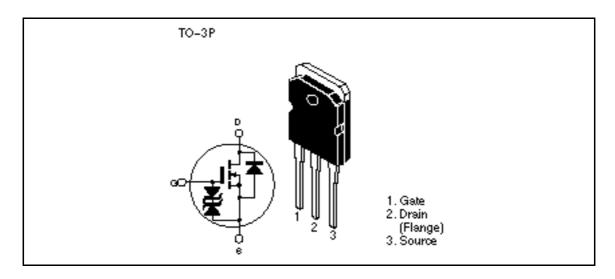
Silicon N Channel MOS FET High Speed Power Switching


HITACHI

ADE-208-454 B 3rd. Edition

Features

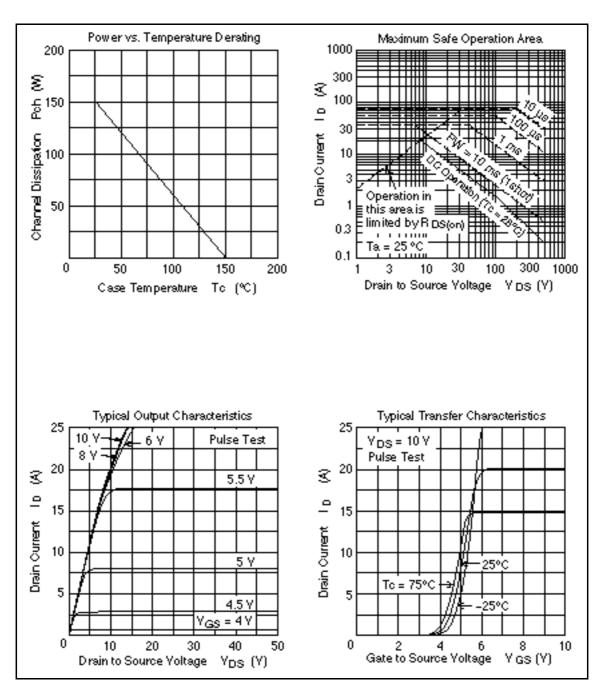
- · Low on-resistance
- · High speed switching
- Low drive current
- · Avalanche ratings

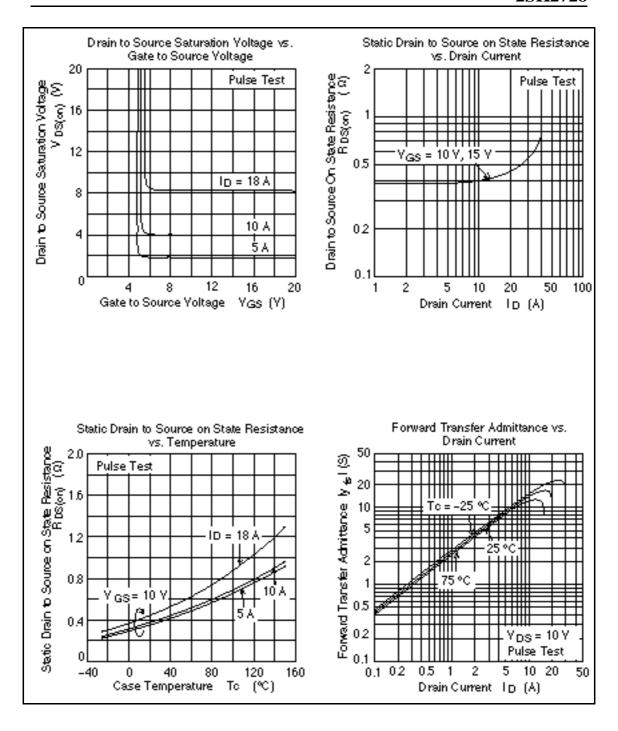
Outline

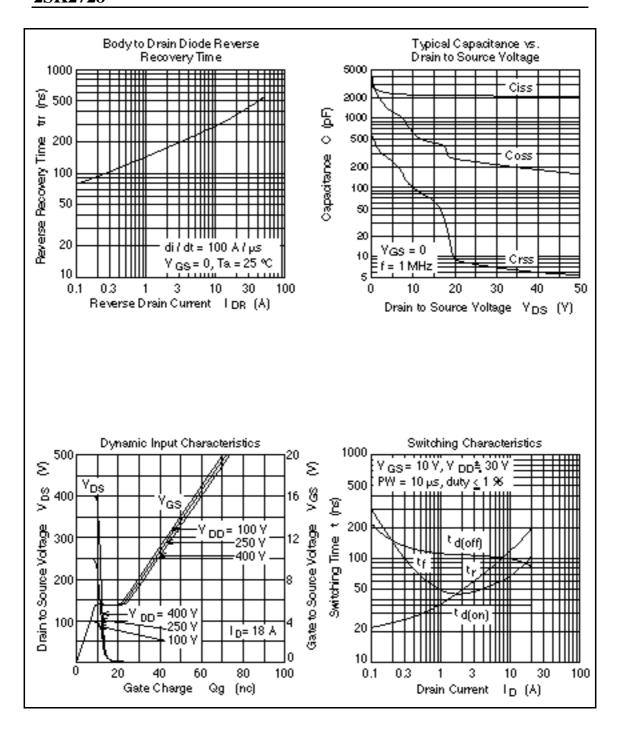
Absolute Maximum Ratings ($Ta = 25^{\circ}C$)

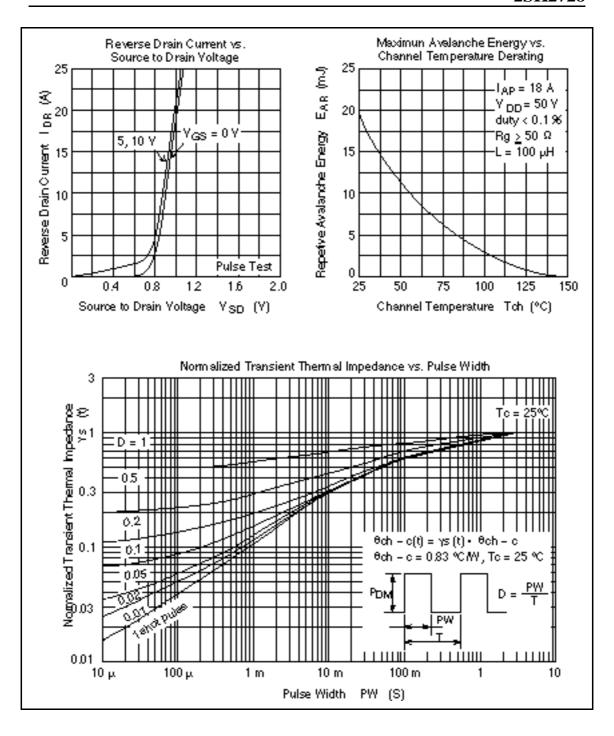
Item	Symbol	Ratings	Unit
Drain to source voltage	$V_{ t DSS}$	500	V
Gate to source voltage	V _{GSS}	±30	V
Drain current	I _D	18	A
Drain peak current	l _{D(pulse)} *1	72	A
Body to drain diode reverse drain current	I _{DR}	18	A
Avalanche current	1 _{AP} *3	18	A
Avalanche energy	E _{AR} *3	18	mJ
Channel dissipation	Pch*2	150	W
Channel temperature	Tch	150	°C
Storage temperature	Tstg	-55 to +150	°C

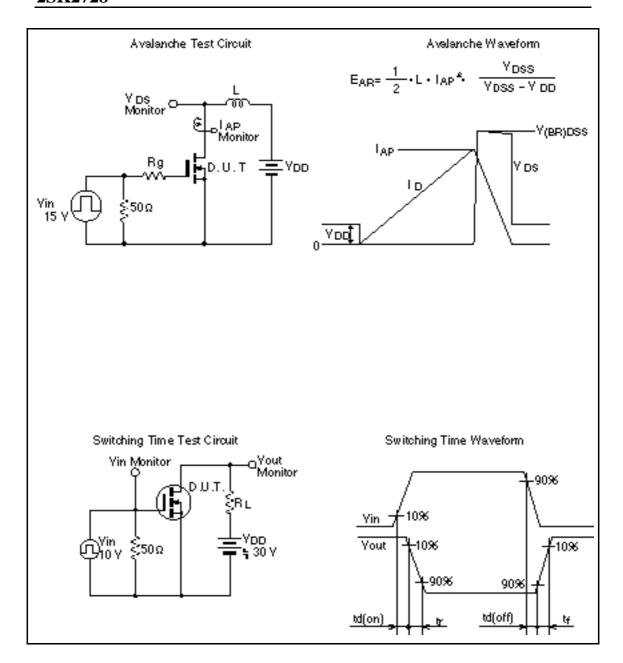
Notes: 1. PW 10 µs, duty cycle 1 %

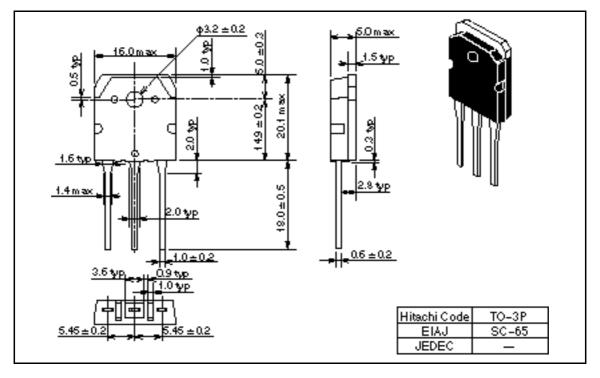

- 2. Value at $Tc = 25^{\circ}C$
- 3. Value at Tch = 25°C, Rg $\,$ 50 $\,$, L = 100 μH


Electrical Characteristics ($Ta = 25^{\circ}C$)


Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Drain to source breakdown voltage	$V_{(BR)DSS}$	500	_	_	V	$I_{D} = 10 \text{mA}, V_{GS} = 0$
Gate to source breakdown voltage	$V_{(BR)GSS}$	±30	_	_	V	$I_{G} = \pm 100 \mu A, V_{DS} = 0$
Gate to source leak current	I _{GSS}	_	_	±10	μΑ	$V_{GS} = \pm 25V, V_{DS} = 0$
Zero gate voltege drain current	I _{DSS}	_	_	10	μΑ	$V_{DS} = 500 \text{ V}, V_{GS} = 0$
Gate to source cutoff voltage	$V_{GS(off)}$	2.5	_	3.5	V	$I_D = 1 \text{mA}, V_{DS} = 10 V^{*1}$
Static drain to source on state resistance	$R_{\mathrm{DS(on)}}$	_	0.38	0.45		$I_D = 9A, V_{GS} = 10V^{*1}$
Forward transfer admittance	y _{fs}	8	13	_	S	$I_D = 9A, V_{DS} = 10V^{*1}$
Input capacitance	Ciss	_	2150	_	pF	V _{DS} = 10V
Output capacitance	Coss	_	630	_	pF	$V_{GS} = 0$
Reverse transfer capacitance	Crss	_	100	_	pF	f = 1MHz
Total gate charge	Qg	_	38	_	nc	$V_{DD} = 400V$
Gate to source charge	Qgs	_	10	_	nc	V _{GS} = 10V
Gate to drain charge	Qgd	_	13	_	nc	I _D = 18A
Turn-on delay time	t _{d(on)}	_	35	_	ns	$V_{GS} = 10V, I_{D} = 9A$
Rise time	t _r	_	120	_	ns	$R_{L} = 3.3$
Turn-off delay time	$t_{d(off)}$	_	100	_	ns	_
Fall time	t _f	_	65	_	ns	
Body to drain diode forward voltage	V_{DF}	_	1.0	_	V	$I_D = 18A, V_{GS} = 0$
Body to drain diode reverse recovery time	t _{rr}	_	380	_	ns	$I_F = 18A, V_{GS} = 0$ diF/ dt = 100A/µs


Note: 1. Pulse test


Main Characteristics



Package Dimensions

Unit: mm

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

IITACHI

Hitachi, Ltd. Semiconductor & IC DW

Nippon Bidg., 2-5-2, Ohte-medii, Chiyode-ku, Tokyo 100, Jepan Tat Tokyo (03) 3270-2111

Fex: (03) 3270-5109

For further in forme I on write to:

Hitschi America, Ltd. Semiconductor & IC Div. 2000 Sierre Point Perkwey Brisbane, CA. 94005-4835 USA

Tel: 415-589-8300 Fex: 415-583-4207

Hitachi Burope GmbH Bedronic Components Group Continental Burope Domeicher Streiße 3 D-85622 Fieldkirchen München Tet 089-9 94 80-0 Fex: 089-9-29-30-00

Hitachi Burope Ltd. Blectronic Components Div. Nothern Burgoe Headquerters Whilebrook Perk Lower Clook hem Road Maidenhead Borkehire SL68YA United Kingdom Tet 0628-585000 Fex: 0628-778322

Hitechi Asia Pta, Ltd. 45 Collyer Quey \$20-00 Hitechi Tower Snapore 0404 Tel: 535-2400 Fex: 535-4533

Hitechi Asia (Hong Kong) Ltd. Unit 706, North Tower, World Finance Centre Herbour City, Centon Road Teim She Teus Kowloon Hana Kona Tet 27359218 Fex: 27306074