

Data Sheet

JTAG Test Controller

Description

The AS91L1001 device provides an interface between the 60x bus on the Motorola MPC8260 processor and two totally independent IEEE1149.1 interfaces, namely, the primary and secondary ports. It handles all the protocol for the 60x bus to write and read directly to registers within the device with no additional glue logic.

The AS91L1001 has three distinct modes of operation, namely Slave mode, Master mode, and 3rd Party Support mode. These different modes control how data will be transferred on the IEEE1149.1 buses.

Slave mode: This is the default mode after the AS91L1001 has received a power-on reset. In this mode, there is a transparent connection between the primary and secondary JTAG ports. The processor interface is not used in the slave mode. This configuration is typically used to test a line card from a system back plane (the primary port is usually connected to the back plane and the secondary port is connected to the onboard JTAG

chain). Once testing from the system back plane is completed, the AS91L1001 is reconfigured for master mode operation through a register. The master mode of operation is used to test the onboard JTAG chain, using the microprocessor interface.

Master mode: This mode is accessed via a command to a AS91L1001 register. The key feature of this mode is that both the Primary and Secondary are now both totally independent IEEE1149.1 bus masters, which enable concurrent operation on both the IEEE1149.1 channels. The Master mode enables the primary IEEE1149.1 channel to be used to access other PCB's connected via the 5-wire IEEE1149.1 interface on the back plane.

The secondary IEEE1149.1 port is used to test the card that is hosting the AS91L1001. This mode may be used for performing Interconnect testing or Flash/CPLD programming.

Key Features

- Interprets between the Motorola MPC8260 processor and two IEEE1149.1 ports
- Three distinct modes of operation: Slave mode, Master mode, and 3rd Party support mode
- Supports a wide range of 3rd Party tools
- Pinout and feature set compatible (complete second source) with the Firecron JTS01 device
- Available in a 100-pin LQFP or a 100-pin FPBGA lead free package

Device Block Diagram

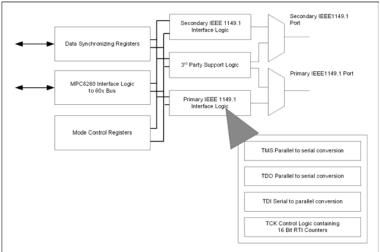


Figure 1 - AS91L1001 JTAG Test Controller

Alliance Semiconductor

Description (Cont.)

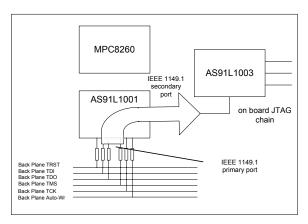


Figure 2 - Slave mode

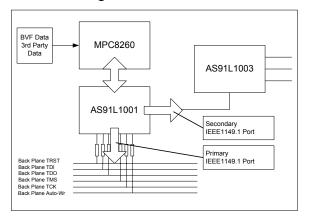


Figure 3 - Master mode

3rd Party Support mode: This mode is intended to support legacy FPGA/CPLD 1149.1 devices that require adaptive programming algorithms to ensure data retention, due to the fact that decision branching is not supported in Service Vector Format (SVF). This mode will not be required for devices that adhere to the IEEE1532 specification, as IEEE1532 compliant parts from all CPLD/FPGA vendors adhere to this open standard. The 3rd Party support mode which is accessible via control registers in the AS91L1001 selects one of the IEEE1149.1 ports to operate with the standard SVF->BVF flow while the remaining IEEE1149.1 port will support commands for the embedded C Code routines provided by FPGA/CPLD vendors. This eliminates any issues regarding data retention when using AS91L1001 on a PCB.

Alliance Semiconductor supplies a Windows™ executable that converts industry standard SVF into Alliance Semiconductor proprietary BVF file format. Users of the ANSI C Code are only required to provide the base read and write function for the stream I/O. So in order to execute a BVF file, the user has to call the primary C function, which will then perform all the required setup of the AS91L1001 along with obtaining the BVF file to process at the required time or report any errors if applicable.

If the user wishes to embed the ANSI C routines from FPGA/CPLD vendors, then this is handled in a very similar manner. As one of the IEEE1149.1 ports will be operating in Alliance Semiconductor BVF mode, the method of reading and writing data is the same as before. However, the user will need to consult the 3rd party routines to see how the data flow is performed. Ultimately, the user will call a Alliance Semiconductor provided C routine that will set the AS91L1001 for 3rd party support on one of the IEEE1149.1 channels while the other will be used for executing the 3rd party code.

In summary, 3rd Party Support mode enables serial shifting of data on any of the two JTAG ports and is used to configure legacy FPGA/CPLD devices.

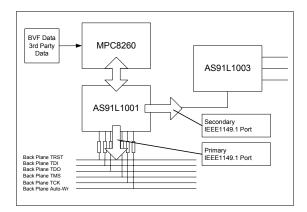


Figure 4 - 3rd Party support mode

Signal Description

PIN NAME	PIN	PIN	PIN	DESCRIPTION
'	TYPE	NUMBER	NUMBER FPBGA	
RESETn	IN	LQFP 14	F4	This active low reset signal resets the AS91L1001 and places the device in Slave mode
JTS03_06_SELECTEDn	IN	65	E10	This active low input from either a AS91L1003 or AS91L1006 provides the control status of the AS91L1003/06 connected to the Secondary port of the AS91L1001 (operating in Slave mode)
Primary IEEE1149.1 Port				
PRIM_TDI	INOUT	19	G3	IEEE1149.1 Primary Test Data Input in Slave mode; in Master mode, this pin acts as Test Data Output
PRIM_TDO	INOUT	20	G1	IEEE1149.1 Primary Test Data Output in Slave mode; in Master mode, this pin acts as Test Data Input
PRIM_TRST	INOUT	22	H2	IEEE1149.1 Primary Test Reset Input in Slave mode; in Master mode, this pin is an output
PRIM_TMS	INOUT	21	G2	IEEE1149.1 Primary Test Mode Select in Slave mode; in Master mode, this pin is an output
PRIM_TCK	INOUT	87	A6	IEEE1149.1 Primary Test Clock in Slave mode; in Master mode, this pin is an output
PRIM_AUTOWR	IN	16	F1	Primary Auto-write input controlled by test equipment to shorten Flash memory programming, signal is driven low for write pulse
SECONDARY IEEE1149.1				
SEC_TDO	OUT	57	G10	IEEE1149.1 Test Data Output on Secondary port
SEC_TDI	IN	58	G8	IEEE1149.1 Test Data Input on Secondary port
SEC_TRST	OUT	64	E9	IEEE1149.1 Test Logic Reset on Secondary port
SEC_TMS	OUT	60	F9	IEEE1149.1 Test Mode Select Out on Secondary port
SEC_TCK	OUT	61	F10	IEEE1149.1 Test Clock Out on Secondary port
SEC_AUTOWR	OUT	63	F7	Secondary Auto-Write Output controlled by test equipment to shorten Flash memory programming, signal is driven low for write pulse

PIN NAME			DESCRIPTION	
	TYPE	NUMBER LQFP	NUMBER FPBGA	
SLAVE_MODE	OUT	71		This signal, when low, indicates that the AS91L1001 is in Slave mode of operation
MASTER_MODE	OUT	72		This signal, when low, indicates that the AS91L1001 is in the Master mode of operation
PRIM_TDO_OE	OUT	27		This active low signal derived while in Slave Mode, provides the control foradditional current drive to the buffer on the primary TDO signal
DATA(7:0)	INOUT		A3,B3,A4,B4, C4,C5,C6,C7(LSB-MSB)	8-bit data bus for the processor interface
ADDR(31:28)	IN	83,81,80,79 LSB-MSB		4-bit address bus for the processor interface
WRn	IN	77	В9	Active low, write enable signal for the processor interface
RDn	IN	76	B10	Active low read enable signal for the processor interface
CSn	IN	78	A9	Active low, chip select signal for the processor interface
OSC_IN	IN	75	C10	This is the master clock into the AS91L1001 device
TOE	IN	88	В6	Test output enable this signal when taken low tristates all devices I/O
GND	POWER	,74,95,2,17,	D6,G5,C3,J9, G9,D7,E5,F6, G4,H8,A5,F2, B1	AS91L1001 Ground connection
VCC	POWER	39,91,3,18, 34,51,66,82 ,23,54		AS91L1001 VCC connection
ASIC_TCK	IN	62	F8	IEEE1149.1 ASIC Test
ASIC_TMS	IN	15	F3	IEEE1149.1 ASIC Test
ASIC_TDO	OUT	73		IEEE1149.1 ASIC Test
ASIC_TDI	IN	4		IEEE1149.1 ASIC Test

PIN NAME	PIN TYPE	PIN NUMBER LQFP	PIN NUMBER FPBGA	DESCRIPTION
No connects		10,12,13,24 ,25,27,28, 29,30,31,32 ,33, 35,36,37,40 ,41, 42,44,45,46 ,47,		

Table 1 - AS91L1001 Signal Description

Absolute Maximum Ratings

Parameter	Maximum Range
Supply Voltage (Vcc)	-0.3V to 5.5V
DC Input Voltage (Vi)	-0.5V to Vcc +0.5V
Max sink current when Vi = -0.5V	-20mA
Max source current when Vi = Vcc + 0.5V	+20mA
Max Junction Temperature with power applied Tj	+125 degrees C
Max Storage temperature	-55 to +150 degree C

Table 2 - Absolute Maximum Ratings

Note: Stress above the stated maximum values may cause irreparable damage to the device, correct operation of the device at these values is not guaranteed.

Recommended Operating Conditions

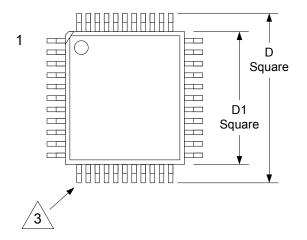
Parameter	Operating Range
Supply Voltage (Vcc)	3.0V to 3.6V
Input Voltage (Vi)	0V to Vcc
Output Voltage (Vo)	0V to Vcc
Operating Temperature (Ta) Commercial	0 C to 70 C
Industrial (Ta)	-40 deg C to +85 deg C, 3.00V to 3.6V

Table 3 - Recommended Operating Conditions

DC Electrical Characteristics

Symbol	Parameter	Min	Max	Condition
V _{IH}	Minimum High Input Voltage	2.0	5.25	
V_{IL}	Maximum Low Input Voltage	-0.3V	0.8V	
Symbol	Parameter		Value	Condition
V _{OH}	Minimum High Output Voltage		2.4V	loh=24mA or 8mA as defined by pin
V _{OL}	Minimum Low Output Voltage		0.4V	lol=24mA or 8mA as defined by pin
l _{oz}	Tristate output leakage		-10 or 10 mA	
I _{cc}	Maximum quiecennt supply current		2mA	
I _{ccd}	Maximum dynamic supply current		80mA	TCK freq equal to 10 MHz

Table 4 - AS91L1001 DC Electrical Characteristics

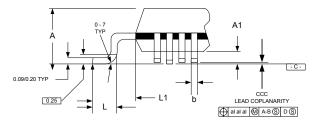

AC Timing Information

From	То	Туре	Value
Prim_TCK/Sec_TCK	Prim/ Sec Inputs	Setup	18ns
Prim_TCK/Sec_TCk	Prim/Sec Inputs	Hold	-3ns
OSC_IN	Prim_TCK/Slave_tck	Delay	5 to 17ns
OSC_IN	Prim outputs	Delay	11ns
OSC_IN	Sec outputs	Delay	13ns
OSC_IN		Freq	66MHz
CSn	Cpu i/f inputs	Setup	5ns
CSn	Cpu i/f inputs	Hold	1ns
CSn	Databus	Delay	11ns
CSn		Width (low)	25ns
Prim inputs	Sec output	Comb Delay	9ns
Sec inputs	Prim output	Comb Delay	9ns

Table 5 - AS91L1001 AC timing information

Packaging Information

The AS91L1001 is available in a 100-pin LQFP or a 100-pin FPBGA lead free package.

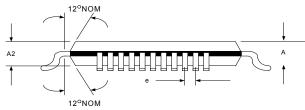
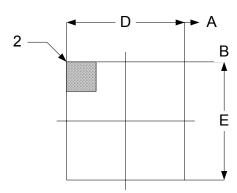
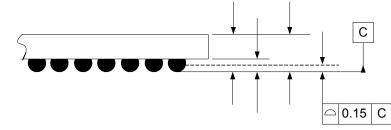

SYMBOL	TOL.	100 LEAD
А	MAX.	1 .6 0
A 1	M IN M A X	0.05 0.15
A 2	MIN NOM MAX	1.35 1.40 1.45
D	BASIC	16.00
D 1	BASIC	1 4 .0 0
L	±0.15	0 . 6 0
L 1	REF	1.00
b	M IN M A X	0.17 0.27
е	BASIC	0.50
ссс	MAX	0.08
d d d	NOM	0.08
JEC	DEC REF#	M S - 0 2 6

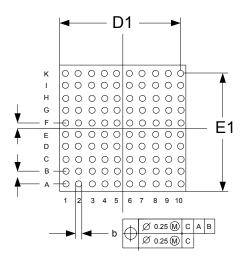
- NOTES:

 1. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS.
 2. PLASTIC BODY DIMENSIONS DO NOT INCLUDE FLASH OR PROTUSION.

 MAX ALLOWABLE 0.25 PER SIDE.

 3. LEAD COUNT ON DRAWING NOT REPRESENTATIVE OF ACTUAL PACKAGE.


Figure 6 - LQFP-100

	Revisions		
REV.	DESCRIPTION	ECN	DATE
Α	Initial document release.	91253	12-04-01
В	Updated ball coplanarity limits from 0.20mm to 0.15mm.		

DIMENSIONS			
SYMBOL	MIN.	NOM.	MAX.
Α			1.70
A1	0.30		
A2	0.25		1.10
b	0.50	0.60	0.70
D	11.00 BSC		
D1	9.00 BSC		
E	11.00 BSC		
E1	9.00 BSC		
е	1.00		
PACKAGE NUMBER	FBGA0100-11F		
JEDEC REF #	MO-1	192 VAR. AAG	C-1

Figure 7 - FPBGA-100

Device Selector Guide and Ordering Information

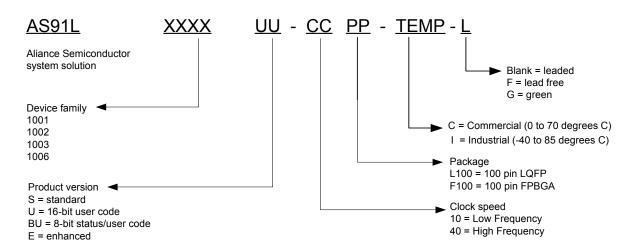


Figure 8 - Part Numbering Guide

Part Number	Description	Availability
AS91L1001S - 10L100-C	JTAG Test Controller, 100-pin LQFP package, commercial	now
AS91L1001S - 10L100-I	JTAG Test Controller, 100-pin LQFP package, industrial	now
AS91L1001S - 10F100-C	JTAG Test Controller 100-pin FPBGA package, commercial	Please contact Alliance Semiconductor
AS91L1001S - 10F100-I	JTAG Test Controller 100-pin FPBGA package, industrial	Please contact Alliance Semiconductor
AS91L1001S - 40L100-C	JTAG Test Controller, 100-pin LQFP package, commercial, High frequency	Please contact Alliance Semiconductor
AS91L1001S - 40L100-CF	JTAG Test Controller, 100-pin LQFP package, commercial, lead free, High Frequency	now
AS91L1001S - 40L100-I	JTAG Test Controller, 100-pin LQFP package, industrial, High Frequency	Please contact Alliance Semiconductor
AS91L1001S - 40L100-IF	JTAG Test Controller, 100-pin LQFP package, industrial, lead free, High Frequency	now
AS91L1001S - 40F100-C	JTAG Test Controller 100-pin FPBGA, commercial, High Frequency	Please contact Alliance Semiconductor
AS91L1001S - 40F100-CG	JTAG Test Controller 100-pin FPBGA, commercial, green package, High Frequency	Please contact Alliance Semiconductor
AS91L1001S – 40F100-I	JTAG Test Controller 100-pin FPBGA, industrial, High Frequency	Please contact Alliance Semiconductor
AS91L1001S – 40F100-IG	JTAG Test Controller 100-pin FPBGA, industrial, green package, High Frequency	Please contact Alliance Semiconductor

Table 6 - Valid Part Number Combinations

Device Master	Description	Package	e Options
		FPBGA-100 (1mm pitch)	LQFP-100
AS91L1001	JTAG Test Controller	Х	Х
AS91L1002	JTAG Test Sequencer	Х	Х
AS91L1003U	3-Port Gateway	Х	Х
AS91L1006BU	6-Port Gateway	Х	Х

Table 7 - JTAG Controller Product Family

AS91L1001