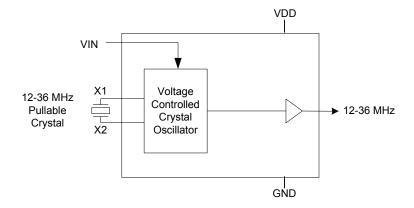
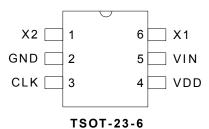
ICS729 SMALL 3.3 VOLT VCXO

Description


Used in conjunction with an external pullable quartz crystal, this monolithic integrated circuit replaces more costly hybrid (canned) VCXO devices. The ICS729 is designed primarily for data and clock recovery applications within end products such as ADSL modems, set-top box receivers, and telecom systems.

The frequency of the on-chip VCXO is adjusted by an external control voltage input into pin VIN. Since VIN is a high impedance input, it can be driven directly from an PWM RC integrator circuit. Frequency output increases with VIN voltage input. The usable range of VIN is 0 to 3.3 V.

Features


- Uses an inexpensive 12 to 36 MHz external crystal
- Output frequency range of 12 to 36 MHz
- On-chip VCXO with guaranteed pull range of ±115 ppm minimum
- VCXO tuning voltage 0 to 3.3 V
- Packaged in 6-pin TSOT-23-6
- A surface-mount VCXO crystal offers a minimum-size solution

Block Diagram

Pin Assignment

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description
1	X2	Input	Crystal connection. Connect to the external pullable crystal.
2	GND	Power	Connect to ground.
3	CLK	Output	VCXO CMOS level clock output at the frequency of the crystal.
4	VDD	Power	Connect to +3.3 V (0.01uf decoupling capacitor recommended).
5	VIN	Input	Voltage input to VCXO — 0 to 3.3 V analog input which controls the oscillation frequency of the VCXO.
6	ΧI	Input	Crystal connection. Connect to the external pullable crystal.

External Component Selection

The ICS729 requires a minimum number of external components for proper operation.

Decoupling Capacitor

A decoupling capacitor of 0.01µF must be connected between VDD (pin 4) and GND (pin 2), as close to these pins as possible. For optimum device performance, the decoupling capacitor should be mounted on the component side of the PCB. Avoid the use of vias in the decoupling circuit.

Series Termination Resistor

When the PCB trace between the clock output (CLK, pin 3) and the load is over 1 inch, series termination should be used. To series terminate a 50Ω trace (a commonly used trace impedance) place a 33Ω resistor in series with the clock line, as close to the clock output pin as possible. The nominal impedance of the clock output is 20Ω .

Quartz Crystal

The ICS729 VCXO function consists of the external crystal and the integrated VCXO oscillator circuit. To assure the best system performance (frequency pull range) and reliability, a crystal device with the recommended parameters (shown below) must be used, and the layout guidelines discussed in the following section shown must be followed.

The frequency of oscillation of a quartz crystal is determined by its "cut" and by the load capacitors connected to it. The ICS729 incorporates on-chip variable load capacitors that "pull" (change) the frequency of the crystal. The crystal specified for use with the ICS729 is designed to have zero frequency error when the total of on-chip + stray capacitance is 12 pF.

Recommended Crystal Parameters:

Initial Accuracy at 25°C	±20 ppm
Temperature Stability	±30 ppm
Aging	±20 ppm
Load Capacitance	12 pf
Shunt Capacitance, C0	7 pF Max
C0/C1 Ratio	250 Max
Equivalent Series Resistance	35 Ω Max

For crystal frequencies between 12 MHz and 36 MHz, the nominal crystal load capacitance specification should be 12 pF. Contact ICS MicroClock applications regarding the use of a crystal below 12 MHz.

The external crystal must be connected as close to the chip as possible and should be on the same side of the PCB as the ICS729. There should be no vias between the crystal pins and the X1 and X2 device pins. There should be no signal traces underneath or close to the crystal. See application note MAN05.

Crystal Tuning Load Capacitors

The crystal traces should include pads for small fixed capacitors, one between X1 and ground, and another between X2 and ground. The need for these capacitors is determined at system prototype evaluation, and is influenced by the particular crystal used (manufacture and frequency) and by PCB layout. The typical required capacitor value is 1 to 4 pF.

The procedure for determining the value of these capacitors can be found in application note MAN05.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS729. These ratings, which are standard values for ICS commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD	5 V
All Inputs and Outputs	-0.5 V to VDD+0.5 V
Ambient Operating Temperature	0 to +70°C
Storage Temperature	-65 to +150°C
Soldering Temperature	260°C

Recommended Operating Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature	0		+70	°C
Power Supply Voltage (measured in respect to GND)	+3.15		+3.45	V
Reference crystal parameters		Refer to	page 3	

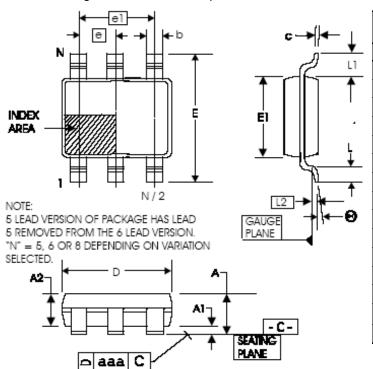
DC Electrical Characteristics

VDD=3.3 V ±5%, Ambient temperature 0 to +70°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		3.15		3.45	V
Output High Voltage	V _{OH}	I _{OH} = -12 mA	2.4			V
Output Low Voltage	V _{OL}	I _{OL} = 12 mA			0.4	V
Output High Voltage (CMOS Level)	V _{OH}	I _{OH} = -4 mA	VDD-0.4			V
Operating Supply Current	IDD	Output = 12 MHz, no load		5		mA
Short Circuit Current	Ios			±50		mA
VIN, VCXO Control Voltage	V _{IA}		0		3.3	V

AC Electrical Characteristics

VDD = 3.3 V \pm5%, Ambient Temperature 0 to $+70^{\circ}$ C, unless stated otherwise


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Output Frequency	F _O		12		36	MHz
Crystal Pullability, Note 2	F _P	0V≤ VIN ≤ 3.3 V, Note 1	±115			ppm
VCXO Gain		VIN = VDD/2 ± 1 V, Note 1		120		ppm/V
Output Rise Time	t _{OR}	0.8 to 2.0 V, C _L =15 pF			1.5	ns
Output Fall Time	t _{OF}	2.0 to 0.8 V, C _L =15 pF			1.5	ns
Output Clock Duty Cycle	t _D	Measured at 1.4 V, C _L =15 pF	40	50	60	%
Maximum Output Jitter, short term	t _J	C _L =15 pF		100		ps

Note 1: External crystal device must conform with Pullable Crystal Specifications listed on page 3.

Package Outline and Package Dimensions (6-pin TSOT-23-6)

Package dimensions are kept current with JEDEC Publication No. 95

	Millim	neters	Inc	hes
Symbol	Min	Max	Min	Max
Α	0.90	1.45	.0354	.0571
A1	0	0.15	0	.0059
A2	0.90	1.30	.0354	.0512
b	0.35	0.50	.0138	.0197
С	0.09	0.22	.0036	.0087
D	2.80	3.00	.1102	.1181
Е	2.60	3.00	.1024	.1181
E1	1.50	1.75	.0591	.0689
е	0.95 E	BASIC	0.0374 BASIC	
e1	1.90 E	BASIC	0.0748	BASIC
L	0.35	0.55	.0138	.0217
L1	0.50	0.70	.0197	.0276
L2	0.25 BASIC		.0098 BASIC	
θ	0°	10°	0°	10°
aaa	_	0.10	_	.0039

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature	
ICS729T	729	Tubes	6-pin TSOT-23-6	0 to +70° C	
ICS729TT	729	Tape and Reel	6-pin TSOT-23-6	0 to +70° C	

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.