

December 2001 Revised December 2001

74ALVC16838

Low Voltage 16-Bit Selectable Register/Buffer with 3.6V Tolerant Inputs and Outputs

General Description

The ALVC16838 contains sixteen non-inverting selectable buffered or registered paths. The device can be configured to operate in a registered, or flow through buffer mode by utilizing the register enable (REGE) and Clock (CLK) signals. The device operates in a 16-bit word wide mode. All outputs can be placed into 3-State through use of the $\overline{\text{OE}}$ Pin. These devices are ideally suited for buffered or registered 168 pin and 200 pin SDRAM DIMM memory modules.

The 74ALVC16838 is designed for low voltage (1.65V to 3.6V) V_{CC} applications with I/O compatibility up to 3.6V.

The 74ALVC16838 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

Features

- Compatible with PC100 and PC133 DIMM module specifications
- \blacksquare 1.65V to 3.6V $\rm V_{CC}$ supply operation
- 3.6V tolerant inputs and outputs
- t_{PD} (CLK to O_n)

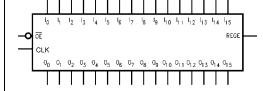
3.5 ns max for 3.0V to 3.6V $\rm V_{CC}$ 4.5 ns max for 2.3V to 2.7V $\rm V_{CC}$

8.0 ns max for 1.65V to 1.95V $V_{\rm CC}$

- Power-off high impedance inputs and outputs
- Supports live insertion and withdrawal (Note 1)
- Uses patented noise/EMI reduction circuitry
- Ideal for SDRAM DIMM modules
- Latchup conforms to JEDEC JED78
- ESD performance:

Human body model > 2000V

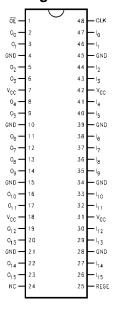
Machine model > 200V


Note 1: To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver

Ordering Code:

Order Number	Package Number	Package Description
74ALVC16838MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.


Logic Symbol

Pin Descriptions

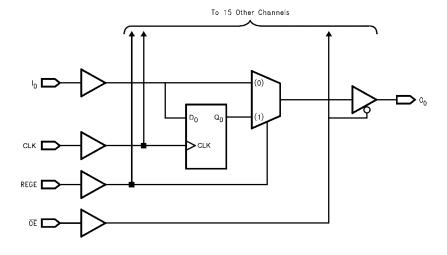
Pin Names	Description
ŌĒ	Output Enable Input (Active LOW)
I ₀ -I ₁₅	Inputs
I ₀ -I ₁₅ O ₀ -O ₁₅	Outputs
CLK	Clock Input
REGE	Register Enable Input

Connection Diagram

Truth Table

	Inputs							
CLK	REGE	OE	O _n					
1	Н	Н	L	Н				
\uparrow	Н	L	L	L				
X	L	Н	L	Н				
X	L	L	L	L				
X	Х	X	Н	Z				

H = Logic HIGH


- L = Logic LOW X = Don't Care, but not floating
- Z = High Impedance

 ↑ = LOW-to-HIGH Clock Transition

Functional Description

The 74ALVC16838 consists of sixteen selectable noninverting buffers or registers with word wide modes. Mode functionality is selected through operation of the CLK and REGE pin as shown by the truth table. When REGE is held at a logic HIGH the device operates as a 16-bit register. Data is transferred from In to On on the rising edge of the CLK input. When the REGE pin is held at a logic LOW the device operates in a flow through mode and data propagates directly from the I to the O outputs. All outputs can be 3-STATE by holding the $\overline{\text{OE}}$ pin at a logic HIGH.

Logic Diagram

Absolute Maximum Ratings(Note 2)

 $\begin{tabular}{lll} Supply Voltage (V_{CC}) & -0.5V to +4.6V \\ DC Input Voltage (V_I) & -0.5V to 4.6V \\ \end{tabular}$

Output Voltage (V $_{\rm O}$) (Note 3) $-0.5 \mbox{V to V}_{\rm CC}$ +0.5V

DC Input Diode Current (I_{IK})

 $V_I < 0V$ –50 mA

DC Output Diode Current (I_{OK})

 $V_{O} < 0V$ –50 mA

DC Output Source/Sink Current

(I_{OH}/I_{OL})

DC V_{CC} or GND Current per Supply Pin (I_{CC} or GND) ± 100 mA

Storage Temperature Range (T_{STG}) $-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions (Note 4)

Power Supply

Operating 1.65V to 3.6V Input Voltage (V_1) 0V to V_{CC}

Minimum Input Edge Rate (Δt/ΔV)

 $V_{IN} = 0.8V \text{ to } 2.0V, V_{CC} = 3.0V$ 10 ns/

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

Note 4: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC}	Min	Max	Units
-			(V)			
V _{IH}	HIGH Level Input Voltage		1.65 -1.95	0.65 x V _{CC}		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
V _{IL}	LOW Level Input Voltage		1.65 -1.95		0.35 x V _{CC}	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
V _{ОН}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	1.65	1.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2		
		$I_{OH} = -12 \text{ mA}$	2.3	1.7		V
			2.7	2.2		
			3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2		
V _{OL}	LOW Level Output Voltage	$I_{OL} = 100 \mu A$	1.65 - 3.6		0.2	
		$I_{OL} = 4 \text{ mA}$	1.65		0.45	
		$I_{OL} = 6 \text{ mA}$	2.3		0.4	V
		$I_{OL} = 12mA$	2.3		0.7	V
			2.7		0.4	
		$I_{OL} = 24 \text{ mA}$	3		0.55	
I	Input Leakage Current	0 ≤ V _I ≤ 3.6V	3.6		±5.0	μΑ
OZ	3-STATE Output Leakage	0 ≤ V _O ≤ 3.6V	3.6		±10	μΑ
СС	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μΑ
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 -3.6		750	μΑ

±50 mA

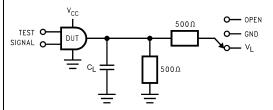
AC Electrical Characteristics

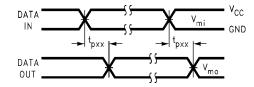
		T $_{A}=-40^{\circ}$ C to $+85^{\circ}$ C, R $_{L}=500\Omega$							Units	
Symbol	Parameter	$C_L = 50 \text{ pF}$ $C_L = 30 \text{ pF}$								
Symbol	raiametei	V $_{CC}=$ 3.3V \pm 0.3V		V _{CC} = 2.7V		$V_{CC} = 2.5V \pm 0.2V$		V $_{\text{CC}}$ = 1.8V \pm 0.15V		Ullits
		Min	Max	Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	250		200		200		100		ns
t _{PHL} , t _{PLH}	Propagation Delay Bus to Bus (REGE = 0)	1.3	3.0	1.5	4.0	1.0	3.5	1.5	7.0	ns
t _{PHL} , t _{PLH}	Propagation Delay CLK to Bus (REGE = 1)	1.3	3.5	1.5	4.5	1.0	4.0	1.5	8.0	ns
t _{PHL} , t _{PLH}	Propagation Delay REGE to Bus	1.3	3.5	1.5	4.5	1.0	4.0	1.5	8.0	ns
t _{PZL} , t _{PZH}	Output Enable Time	1.3	4.0	1.5	5.2	1.0	4.7	1.5	9.4	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.3	4.0	1.5	4.4	1.0	3.9	1.5	7.0	ns
t _W	Pulse Width	1.5		1.5		1.5		4.0		ns
t _S	Setup Time	1.0		1.0		1.0		2.5		ns
t _H	Hold Time	0.7		0.7		0.7		1.0		ns

Capacitance

Symbol	Parameter		Conditions	$T_A = -$	Units	
Symbol			Conditions	V _{CC}	Typical	Units
C _{IN}	Input Capacitance		V _I = 0V or V _{CC}	3.3	6	pF
C _{OUT}	Output Capacitance		V _I = 0V or V _{CC}	3.3	7	pF
C _{PD}	Power Dissipation Capacitance Outputs Enabled		f = 10 MHz, C _L = 50 pF	3.3	20	pF
				2.5	20	ы

AC Loading and Waveforms




TABLE 1. Values for Figure 1

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V_L
t_{PZH} , t_{PHZ}	GND

FIGURE 1. AC Test Circuit

TABLE 2. Variable Matrix (Input Characteristics: f = 1MHz; t_r = t_f = 2ns; \textbf{Z}_0 = 50Ω

Symbol	V _{CC}							
Symbol	$3.3V \pm 0.3V$	2.7V	2.5V ± 0.2V	1.8V ± 0.15V				
V _{mi}	1.5V	1.5V	V _{CC} /2	V _{CC} /2				
V _{mo}	1.5V	1.5V	V _{CC} /2	V _{CC} /2				
V _X	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.15V				
V _Y	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} – 0.15V	V _{OH} – 0.15V				
V _L	6V	6V	V _{CC} *2	V _{CC} *2				

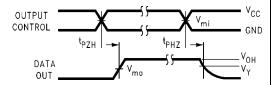
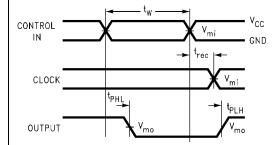



FIGURE 2. Waveform for Inverting and Non-Inverting Functions

FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

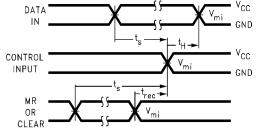
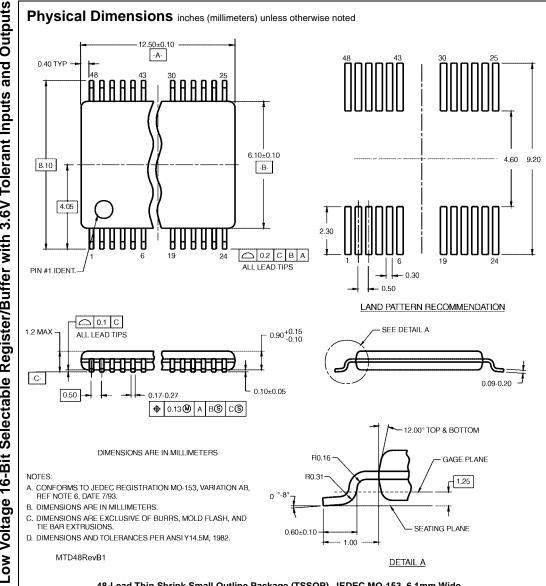



FIGURE 4. Propagation Delay, Pulse Width and t_{rec} Waveforms

FIGURE 5. Setup Time, Hold Time and Recovery Time for Low Voltage Logic

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com