, L = Wafer Lot

YY, Y = Year WW, W = Work Week

ORDERING INFORMATION

Device	Package	Shipping
NB100LVEP91DW	SO-20	38 Units/Rail
NB100LVEP91DWR2	SO-20	1000/Tape & Reel
NB100LVEP91MN	QFN-24	93 Units/Rail
NB100LVEP91MNR2	QFN-24	3000/Tape & Reel

^{*}For additional information, see Application Note AND8002/D

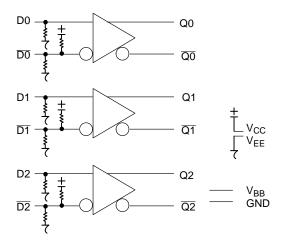
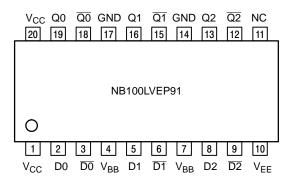
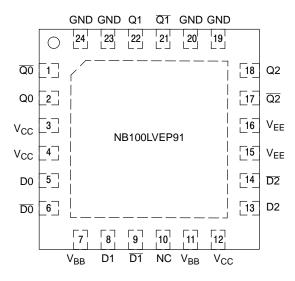



Figure 1. Logic Diagram

Warning: All V_{CC} , V_{EE} , and GND pins must be externally connected to Power Supply to guarantee proper operation.


Figure 2. SOIC-20 Lead Pinout (Top View)

ATTRIBUTES

PIN DESCRIPTION

PIN	FUNCTION
Dn*, Dn* Qn, Qn VBB VCC VEE GND NC	Any Level Inputs ECL Outputs PECL Reference Voltage Output Positive Supply Negative Supply Ground No Connect

^{*}Pins will default differentially LOW when left open.

Warning: All V_{CC} , V_{EE} , and GND pins must be externally connected to Power Supply to guarantee proper operation. The thermally conductive exposed pad on package bottom (see case drawing) must be attached to a heat-sinking conduit.

Figure 3. QFN-24 Lead Pinout (Top View)

Charac	Value					
Internal Input Pulldown Resistor	75 kΩ					
Internal Input Pullup Resistor	75 kΩ					
ESD Protection	Human Body Model Machine Model Charged Device Model	> 2 kV > 150 V > 2 kV				
Moisture Sensitivity, Indefinite T	ime Out of Drypack (Note 1)	Level 1				
Flammability Rating	Flammability Rating Oxygen Index: 28 to 34					
Transistor Count		446 Devices				

Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test

1. For additional information, see Application Note AND8003/D.

MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Power Supply	GND = 0 V		3.8 to 0	V
V _{EE}	NECL Power Supply	GND = 0 V		-5.5 to 0	V
VI	PECL Input Voltage	GND = 0 V	$V_I \leq V_{CC}$	3.8 to 0	V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	PECL V _{BB} Sink/Source			± 0.5	mA
TA	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) JESD 51-3 (1S-Single Layer Test Board)	500 LFPM	20 SOIC	60	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient) JESD 51- 6 (2S2P Multilayer Test Board) with Filled Thermal Vias	0 LFPM	24 QFN	47.3	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	std bd	20 SOIC	30 to 35	°C/W
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

^{2.} Maximum Ratings are those values beyond which device damage may occur.

LVPECL INPUT DC CHARACTERISTICS $V_{CC} = 2.5 \text{ V}$, $V_{EE} = -2.375 \text{ to } -5.5 \text{ V}$, GND = 0 V (Note 3)

			-40 °C		25°C							
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Icc	Power Supply Current		10	14	20	10	14	20	10	14	20	mA
V _{IH}	Input HIGH Voltage		1335		V_{CC}	1335		V_{CC}	1275		V_{CC}	mV
V _{IL}	Input LOW Voltage		GND		875	GND		875	GND		875	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 4)		0		2.5	0		2.5	0		2.5	V
I _{IH}	Input HIGH Current				150			150			150	μΑ
I _{IL}	Input LOW Current	D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

LVPECL INPUT DC CHARACTERISTICS $V_{CC} = 3.3 \text{ V}$; $V_{EE} = -2.375 \text{ V}$ to -5.5 V; GND = 0 V (Note 5)

		-40 °C			25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{CC}	V _{CC} Power Supply Current		16	24	10	16	24	10	16	24	mA
V _{IH}	Input HIGH Voltage (Single-Ended)			V_{CC}	2135		V _{CC}	2135		V _{CC}	mV
V_{IL}	Input LOW Voltage (Single-Ended)			1675	GND		1675	GND		1675	mV
V _{BB}	Output Voltage Reference (Note 6)	1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 6)			3.3	0		3.3	0		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

^{3.} Input parameters vary 1:1 with VCC. VCC can vary +1.3 V / -0.125 V.

^{4.} V_{IHCMR} min varies 1:1 with GND. V_{IHCMR} max varies 1:1 with V_{CC}.

^{5.} Input parameters vary 1:1 with V $_{CC}$. V $_{CC}$ can vary +0.5 / -0.925 V. 6. V $_{IHCMR}$ min varies 1:1 with GND. V $_{IHCMR}$ max varies 1:1 with V $_{CC}$.

NECL OUTPUT DC CHARACTERISTICS V_{CC} = 2.375 V to 3.8 V; V_{EE} = -2.375 V to -5.5 V; GND = 0 V (Note 7)

		-40 °C		25°C							
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	V _{EE} Power Supply Current	40	50	60	38	50	68	38	50	68	mA
V _{OH}	Output HIGH Voltage (Note 8)	-1 145	-1020	-895	-1 145	1020	-895	-1030	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 8)	-1945	-1725	-1600	-1945	-1725	-1600	-1945	-1725	-1600	mV

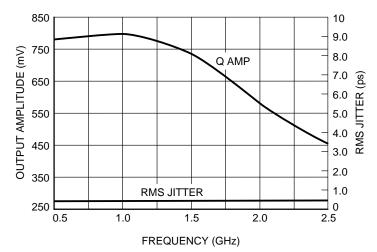
NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

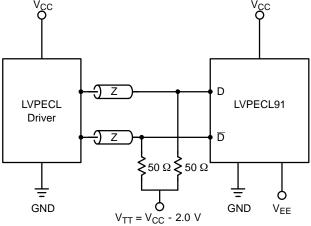
- 7. Output parameters vary 1:1 with GND.
- 8. All loading with 50 Ω resistor to GND-2 volts.

AC CHARACTERISTICS V_{CC} = 2.375 V to 3.8 V; V_{EE} = -2.375 V to -5.5 V; GND = 0 V

	-40 °C			25°C								
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{opp}	Output Voltage Amplitude f _{in} (Figure 4) f _{in}	< 1.0 GHz < 1.5 GHz	575 525	800 750		600 525	800 750		550 400	800 750		mV
t _{PLH} t _{PHL}	- 1 - 3	Differential gle-Ended	400 400	500 500	600 600	450 425	550 550	650 675	450 400	550 550	650 700	ps
t _{SKEW}	Pulse Skew (Note 9) Output-to-Output (Note 10) Part-to-Part (Diff) (Note 10)			5 20 50	50 80 125		5 20 50	50 80 125		5 20 50	50 80 125	ps
t _{JITTER}	RMS Random Clock Jitter (Note 11) f _{in} Peak-to-Peak Data Dependant Jitter f _{in} : (Note 12)	= 2.0 GHz = 2.0 Gbps		0.5 20	2.0		0.5 20	2.0		0.5 20	2.0	ps
V _{PP}	Input Voltage Swing (Note 13)		200	800	1200	200	800	1200	200	800	1200	mV
t _r , t _f	Output Rise/Fall Times Q (20% - 80%)		40	150	300	40	150	300	40	150	300	ps

- 9. Pulse Skew = |t_{PLH} t_{PHL}| 10. Skews are valid across specified voltage range, part-to-part skew is for a given temperature.
- 11. RMS Jitter with 50% Duty Cycle Input Clock Signal.
 12. Peak-to-Peak Jitter with input NRZ PRBS 2³¹⁻¹ at 2.0 Gbps.
- 13. Input voltage swing is a single-ended measurement operating in differential mode. The device has a DC gain of ≈ 50.




Figure 4.

Application Information

All NB100LVEP91 inputs can accept LVPECL, LVTTL, LVCMOS, HSTL, CML, or LVDS signal levels. The limitations for differential input signal (LVDS, HSTL, LVPECL, or CML) are the minimum input swing of 150 mV

LVPECL91 **LVPECL** Driver

Figure 5. Standard LVPECL Interface

V_{CC} () z LVPECL91 **HSTL** Driver D Z **≶**50 Ω **≶** 50 Ω **GND** GND V_{EE}

GND Figure 7. Standard HSTL Interface

Figure 9. Standard LVTTTL Interface

and the maximum input swing of 3.0 V. Within these conditions, the input voltage can range from V_{CC} to GND. Examples interfaces are illustrated below in a 50 Ω enviroment ($Z = 50 \Omega$)

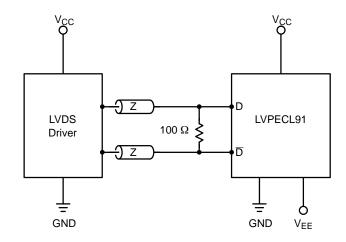


Figure 6. Standard LVDS Interface

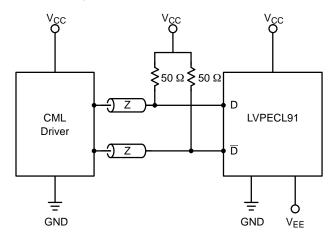


Figure 8. Standard 50 Ω Load CML Interface

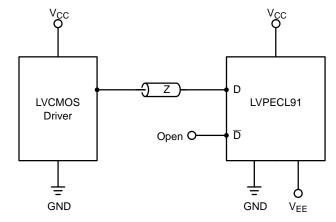


Figure 10. Standard LVCMOS Interface $(\overline{D}$ will default to $V_{CC}/2$ when left open. A reference voltage of V_{CC}/2 should be applied to D input, if \overline{D} is interfaced to CMOS signals.)

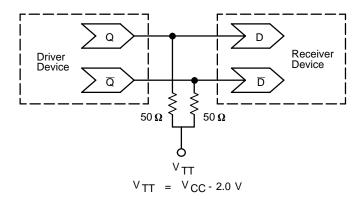


Figure 11. Typical Termination for Output Driver and Device
Evaluation
(See Application Note AND8020 - Termination of ECL Logic Devices.)

Resource Reference of Application Notes

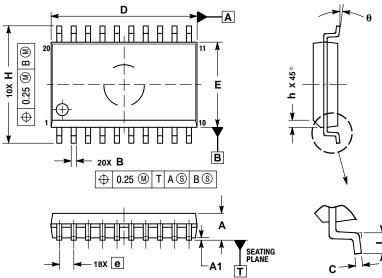
AN1404 - ECLinPS Circuit Performance at Non-Standard V_{IH} Levels

AN1405 - ECL Clock Distribution Techniques

AN1503 - ECLinPS I/O SPICE Modeling Kit

AN1504 - Metastability and the ECLinPS Family

AN1560 - Low Voltage ECLinPS SPICE Modeling Kit


AN1650 - Using Wire-OR Ties in ECLinPS Designs

AN1672 - The ECL Translator Guide
AND8002 - Marking and Date Codes

AND8020 - Termination of ECL Logic Devices

PACKAGE DIMENSIONS

SO-20 DW SUFFIX PLASTIC SOIC PACKAGE CASE 751D-05 ISSUE F

QFN 24 MN SUFFIX 24 PIN QFN, 4x4

CASE 485L-01 **ISSUE O**

D В PIN 1 IDENTIFICATION E 2X 2X \alpha 0.15 \crit C Α2 // 0.10 C 0.08 С A3 🗆 SEATING PLANE REF **A1** 24 CAB 0.10 С 0.05

NOTES:

- NOTES.

 1. DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLERANCES
 PER ASME Y14.5M, 1994.
 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- PROTRUSION.

 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- MAXIMUM MULTIPRO HOSSINO 1.13 PER SIDE.
 DIMENSION B DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE PROTRUSION SHALL
 BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT
 MAXIMUM MATERIAL CONDITION.

	MILLIMETERS								
DIM	MIN	MAX							
Α	2.35	2.65							
A1	0.10	0.25							
В	0.35	0.49							
С	0.23	0.32							
D	12.65	12.95							
E	7.40	7.60							
е	1.27	BSC							
Н	10.05	10.55							
h	0.25	0.75							
L	0.50	0.90							
θ	0 °	7 °							

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.

 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS								
DIM	MIN	MAX							
Α	0.80	1.00							
A1	0.00	0.05							
A2	0.60	0.80							
A3	0.20	REF							
b	0.23	0.28							
D	4.00	BSC							
D2	2.70	2.90							
Е	4.00	BSC							
E2	2.70	2.90							
е	0.50	BSC							
L	0.35	0.45							

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax**: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamineguro, Meguro-ku, Tokyo, Japan 153-0051

Phone: 81-3-5773-3850 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.