1997.11.20 Rev.F

4194304-BIT (4194304-WORD BY 1-BIT) CMOS STATIC RAM

DESCRIPTION

The M5M5V4R01J is a family of 4194304-word by 1-bit static RAMs, fabricated with the high performance CMOS silicon gate process and designed for high speed application.

The M5M5V4R01J is offered in a 32-pin plastic small outline J-lead package(SOJ).

These device operate on a single 3.3V supply, and are directly

TTL compatible. They include a power down feature as well.

FEATURES

- Fast access time M5M5V4R01J-12 •••• 12ns(max) M5M5V4R01J-15 •••• 15ns(max)
- Low power dissipation Active •••••• 297mW(typ) Stand by •••••• 3.3mW(typ)
- Single +3.3V power supply
- · Fully static operation : No clocks, No refresh
- · Test mode is available
- Easy memory expansion by S
- · Three-state outputs : OR-tie capability
- OE prevents data contention in the I/O bus
- Directly TTL compatible : All inputs and outputs

APPLICATION

High-speed memory units

PACKAGE

32pin 400mil SOJ

MITSUBISHI LSIS M5M5V4R01J-12,-15

4194304-BIT (4194304-WORD BY 1-BIT) CMOS STATIC RAM

FUNCTION

The operation mode of the M5M5V4R01J is determined by a combination of the device control inputs \overline{S} , \overline{W} and \overline{OE} . Each mode is summarized in the function table.

A write cycle is executed whenever the low level $\overline{\mathbf{W}}$ overlaps with the low level $\overline{\mathbf{S}}$. The address must be set-up before the write cycle and must be stable during the entire cycle.

The data is latched into a cell on the trailing edge of \overline{W} or \overline{S} , whichever occurs first, requiring the set-up and hold time relative to these edge to be maintained. The output enable input \overline{OE} directly controls the output stage. Setting the \overline{OE} at a high level, the output stage is in a high impedance state, and the data bus

contention problem in the write cycle is eliminated.

A read cycle is excuted by setting W at a high level and \overline{OE} at a low level while \overline{S} are in an active state (\overline{S} =L).

When setting \overline{S} at high level, the chip is in a non-selectable mode in which both reading and writing are disable. In this mode, the output stage is in a high-impedance state, allowing OR-tie with other chips and memory expansion by \overline{S} .

Signal- \overline{S} controls the power-down feature. When \overline{S} goes high, power dissapation is reduced extremely. The access time from \overline{S} is equivalent to the address access time.

The RAM works with an organization of 4194304-word by 1 bit,when $\overline{B1}/B4$ is low of floating. And an organization of 10485 76-word by 4bit is also obtained for reducing the test time, when $\overline{B1}/B4$ is high.

FUNCTION TABLE

S	\overline{W}	ŌE	Mode	D	Q	Icc
Н	Х	Χ	Non selection	High-impedance	High-impedance	Stand by
L	L	Х	Write	Din	High-impedance	Active
L	Н	L	Read	High-impedance	Dout	Active
L	Н	Н		High-impedance	High-impedance	Active

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-2.0 [*] ~ 4.6	V
Vı	Input voltage	With respect to GND	-2.0* ~ VCC+0.5	V
Vo	Output voltage		-2.0* ~ VCC+0.5	V
Pd	Power dissipation	Ta=25 ℃	1000	mW
Topr	Operating temperature		0 ~ 70	°C
Tstg(bias)	Storage temperature (bias)		-10 ~ 85	°C
T _{stg}	Storage temperature		-65 ~ 150	°C

^{*}Pulse width ≤ 20ns, In case of DC:-0.5V

DC ELECTRICAL CHARACTERISTICS (Ta=0 ~ 70 °C, Vcc=3.3V +10% unless otherwise noted)

Coursels al	Parameter Condition		Limits			1.1		
Symbol	Parameter	Condition			Min	Тур	Max	Unit
VIH	High-level input voltage				2.2		Vcc+0.3	V
VIL	Low-level input voltage				-0.3		0.8	V
Vон	High-level output voltage	IOH =-4mA			2.0			V
Vol	Low-level output voltage	IOL= 8mA					0.4	V
H	Input current	V _I = 0~Vcc					2	μΑ
I _{OZ}	Output current in off-state	V _I (S)= V _{IH} V _O = 0~V _{CC}					10	μА
	Active supply current (TTL level)	V _I (S)= V _I L other inputs V _I H or V _I L Output-open(duty 100%)	AC	12ns cycle			160	mA
I _{CC1}				15ns cycle			150	
			DC			90	100	
	Stand by current (TTL level)	Vı (s)= VIH	AC	12ns cycle			75	
I _{CC2}				15ns cycle			70	mA
	,	DC					50	
I _{CC3}	Stand by current	V _I (s̄)= Vcc≥0.2V other inputs V _I ≤0.2V or V _I ≥Vcc-0.2V				1	10	mA

CAPACITANCE (Ta=0 ~ 70 °C, Vcc=3.3V +10% unless otherwise noted)

	<u> </u>	T 10 III	Limit			Linit
Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
Сі	Input capacitance	V _I =GND, V _I =25mVrms,f=1MHz			8	pF
Co	Output capacitance	V _O =GND, V _O =25mVrms,f=1MHz			8	pF

Note 1: Direction for current flowing into an IC is positive (no mark).

- 2: Typical value is Vcc=5V,Ta=25 ℃
- 3: CI,Co are periodically sampled and are not 100% tested.

AC ELECTRICAL CHARACTERISTICS (Ta=0 ~ 70 $^{\circ}$ C, Vcc=3.3V $^{+10\%}_{-5\%}$ unless otherwise noted)

(1)MEASUREMENT CONDITION

Fig.1 Output load

Fig.2 Output load for ten, t dis

(2)READ CYCLE

Symbol	Parameter		Limits				
		M5M5V4	M5M5V4R01J -12		M5M5V4R01J -15		
Cymbol		Min	Max	Min	Max	Unit	
t cr	Read cycle time	12		15		ns	
ta(A)	Address access time		12		15	ns	
ta(s)	Chip select access time		12		15	ns	
ta(OE)	Output enable access time		6		8	ns	
tdis(S)	Output disable time after S high	0	6	0	7	ns	
tdis(OE)	Output disable time after OE high	0	6	0	7	ns	
ten(S)	Output enable time after \overline{S} low	0		0		ns	
ten (OE)	Output enable time after OE low	0		0		ns	
tv _(A)	Data valid time after address change	3		3		ns	
tPU	Power-up time after chip selection	0		0		ns	
tPD	Power-down time after chip selection		12		15	ns	

(3)WRITE CYCLE

Symbol	Parameter		Limits				
		M5M5V4	M5M5V4R01J -12		M5M5V4R01J -15		
		Min	Max	Min	Max	Unit	
t _{CW}	Write cycle time	12		15		ns	
tw(W)	Write pulse width	10		12		ns	
tsu (A)1	Address setup time($\overline{\mathrm{W}}$)	0		0		ns	
tsu (A)2	Address setup time(S)	0		0		ns	
tsu(S)	Chip select setup time	10		12		ns	
tsu(D)	Data setup time	6		7		ns	
th(D)	Data hold time	0		0		ns	
trec(W)	Write recovery time	1		1		ns	
tdis(W)	Output disable time after W low	0	6	0	7	ns	
tdis (OE)	Output disable time after OE high	0	6	0	7	ns	
ten (W)	Output enable time after W high	0		0		ns	
ten (OE)	Output enable time after OE low	0		0		ns	
tsu(A-WH)	Address to W High	10		12		ns	

(4)TIMING DIAGRAMS

Read cycle 1 A 0~21 VIH VIL Ta(A) VIV(A) PREVIOUS DATA VALID W=H

Read cycle 2 (Note 4)

S=L OE=L

Note 4. Addresses valid prior to or coincident with S transition low.

5. Transition is measured ±500mv from steady state voltage with specified loading in Figure 2.

Note 6. Addresses and S valid prior to OE transition low by (ta(A)-ta(OE)), (ta(S)-ta(OE))

Write cycle (W control mode)

Write cycle (S control mode)

Note 7: Hatching indicates the state is don't care.

- 8: When the falling edge of \overline{W} is simultaneous or prior to the falling edge of \overline{S} , the output is maintained in the high impedance.
- 9: ten,tdis are periodically sampled and are not 100% tested.

