TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

T C 7 W B 1 2 5 F K

Dual Bus Switch

The TC7WB125FK is a low on-resistance, high-speed CMOS dual-bit bus switch. This bus switch allows the connections or disconnections to be made with minimal propagation delay while maintaining Low power dissipation which is the feature of CMOS.

When output enable (\overline{OE}) is at low level, the switch is on; when at high level, the switch is off.

All inputs are equipped with protector circuits to protect the device from static discharge.

Features

- Operating voltage: VCC = 4.5~5.5 V
- High speed operation: $t_{pd} = 0.25 \text{ ns} (max)$
- Ultra-low on resistance: $R_{ON} = 5 \Omega$ (typ.)
- Electro-static discharge (ESD) performance: ±200 V or more (EIAJ)

±2000 V or more (MIL)

- TTL level input (control input)
- Package: US8

Pin Assignment (top view)

SSOP8-P-0.50A

Weight: 0.01 g (typ.)

980910EBA1

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in
 general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of
 the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure
 of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please
 ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications.
 Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
 The products described in this document are subject to the foreign exchange and foreign trade laws
- The products described in this document are subject to the foreign exchange and foreign trade laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

• The information contained herein is subject to change without notice.

TOSHIBA

Truth Table

Inputs	Function			
ŌĒ	Function			
L	A port = B port			
Н	Disconnect			

System Diagram

Maximum Ratings

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	-0.5~7.0	V	
Control pin input voltage	V _{IN}	-0.5~7.0	V	
Switch terminal I/O voltage	VS	-0.5~7.0	V	
Clump diode current	I _{IK}	-50	mA	
Switch I/O current	IS	128	mA	
Power dissipation	PD	200	mW	
DC V _{CC} /GND current	I _{CC} /I _{GND}	±100	mA	
Storage temperature	T _{stg}	-65~150	°C	

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	4.5~5.5	V
Control pin input voltage	VIN	0~5.5	V
Switch I/O voltage	VS	0~5.5	V
Operating temperature	T _{opr}	-40~85	°C
Control pin input rise/fall time	dt/dv	0~10	ns/V

Electrical Characteristics

DC Characteristics (Ta = -40~85°C)

Characteristics		Symbol	Symbol Test Condition		Min		Тур.	Max	Unit
		Cymbol			$V_{CC}(V)$	IVIIII	(Note1)	IVIAX	Offic
Control pin input	"H" level	VIH	_	—		2.0	_	_	V
voltage "L" level		VIL	_		4.5~5.5	_	_	0.8	v
Input leakage current		lin	V _{IN} = 0~5.5 V		5.5	_	_	±1.0	μA
Off-state leakage current (switch off)		I _{SZ}	A, B = 0~5.5 V, \overline{OE} = V _{CC}		5.5	_	_	±1.0	μΑ
ON resistance	(Note2) R _{ON}		$V_{IS} = 0 V$	I _{IS} = 64 mA	4.5	_	5	7	
				I _{IS} = 30 mA	4.5	_	5	7	Ω
		$V_{IS} = 2.4 V, I_{IS} = 15 mA$		4.5	_	10	15		
Quiescent supply current		Icc	V _{IN} = V _{CC} or GND I _{OUT} = 0		5.5			10	mA
		ΔI_{CC}	V _{IN} = 3.4 V (one input)		5.5	_	_	2.5	mA

Note1: The typical values are at $V_{CC} = 5 V$, Ta = 25°C.

Note2: Apply the specified current to the switch, then measure the voltages on pins A and B. The on-resistance is the lower of the two.

AC Characteristics (Ta = -40~85°C)

Characteristics Symbol		Test Condition	V _{CC} (V)	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2 (Note3)	4.5		0.25	ns
(bus to bus)	t _{pHL}		4.5		0.20	115
Output enable time	t _{pZL}	Figure 1, Figure 3	4.5		4.0	ns
	t _{pZH}		4.0		4.0	10
Output disable time	t _{pLZ}	Figure 1, Figure 3	4.5		5.0	ns
	t _{pHZ}		4.5		5.0	115

Note3: The propagation delay time is calculated by the RC (on-resistance and load capacitance) time constant.

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Control pin input capacitance	C _{IN}	(Note	4) 5.0	3	pF
Switch terminal capacitance	C _{I/O}	$\overline{OE} = V_{CC}$ (Note	4) 5.0	10	pF

Note4: This item is guaranteed by design.

TOSHIBA

AC Test Circuit

Parameter	Switch		
t _{pLH} , t _{pHL}	Open		
t _{pLZ} , t _{pZL}	7.0 V		
t _{pHZ} , t _{pZH}	Open		

Figure 1

AC Waveform

Figure 2 t_{pLH}, t_{pHL}

Package Dimensions

SSOP8-P-0.50A

Unit : mm

Weight: 0.01 g (typ.)