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1. INTRODUCTION

This application note explains how to interface
SRAM memory to the bus of Cirrus Logic ARM-
based microcontrollers. The bus controller on these
devices can interface to x8-, x16-, or x32-bit wide
data memory. However, when using a x16 or x32
bus configurations, it requires some external
decoding logic.

2. GENERAL DISCUSSION

The EP7xxx microcontrollers are capable of
interfacing to a wide variety of SRAM memory
devices. Extra SRAM may be required if the
internal SRAM provided in the EP7xxx is
insufficient for a particular application. SRAM can
also be used to hold program memory. Since some
SRAM devices can have fast access speeds, that
can help to improve overall system performance.
However, the ARM architecture does not support
unaligned accesses, which means that accessing
bytes on non-aligned addresses require an external
decoder to access individual "byte-lanes". In most
situations, external logic to decode the byte lanes
may be required.

Three types of SRAM configurations are shown in
Figure 2. The first configuration is for x8 memory.
In this case, no extra decoding logic is needed. For
reading and storing 8-bit data, this scheme works
well as each byte is accessed for each data access
cycle, assuming a STRB or LDRB instruction is
used (store byte or load byte). Furthermore, the
byte data can accessed on any byte-bounded
memory location. When using x8 memory for
program storage, the processor has to fetch 4 bytes
to build up an instruction word (or two bytes in the
case of a Thumb instruction) which can slow down
performance by a factor of four.

The second SRAM memory bank example in
Figure 3 is a x16 SRAM with no byte decoding
since both nUB and nLB (upper-byte and lower-
byte) signals are tied low. This limits the processor
from using byte data since it can only access data

on a half-word or on a 16-bit boundary. This means
that the programmer must take care to cast all char
data as half-word which pads the upper byte with
don’t cares thereby wasting half of available
memory space. But it can also be dangerous,
especially when using vendor provided libraries
that expect data to be on byte-boundaries.   Byte
decoding of x16 SRAM may not be necessary
when using SRAM to store instructions only. The
reason is to take advantage of the faster access
times of SRAM verses the slower memory access
time of x16 Flash or EPROM. But it will still take
two memory fetches for each ARM instruction (or
one for Thumb).

It is possible to use x32 SRAM without byte
decoding, but it is not recommended. In theory, one
could use non-decoded x32 SRAM for storing
instructions (for speed improvement). But in this
case, Thumb instructions must be aligned on word
boundaries which is impractical. If using this type
of memory for data, then only 32-bit words can be
reliably accessed. 

In conclusion, it is generally recommended that
when using x16 and x32 external SRAM, each byte
lane be fully decoded. 

3. DESIGN OF THE BYTE DECODERS

The program in Listing 1 (See “Listing 1 Sample
Program”) is designed to write 4 bytes, 4 half-ints,
and 4 ints to a hypothetical memory device. Chip
select #5 is used which gives a default address
range starting at location 0x5000.0000 (this can be
changed by the MMU). The results were sampled
using a HP 16500B logic analyzer and is displayed
in Figure 1. The signals sampled are: A0 and A1
(address bits), nCS5 (chip select 5), nMOE (output
enable), HALFWORD and WORD. From the
waveforms, truth tables can be derived and logic
synthesized. 

The first four access are byte oriented, the next four
are word (32-bit) oriented, and the last four are
AN189REV1 3
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half-word accesses. Each access is denoted by a
negative signal on NCS5.

3.1 Decoding x16 SRAM
From Figure 1, it can be seen that a truth table as
shown in Table 1 can be constructed to provide
decoding of byte accesses. In this case, nLB and
nUB are signals applied to a x16 SRAM to decode
the lower and upper bytes, respectively.

By inspection and by applying DeMorgan’s
Theorem, the equations for a byte decoder are
listed below:

!nLB = !(W + HW + !A0)

!nUP = !(W + HW + A0)

The schematic in Figure 2 has logic that
implements the equations above.

Figure 1.  Listing 1 Timing Diagram

ACCESS WORD HALF WORD A0 nLB nUP

Word 1 X X 0 0

Half 0 1 X 0 0

Byte 0 0 0 0 1

Byte 0 0 1 1 0

Table 1. Truth Table for x16 Memory Accesses
4 AN189REV1
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Figure 2.  Schematic for Three Types of SRAM Interfaces (Landscape View)
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3.2 Decoding x32 SRAM
Typically, two x16 devices would be used to create a x32 SRAM memory block. In this case, A0 and A1
are used to decode the byte lanes along with HALFWORD and WORD. The truth table is listed below in
Table 2:

The logic to implement the byte decoding is more complicated, but can be easily realized using a low cost
PAL or generic logic, such as a GAL16V8 or PAL16L8. The equations are derived using Karnaugh graphs.
The equations are not fully reduced to minimum terms. The terms W and HW stand for WORD and
HALFWORD, respectively. The schematic in Figure 3 illustrates one method.

For nB0:

A0, A1

nB0 = (!W * A1) + (!W * !HW * A0)

Access WORD HALFWORD A0 A1 nB0 nB1 nB2 nB3

Word 1 X X X 0 0 0 0

Lower Half 0 1 X 0 0 0 1 1

Upper Half 0 1 X 1 1 1 0 0

Byte 0 0 0 0 0 0 1 1 1

Byte 1 0 0 1 0 1 0 1 1

Byte 2 0 0 0 1 1 1 0 1

Byte 3 0 0 1 1 1 1 1 0

Table 2. Truth Table for x32 Memory Accesses

00 01 11 10

W, HW 00 0 1 1 1

01 0 1 1 0

11 0 0 0 0

10 0 0 0 0

Table 3. Karnaugh Graph #!
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For nB1:

A0, A1

nB1 = (!W * HW * !A0) + (!W * !HW * A0) + (!W * !HW * !A1)

For nB2:

A0, A1

nB2 = (!W * HW *!A1) + (!W * !HW * A0) + (!W * !HW * A1)

For nB3:

A0, A1

nB3 = (!W * !HW * !A0) + (!W *  !A1)

00 01 11 10

W, HW 00 1 0 1 1

01 0 1 1 0

11 0 0 0 0

10 0 0 0 0

Table 4. Karnaugh Graph #2

00 01 11 10

W, HW 00 1 1 1 0

01 1 0 0 1

11 0 0 0 0

10 0 0 0 0

Table 5. Karnaugh Graph #3

00 01 11 10

W, HW 00 1 1 0 1

01 1 0 0 1

11 0 0 0 0

10 0 0 0 0

Table 6. Karnaugh Graph #4
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Figure 3.  x32 SRAM Interface with Decoding of Four Byte Lanes
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4. LISTING 1 SAMPLE PROGRAM

The program set out below in this section was used to read 8, 32, and 16-bit data from the EP72xx. The
timing diagram on shown in Figure 1 is a print out from a logic analyzer showing the results. 

//byte, int, and half word access program
#Define byte unsigned char
int
main(void)
{
byte * mem;
int * mem32;
byte a,b,c,d;
int e,f,g,h;
short * mem16;
short i,j,k,l;
while(1)
{
//Set start address to 0x5000.0000 and read four bytes
mem = (byte*)0x50000000;
a=*mem;
mem++;
b=*mem;
mem++;
c=*mem;
mem++;
d=*mem;
//Next, reset 32 bit pointer and read in four words
mem32 = (int*)0x50000000;
e=*mem32;
mem32++;
f=*mem32;
mem32++;
g=*mem32;

mem32++;

h=*mem32;

//Finally, define a 16-bit pointer and read in four half-words
(short)
mem16 = (short *)0x50000000;
i=*mem16;
mem16++;
j=*mem16;
mem16++;
k=*mem16;
mem16++;
l=*mem16;
}
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