
Copyright Cirrus Logic, Inc. 200
(All Rights Reserved)

P.O. Box 17847, Austin, Texas 78760
(512) 445 7222 FAX: (512) 445 7581
http://www.cirrus.com

Preliminary Product Information This document contains information for a n
Cirrus Logic reserves the right to modify th
AN189
Application Note
Interfacing SRAM to EP7xxx Series Microcontrollers

Note: Cirrus Logic assumes no responsibility for the attached information which is
provided “AS IS” without warranty of any kind (expressed or implied).
1

0

ew product.
is product without notice.

SEP ‘00
AN189REV1

AN189
TABLE OF CONTENTS

1. INTRODUCTION ... 3
2. GENERAL DISCUSSION ... 3
3. DESIGN OF THE BYTE DECODERS .. 3

3.1 Decoding x16 SRAM ... 4
3.2 Decoding x32 SRAM ... 6

4. LISTING 1 SAMPLE PROGRAM ... 9

LIST OF FIGURES

Figure 1. Listing 1 Timing Diagram ... 4
Figure 2. Schematic for Three Types of SRAM Interfaces (Landscape View) 5
Figure 3. x32 SRAM Interface with Decoding of Four Byte Lanes 8

LIST OF TABLES

Table 1. Truth Table for x16 Memory Accesses... 4
Table 2. Truth Table for x32 Memory Accesses... 6
Table 3. Karnaugh Graph #!.. 6
Table 4. Karnaugh Graph #2... 7
Table 5. Karnaugh Graph #3... 7
Table 6. Karnaugh Graph #4... 7

Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts/

Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Advance product infor-
mation describes products which are in development and subject to development changes. Cirrus Logic, Inc. has made best efforts to ensure that the information
contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of any
kind (express or implied). No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights of third
parties. This document is the property of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of this publi-
cation may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise)
without the prior written consent of Cirrus Logic, Inc. Items from any Cirrus Logic web site or disk may be printed for use by the user. However, no part of the
printout or electronic files may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photo-
graphic, or otherwise) without the prior written consent of Cirrus Logic, Inc.Furthermore, no part of this publication may be used as a basis for manufacture or
sale of any items without the prior written consent of Cirrus Logic, Inc. The names of products of Cirrus Logic, Inc. or other vendors and suppliers appearing in
this document may be trademarks or service marks of their respective owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trade-
marks and service marks can be found at http://www.cirrus.com.
2 AN189REV1

AN189
1. INTRODUCTION

This application note explains how to interface
SRAM memory to the bus of Cirrus Logic ARM-
based microcontrollers. The bus controller on these
devices can interface to x8-, x16-, or x32-bit wide
data memory. However, when using a x16 or x32
bus configurations, it requires some external
decoding logic.

2. GENERAL DISCUSSION

The EP7xxx microcontrollers are capable of
interfacing to a wide variety of SRAM memory
devices. Extra SRAM may be required if the
internal SRAM provided in the EP7xxx is
insufficient for a particular application. SRAM can
also be used to hold program memory. Since some
SRAM devices can have fast access speeds, that
can help to improve overall system performance.
However, the ARM architecture does not support
unaligned accesses, which means that accessing
bytes on non-aligned addresses require an external
decoder to access individual "byte-lanes". In most
situations, external logic to decode the byte lanes
may be required.

Three types of SRAM configurations are shown in
Figure 2. The first configuration is for x8 memory.
In this case, no extra decoding logic is needed. For
reading and storing 8-bit data, this scheme works
well as each byte is accessed for each data access
cycle, assuming a STRB or LDRB instruction is
used (store byte or load byte). Furthermore, the
byte data can accessed on any byte-bounded
memory location. When using x8 memory for
program storage, the processor has to fetch 4 bytes
to build up an instruction word (or two bytes in the
case of a Thumb instruction) which can slow down
performance by a factor of four.

The second SRAM memory bank example in
Figure 3 is a x16 SRAM with no byte decoding
since both nUB and nLB (upper-byte and lower-
byte) signals are tied low. This limits the processor
from using byte data since it can only access data

on a half-word or on a 16-bit boundary. This means
that the programmer must take care to cast all char
data as half-word which pads the upper byte with
don’t cares thereby wasting half of available
memory space. But it can also be dangerous,
especially when using vendor provided libraries
that expect data to be on byte-boundaries. Byte
decoding of x16 SRAM may not be necessary
when using SRAM to store instructions only. The
reason is to take advantage of the faster access
times of SRAM verses the slower memory access
time of x16 Flash or EPROM. But it will still take
two memory fetches for each ARM instruction (or
one for Thumb).

It is possible to use x32 SRAM without byte
decoding, but it is not recommended. In theory, one
could use non-decoded x32 SRAM for storing
instructions (for speed improvement). But in this
case, Thumb instructions must be aligned on word
boundaries which is impractical. If using this type
of memory for data, then only 32-bit words can be
reliably accessed.

In conclusion, it is generally recommended that
when using x16 and x32 external SRAM, each byte
lane be fully decoded.

3. DESIGN OF THE BYTE DECODERS

The program in Listing 1 (See “Listing 1 Sample
Program”) is designed to write 4 bytes, 4 half-ints,
and 4 ints to a hypothetical memory device. Chip
select #5 is used which gives a default address
range starting at location 0x5000.0000 (this can be
changed by the MMU). The results were sampled
using a HP 16500B logic analyzer and is displayed
in Figure 1. The signals sampled are: A0 and A1
(address bits), nCS5 (chip select 5), nMOE (output
enable), HALFWORD and WORD. From the
waveforms, truth tables can be derived and logic
synthesized.

The first four access are byte oriented, the next four
are word (32-bit) oriented, and the last four are
AN189REV1 3

AN189
half-word accesses. Each access is denoted by a
negative signal on NCS5.

3.1 Decoding x16 SRAM
From Figure 1, it can be seen that a truth table as
shown in Table 1 can be constructed to provide
decoding of byte accesses. In this case, nLB and
nUB are signals applied to a x16 SRAM to decode
the lower and upper bytes, respectively.

By inspection and by applying DeMorgan’s
Theorem, the equations for a byte decoder are
listed below:

!nLB = !(W + HW + !A0)

!nUP = !(W + HW + A0)

The schematic in Figure 2 has logic that
implements the equations above.

Figure 1. Listing 1 Timing Diagram

ACCESS WORD HALF WORD A0 nLB nUP

Word 1 X X 0 0

Half 0 1 X 0 0

Byte 0 0 0 0 1

Byte 0 0 1 1 0

Table 1. Truth Table for x16 Memory Accesses
4 AN189REV1

AN189
Figure 2. Schematic for Three Types of SRAM Interfaces (Landscape View)
AN189REV1 5

AN189
3.2 Decoding x32 SRAM
Typically, two x16 devices would be used to create a x32 SRAM memory block. In this case, A0 and A1
are used to decode the byte lanes along with HALFWORD and WORD. The truth table is listed below in
Table 2:

The logic to implement the byte decoding is more complicated, but can be easily realized using a low cost
PAL or generic logic, such as a GAL16V8 or PAL16L8. The equations are derived using Karnaugh graphs.
The equations are not fully reduced to minimum terms. The terms W and HW stand for WORD and
HALFWORD, respectively. The schematic in Figure 3 illustrates one method.

For nB0:

A0, A1

nB0 = (!W * A1) + (!W * !HW * A0)

Access WORD HALFWORD A0 A1 nB0 nB1 nB2 nB3

Word 1 X X X 0 0 0 0

Lower Half 0 1 X 0 0 0 1 1

Upper Half 0 1 X 1 1 1 0 0

Byte 0 0 0 0 0 0 1 1 1

Byte 1 0 0 1 0 1 0 1 1

Byte 2 0 0 0 1 1 1 0 1

Byte 3 0 0 1 1 1 1 1 0

Table 2. Truth Table for x32 Memory Accesses

00 01 11 10

W, HW 00 0 1 1 1

01 0 1 1 0

11 0 0 0 0

10 0 0 0 0

Table 3. Karnaugh Graph #!
6 AN189REV1

AN189
For nB1:

A0, A1

nB1 = (!W * HW * !A0) + (!W * !HW * A0) + (!W * !HW * !A1)

For nB2:

A0, A1

nB2 = (!W * HW *!A1) + (!W * !HW * A0) + (!W * !HW * A1)

For nB3:

A0, A1

nB3 = (!W * !HW * !A0) + (!W * !A1)

00 01 11 10

W, HW 00 1 0 1 1

01 0 1 1 0

11 0 0 0 0

10 0 0 0 0

Table 4. Karnaugh Graph #2

00 01 11 10

W, HW 00 1 1 1 0

01 1 0 0 1

11 0 0 0 0

10 0 0 0 0

Table 5. Karnaugh Graph #3

00 01 11 10

W, HW 00 1 1 0 1

01 1 0 0 1

11 0 0 0 0

10 0 0 0 0

Table 6. Karnaugh Graph #4
AN189REV1 7

AN189
Figure 3. x32 SRAM Interface with Decoding of Four Byte Lanes

D22

3.3_VDD

D2

nMWE

A5

D23A9

A7

nCSz

D15
D29
D30

D25

A13
D13

D31

A8

HALF

nB2

A14

U29

GAL16V8B

1
11

12
13
14
15
16
17
18
19

2
3
4
5
6
7
8
9

I/CLK
I/OE

I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q

I
I
I
I
I
I
I
I

D18

A17

D9

D21

A4

nB1

A10

U28

IS62Ux12816/TSOP

1
2
3
4
5

6

7
8
9
10

11

12

13
14
15
16

17

18
19
20
21
22

44
43
42

41
40
39

38
37
36
35

34

33

32
31
30
29

28

27
26
25
24

23

A4
A3
A2
A1
A0

CE

I/O0
I/O1
I/O2
I/O3

VC
C

GND

I/O4
I/O5
I/O6
I/O7

WE

A16
A15
A14
A13
A12

A5
A6
A7

OE
UP
LB

I/O15
I/O14
I/O13
I/O12

GND

VC
C

I/O11
I/O10

I/O9
I/O8

NC

A8
A9
A10
A11

NC
nMOE

A2

A14

3.3_VDD

nMOE

A1

D0

A15

A12

U28

IS62Ux12816/TSOP

1
2
3
4
5

6

7
8
9
10

11

12

13
14
15
16

17

18
19
20
21
22

44
43
42

41
40
39

38
37
36
35

34

33

32
31
30
29

28

27
26
25
24

23

A4
A3
A2
A1
A0

CE

I/O0
I/O1
I/O2
I/O3

VC
C

GND

I/O4
I/O5
I/O6
I/O7

WE

A16
A15
A14
A13
A12

A5
A6
A7

OE
UP
LB

I/O15
I/O14
I/O13
I/O12

GND

VC
C

I/O11
I/O10

I/O9
I/O8

NC

A8
A9
A10
A11

NC

A16

D1

A18

nB3

A9

A11

HALFWORD

A11

A7

A17

nCSz

A18

D26

nB0

D8

A5

nMWE

D17

x32 SRAM with full byte
decoding

D7

A16

D4

D27

A6

D10
D11

D3

D12

A6

D24

D28

A3

D6

A2A3

D19

D16

D20

A15

A12
A13

D14

A8
D5

A10

A4

A0
8 AN189REV1

AN189
4. LISTING 1 SAMPLE PROGRAM

The program set out below in this section was used to read 8, 32, and 16-bit data from the EP72xx. The
timing diagram on shown in Figure 1 is a print out from a logic analyzer showing the results.

//byte, int, and half word access program
#Define byte unsigned char
int
main(void)
{
byte * mem;
int * mem32;
byte a,b,c,d;
int e,f,g,h;
short * mem16;
short i,j,k,l;
while(1)
{
//Set start address to 0x5000.0000 and read four bytes
mem = (byte*)0x50000000;
a=*mem;
mem++;
b=*mem;
mem++;
c=*mem;
mem++;
d=*mem;
//Next, reset 32 bit pointer and read in four words
mem32 = (int*)0x50000000;
e=*mem32;
mem32++;
f=*mem32;
mem32++;
g=*mem32;

mem32++;

h=*mem32;

//Finally, define a 16-bit pointer and read in four half-words
(short)
mem16 = (short *)0x50000000;
i=*mem16;
mem16++;
j=*mem16;
mem16++;
k=*mem16;
mem16++;
l=*mem16;
}

AN189REV1 9

