Provisional

IRP6VRM1

Turn key Pentium Pro1 power supply specification

The new IRP6VRM1 offers the power supply designer a complete turn-key solution for dc/dc convertors required to power next-generation microprocessors. A synchronous buck regulator topology operating at 200kHz is employed and achieves excellent efficiency with very fast load response and tight output voltage regulation.

The new Super FETKYTM is used in the synchronous recirculation circuitry to reduce board space and assembly costs while actually improving circuit efficiency through reduced stray inductance. Complete performance characterization along with detailed schematic, bill-of-materials, PCB layout and modelling are offered to reduce the customer's design time and effort.

Purpose

This is a production ready design. It has been thoroughly tested for performance against the Intel P6 power specification, and evaluated for manufacturability by a high volume manufacturer.

This design will not be manufactured by International Rectifier. Its purpose is to simplify the design and qualification process for our customers.

Web Site

This design may be downloaded in two formats at IR's web site (http://www.irf.com). One is PDF format for on screen viewing or printing, the other is in native format.

Floppy Disk

The design is also available on floppy disk. As on our web site, the floppy version contains two formats, PDF and native format.

Demo Boards

Completed boards are available free to IR customers, and at a reasonable charge to others.

Support

E-Mail Chris Davis at cdavis1@irf.com for support of this design.

Fig 1. IRP6VRM1

Key Features

- conforms to Intel 200Mhz P6 specification
- 12.4 ampere continuous output
- 2.0V-to-3.5V digitally selectable output
- 30A/µS transient load response capability
- greater than 90% efficient
- short circuit protected
- Super FETKYTM synchronous rectifier

Contents

Specifications2
Schematic Diagram3
Bill of Materials4
Inductor Specifications5
Assembly Options5
Static Performance5
Dynamic Performance6

Copy Right Restriction

This design may be used for production or evaluation purposes under the condition that all IR labeling and identification marks remain on all boards produced using this design, or as otherwise agreed to in writing by International Rectifier.

© International Rectifier, 1996

¹: A registered trademark of Intel Corporation

Provisional

IRP6VRM1

Specifications

Absolute maximum ratings	_	(Table 1)			
Parameter	Min	Max	Units	Conditions /	Des /

Parameter	Min	Max	Units	Conditions / Description
5 volt input	-	6.0	V	
12 volt input	-	15.0	V	
Continuous output current	-	12.4	Α	Pulse width > 100ms
Pulsed output current	-	14	Α	100ms pulse width, 1% duty factor
Ambient Temperature	10	60	°C	

Electrical Input Specifications

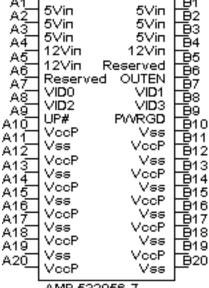
Parameter	Min	Тур	Max	Units	Conditions / Description
5 volt input (5Vin)	4.75	5.0	5.25	V	Supply meet all output specifications
5 volt input current	-	-	10	Α	All line and load conditions
12 volt input (12Vin)	11.8	12.0	13.2	V	Supply meets all output specifica-
					tions
12 volt input current	-	12.5	50	mΑ	All line and load conditions

Power Output Specifications (all specified line and load conditions)

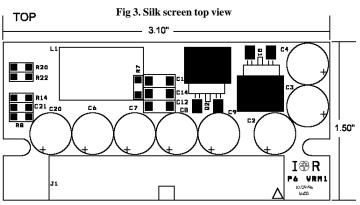
		`			· · · · · · · · · · · · · · · · · · ·
Parameter	Min	Тур	Max	Units	Conditions / Description
Voltage Range	2.0	-	3.5	V	Selected by VID[0:3]
Current	0	-	12.4	Α	
Voltage regulation	-5	-	+5	%	Of nominal VID set point. Includes
					30A/us transients from min-to-max-
					to-min load current
Ripple voltage	-1	-	+1	%	Percent of set point.
Turn on settling time	-	1.5	10	mS	Within ±10% of VID set point

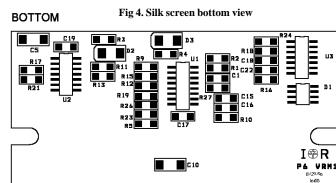
Digital Input / Output Specifications

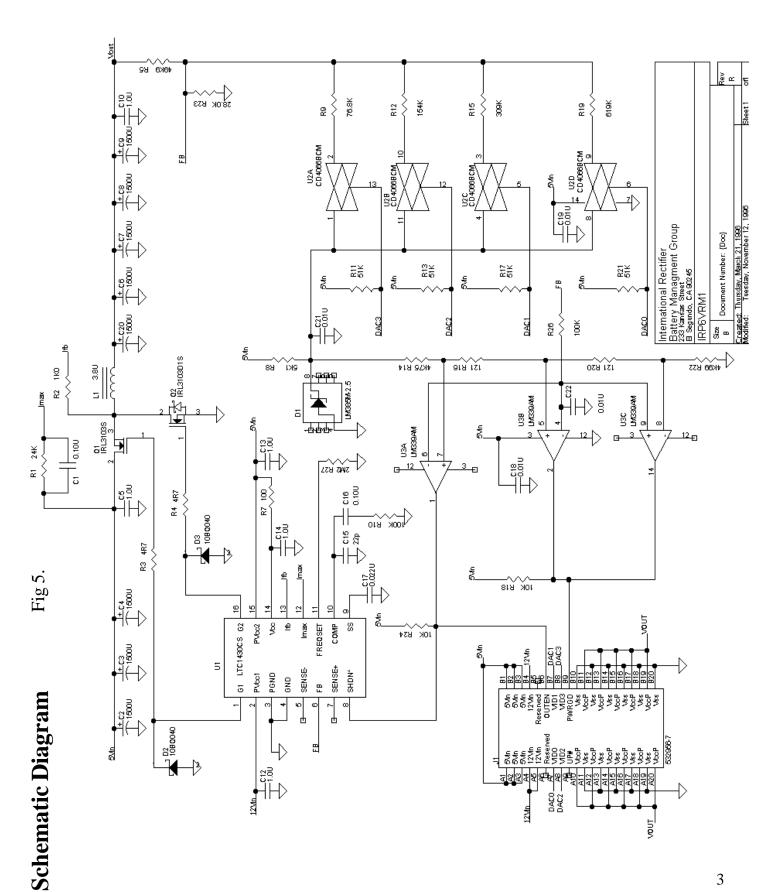
Signal	Input / Output	Conditions / Description
PWRGD	output	Open collector output. Logic 1
		output signifies that the voltage
		output of the module is within ±10%
		of the selected level
OUTEN	input	Open collector input. Logic 0
		disables the module output.
UP#	input	Open. Not required in this module
		since the module has upgrade
		capability.
VID[0:3]	input	Open collector input. Selects
		nominal output voltage as shown in
		table #2.


Output Fault Protection

Parameter	Min	Тур	Max	Units	Conditions / Description
Short circuit protection	13	17	21	Α	Limits output current during short
					circuit or overload
Over voltage protection	+10	-	+20	%	Shuts down the power supply when
					the output voltage exceeds 10%-to-
					20% above the set point


VID Codes (Table 2)


VCCP	AID3	VID2	VID1	VIDO	Comments
2.0	1	1	1	1	No CPU
2.1	1	1	1	0	Optional
2.2	1	1	0	1	Optional
2.3	1	1	0	0	Optional
2.4	1	0	1	1	Optional
2.5	1	0	1	0	Optional
2.6	1	0	0	1	Optional
2.7	1	0	0	0	
2.8	0	1	1	1	
2.9	0	1	1	0	
3.0	0	1	0	1	
3.1	0	1	0	0	
3.2	0	0	1	1	
3.3	0	0	1	0	·
3.4	0	0	0	1	
3.5	0	0	0	0	


Fig 2. Connector pin out

AMP 532956-7

ロサイン	•
0	,

	Vend PN	1206Z104M500N	6MV1500GX	1808Z105M250N	1206N220J101N	1206B223K500N	1206B103K500N	LM385M-2.5-ND	10BQ040	532956-7	IROOM	IRL3103S	IRL3103D1S	P24KETR-ND	P1.0KETR-ND	P4R7ETR-ND	P49.9KFTR-ND	P100ETR-ND	P5.1KETR-ND	P76.8KFTR-ND	P100KETR-ND	P51KETR-ND	P154KFTR-ND	P4.75KFTR-ND	P309KFTR-ND	P121FTR-ND	P10KETR-ND	P619KFTR-ND	P4.99KFTR-ND	P28.0KFTR-ND	P2.2METR-ND	LTC1430CS	CD4066BCM-ND	LM339AM
	Vendor	Garrett	Sanyo	Garrett	Garrett	Garrett	Garrett	Anthen	Я	AMP	Pacific Transformer	Я	R	Digi-Key	Digi-Key	Digi-Key	Digi-Key	Digi-Key	Digi-Key	Digi-Key	Digi-Key	Digi-Key	Digi-Key	Digi-Key	Digi-Key	Digi-Key	Digi-Key	Digi-Key	Digi-Key	Digi-Key	Digi-Key	Linear Technology	Anthen	Anthem
	Man PN	1206Z104M500N	6MV1500GX	1808Z105M250N	1206N220J101N	1206B223K500N	1206B103K500N	LM385M-2.6	10BQ040	532956-7	IROOM	IRL3103S	IRL3103D1S	ERJ-8GEYJ243V	ERJ-8GEYJ102V	ERJ-8GEYJ4R7V	ERJ-8ENF4992V	ERJ-8GEYJ101V	ERJ-8GEYJ512V	ERJ-8ENF7682V	ERJ-8GEYJ104V	ERJ-8GEYJ511V	ERJ-8ENF1543V	ERJ-8ENF4751V	ERJ-8ENF3093V	ERJ-8ENF1210V	ERJ-8GEYJ103V	ERJ-8ENF6193V	ERJ-8ENF4991V	ERJ-8ENF2802V	ERJ-8GEYJ225V	LTC1430CS	CD4066BCM	LM339AM
(Table #3)	Manufadurer	Novacap	Sanyo	Novacap	Novacap	Novacap	Novacap	National Semiconductor	International Rectifier	AMP	Pacific Transformer	International Rectifier	International Rectifier	Panasonic	Panasonic	Panasonic	Panasonic	Panasonic	Panasonic	Panasonic	Panasonic	Panasonic	Panasonic	Panasonic	Panasonic	Panasonic	Panasonic	Panasonic	Panasonic	Panasonic	Panasonic	Linear Technology	National Semiconductor	National Semiconductor
(Ta	Description	20% 1206 Z5U capacitor	Radial lead electrolytic capacitor	20% 1808 Z5U capacitor	5%1206 NPO capacitor	10% 1206 X7R capacitor	10% 1206 X7R capacitor	2.5V SO8 Precision shunt referance	1.A.40V SM schottky diode	40 Pin connector	9t of 16g on Micrometals T60-52 core	N-Channel Power MOSFET	N-Channel Super FETKY	5% 1206 Resistor	5%1206 Resistor	5%1206 Resistor	1%1206 Resistor	5%1206 Resistor	5% 1206 Resistor	1%1206 Resistor	5% 1206 Resistor	5%1206 Resistor	1%1206Resistor	1%1206 Resistor	1%1206 Resistor	1%1206Resistor	5% 1206 Resistor	1%1206 Resistor	1%1206 Resistor	1%1206 Resistor	5%1206 Resistor	Syncronous Buck Controllor	Quad Bilateral Switch	Quad Comparator
	Part	0.100	1500U	1.0U	22p	0.022U	0.01U	LM385M-2.5	10BQ040	23286-7	3.8U	IRL3103S	IRL3103D1S	24K	1K0	4R7	49K9	100	5K1	X8:9∠	100K	51K	154K	4K75	309K	121	10K	619K	4K99	28.0K	2M2	LTC1430CS	Σ	LM339AM
Bill of Materials	Reference	C1,C16	C2,C3,C4,C6,C7,C8,C9,C20	C5,C10,C12,C13,C14	C15	C17	C18,C19,C21,C22	D1	D2,D3	11	L1	Q1	Q2	R1	R2	R4,R3	R5	R7	R8	R9	R26,R10	R11,R13,R17,R21	R12	R14	R15	R16,R20	R18,R24	R19	R22	R23	R27	U1	U2	U3
ll of	ofty.	2	00	2	-	-	4	1	2	1	1	1	1	-	-	2	1	1	1	1	2	4	-	1	-	2	2	1	1	1	-	-	1	-
Bi	Item	Ψ.	7	ო	4	S	9	^	ω	თ	10	7	12	13	4	15	16	17	18	19	20	7	22	23	74	23	8	27	8	23	8	હ	32	8

Manufacturers

Novacap(800) 22	-,,
Panasonic(800) 92	22-0028
National Semiconductor (800) 27	72-9959
Linear Technology(714) 45	3-4650
Micrometals Inc(714) 93	70-9400
International Rectifier(310) 32	22-3331
AMP(800) 52	22-6752
Sanyo (619) 66	61-6835

Distributors

Digi-Key	(800)	344-4539
Garrett	(800)	767-0081
Anthem	(714)	768-4444

PCB Fabrication

South Coast Circuits ----- (714) 966-2108

Turn Key Manufacturing

Corlund Electronics Corporation ----- (805) 499-6877

Inductor Winding

Pacific Transformer ----- (714) 779-0450

Delivery

Items used in this design were found to have production quantity lead times of under 10 weeks. Most were well under 8 weeks.

Provisional

IRP6VRM1

Inductor Specifications

Inductor Drawing

The specified inductor IR001, or optional IR002 can be purchased assembled and tested (see BOM).

Core = Micrometals T60-52 Winding = 9 turns, 16 guage, single layer Finished OD = 0.800 MAX Finished Height = 0.400 MAX Leads extend 0.2" past OD, Strippped and tinned 0.2"

3.8UH Nominal @ 0A DC 2.5UH Nominal @ 14A DC

		ı	I	ı
Batte 233 Kz	national Rectifier ery Management Group ansas Street undo, CA90245			
3.8L	IH, 12.4A inductor			
Size A	Document Number: IR001			Rev
Create	ed: Thursday, July 11, 1996 d: Thursday, October 10, 1996		- L	
			Sheet1	of1

Fig 7. IR002

Core = Micrometals T60-52 Winding = 13 turns, 18 guage, single layer Finished OD = 0.800 MAX Finished Height = 0.400 MAX Leads extend 0.2" past OD, Strippped and tinned 0.2"

8.0UH Nominal @ 0A DC 5.5UH Nominal @ 8.6A DC

Batte 233 Ka	national Rectifier ery Management Group nsas Street undo, CA 90245		
8.0U	H, 8.0A inductor		
Size A	Document Number: IR002		Rev R
Create	d: Thursday, October 10, 1996		1''
wodifie	d: Thursday, October 10, 1996	Sheet1	ofl

Assembly Options

Options For 8A Output (table #4)

REF	From	To
C4	1500UF	Don't install
C6, C8	1500UF	Don't install
Q1	IRL3103S	IRL3303S
Q2	IRL3103D1S	IRL3303S
L1	IR001	IR002

8 Ampere Design Adaptation

Many mother boards do not require the full 12.4 ampere current output. In this case the IRP6VRM1 can be adapted to lower current levels by using the assembly options shown. These options will reduce cost by removing components and by using smaller die size MOSFET's. Substitution of a MOSFET for a FETKY will reduce efficiency somewhat, but junction temperatures will still remain well within a safe limit.

Fig 8. Typical T_i of Q1 @ $T_g = 50$ °C, still air

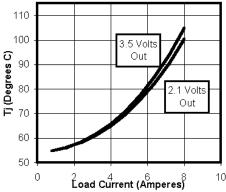
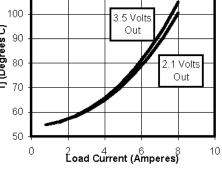
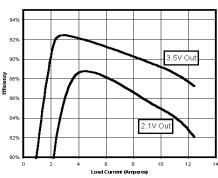




Fig 10. Typical T_i of Q1 @ $T_a = 50$ °C, still air

Static Performance

Fig 9. Average Efficiency

Efficiency

Efficiency is required to be at least 80% at full load. Thanks to the very efficient IRL3103S and the Super FETKY IRL3103D1S, IRP6VRM1 exceeds the required specification by a wide margin.

Maximum Junction Temperature

Analysis of Q1 junction temperature shows that it remains within specifications at an ambient temperature of 50 degrees C, even in still air.

120 110 3.5 Volts **0**100 (**Degrees** (Out 2.1 Volts 70 Out 60 50

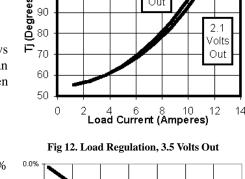
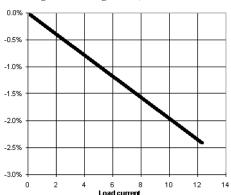
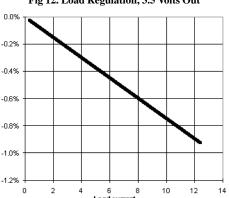
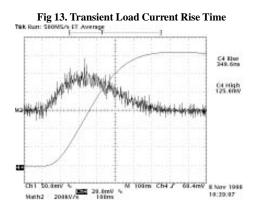
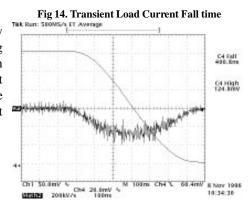




Fig 11. Load Regulation, 2.1 Volts Out

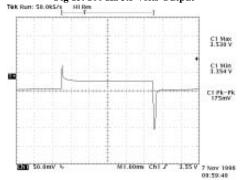


Load Regulation

The output must stay within it's +5% specification from no load to full load.



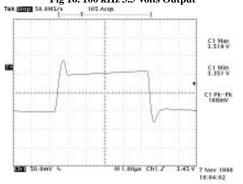
Dynamic Performance



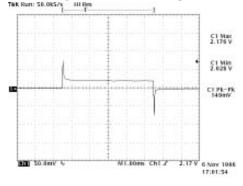
Transient Load Test Conditions

The Intel specification requires the supply to stay within its $\pm 5\%$ specification during transient load event of 0.3A-to-12.4A in 413ns. Although most mother boards do not require this full level of performance, the IRP6VRM1 meets the full transient response specification.

Fig 15. 100 Hz 3.5 Volts Output


Transient Load At 3.5V Out

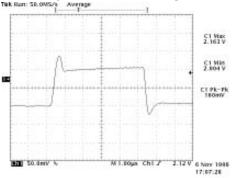
Performance at 100kHz is dominated by stray output inductance. This inductance is a combination of output capacitor ESL and board / connector inductance.


Performance at 100Hz is dominated by loop characteristics.

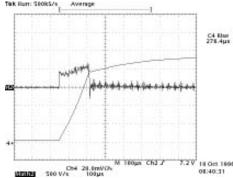
	Limit	100Hz	100kHz
Min	3.325	3.354	3.351
Max	3.675	3.530	3.519

Fig 16. 100 kHz 3.5 Volts Output

Fig 17. 100Hz 2.1 Volts Output



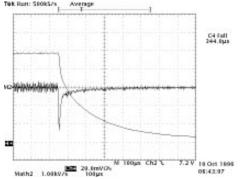
Transient Load At 2.1V Out


Performance at 2.1 volts out is very similar to that at 3.5 volts. The notable exception is a reduction of the negative spike at the current rising edge. This is due to having more average voltage available to change the current in L1.

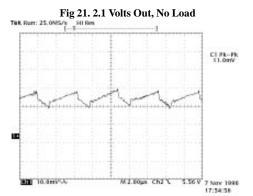
	Limit	100Hz	100kHz
Min	1.995	2.028	2.004
Max	2.205	2.176	2.163

Fig 18. 100kHz 2.1 Volts Output

Fig 19. Turn On Input Current Waveform

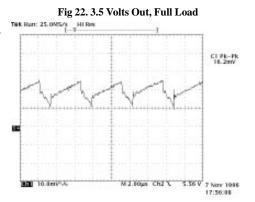

Input di/dt During Transient Load

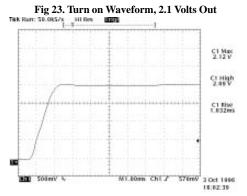
The Intel guideline (optional) specification calls for a maximum input di/dt during transient load of 0.1A/us. The IRP6VRM1 readily meets this specification at turn on, but falls short at turn off.


This is common to all VRM boards evaluated by IR, regardless of manufacturer. It should not cause difficulties for most users, but if it is an issue for your design, add input inductance.

6

Fig 20. Falling Input Current Waveform

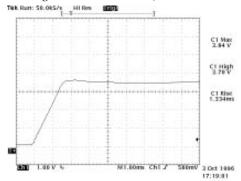

Dynamic Performance (continued)



Output Ripple Voltage

Output ripple voltage is specified as a maximum 2% p-p.

1	1	
Out	Limit	Measured
2.1V	42mV	11mV
3.5V	70mV	16mV



Turn On Transient

Output voltage must remain within 10% of the nominal set point.

Out	Limit	Measured
2.1V	2.31	2.12
3.5V	3.85	3.84

Fig 24. Turn on Waveform, 3.5 Volts Out

Provisional IRP6VRM1

