rd e . VORTEX CHIPSET DRIVER DESIGN SPECIFICATION
r 3 PMC-Sierra, Inc.

PM7326, PM7324, PM7350, PM7351

VORTEX CHIPSET DRIVER

DESIGN SPECIFICATION

PROPRIETARY AND CONFIDENTIAL
ADVANCE
ISSUE 3: MARCH 2001

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

REVISION HISTORY

Issue No. | Issue Date Originator Details of Change

Issue 1 Dec. 13, 1999 Keming Chen Initial version

Issue 2 June 15, 2000 Keming Chen Updated data structure
definitions and API descriptions
Shiraz Bhalwani to reflect the actual
implementations.

Added Porting Guide and
Appendix A

Issue 3 March, 2001 Keming Chen (1) Fixed an error in equation
for calculating the shaping
parameter, ShpCdvt, in Section
13.3.

(2) Added a hardware-specific
constant definition
VCS_SYSCLK FREQ ATLAS
to Porting Guide

© 2001

PMC-Sierra, Inc.

105-8555 Baxter Place

Burnaby BC Canada V5A 4V7

Phone 604.415.6000, Fax 604.415.6200

The information is proprietary and confidential to PMC-Sierra, Inc., and for its customers’ internal use. In any event,
no part of this document may be reproduced in any form without the express written consent of PMC-Sierra, Inc.

Document ID: PMC-1991216 Issue 3

rd e . VORTEX CHIPSET DRIVER DESIGN SPECIFICATION
r 3 PMC-Sierra, Inc.

TABLE OF CONTENTS

REVISION HISTOIY ... e e e e e e e e e e e e e e aeeeas 2
Table Of CONTENES. ... 2
LISt Of FIQUIES ...ttt e e et e e e e e e e st aeeeaaae e s 10
I Qo] =T o) [RSP 12
T INEOAUCTION oo 15
R S T o o 1SS 15
1.2 ODJECHIVES ...t 15
LR I U Lo =T Lo - S 15
R = =T =T o Lo S 16
2 Vortex ChipsSet OVEIVIEW.iiiiiiiiiieie e 18
3 Driver Features and Functionality ..o 20
3.1 MOAUIE ... e 20
Initialization and ShULdOWNcooiiiiii e 20
T O 4110 7= USRI 20
Chipset Control (Add and Delete)..........cceeeeiiiciiiiiiieeeeicieeee e 20
Chipset Initialization..............ooviii i 21
ChipSEt RESEL ... 21
De-Activate / Activate Chipset ... 21
INtErrUPt SErVICING 21
Alarms, Status and StatistiCsccooeiiiiiiiiiiee e 22
Chipset self-test and Device DiagnostiCscoccveviiiiieiiiiiieieiieeeeeen 22
Microprocessor OAM SUPPOIt..........oiiiiiiiiiiiieiee e e e e e e e 22
Scheduling and Congestion Control Service...........ccocvvviiiieiiiiiieeeie, 23
3.3 Application Programming Interface..........ccccccooveciiiiiiiic e, 24
WAN-port to Loop-port connection (Upstream/downstream) 24
Loop to Loop-port CONNECIONcocvvviviiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 24
Microprocessor-port to WAN/Loop port connection.........ccc.ccoeecvvieeeeeeeennns 25
Multi-Casting SUPPOIt.........oovviieiiiieeeeee e 25
Inband Control ChannEl...........occeeiiiiiiiiiee e 26
BOC SIgNaAlINGeeiiiiiiiiie e e 26
Retrieving Current VC Connections and Resources...........cccoocvveveiniieeenns 26
FM function (RDI, AIS, CC) Setupcoviiiiiiiiiiiiieiiieee e 26
Performance Monitoring Setupocueeviiiieiiiii e 26
Protection SWItChiNgceoiiii i 27
Addition/deletion of Line cards, WAN card............cccoevveeeeeeeiiieeiiieeeeeeeeeee, 27
4 ArchiteCture OVEIVIEW..........eiiiiiiiiie et 28
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 2

Document ID: PMC-1991216, Issue 3

PI‘ A ~ PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

4.1 EXternal INterfacesoooiiiiiii i 28
VORTEX chipset Hardware Interface...........cccccceoiiiiiiiiiiiie e 29
RTOS INTEITACEcei it 29
Application Programming Interfacecccooiiiiiiini e 29

4.2 Main COMPONENTESceiiiiieiiiii e e e e e e e e e e et e e e e e e e e e neneeeeas 30
Global Driver Database (GDD).......ccoiuiiiiiiiiiiieiiieee e 31
CAC Control MOAUIE ... 31
Status & Statistics MOAUIEoooiii e 31
VC Management ModUIEoooiiiiiiiiiiiie e 31
VC QOS & Policing ModuIe.........ccoiiiiiiiiiiee e 31
VC OAM & PM MOAUIEooiiiiiieiiiee et 32
Remote-card Manager Module.............cccooeieieiiieeee 32
Self-test & Diagnostics Module............ccceeeeiiiiiiiiiiiee e 32
Load-sharing & Protection SWitching..........ccccovveviiiiiiici e, 32
Event Handling Module..............oooviviiiiiiiiiiiieeeeeeeeeeeeeeee et 32
Microprocessor VC & Multicast Module.............ccccooiiiiiiiiiieeee 32
Microprocessor OAM Support Module ..., 32
Inband Control Channel (ICC) Moduleococeiiiiiieiiiiiieiee e 32
BOC Signaling MOdUIEcooiiiiiiiiiiiie e 33
D4 Y=Y SR 33
Hardware Interface ... 33
RTOS INTEITACEeii it 33

4.3 Software State DesSCription..........c.cciiiiiiiiiiiiec e 34
VORTEX chipset Module States..........ccoooviiiiiiiiiiiiieeee e 34
VORTEX chipset StatesS........ccoocuviiiiiiie et 35

5 Constants, and Data StrUCIUIEScoeiiiiiiiiiiie e 37

5.1 CONSTANES ...t e 37

5.2 General Structure Definition..........ooooeiiiie e 38

5.3 Structures Passed by the Application ..., 46
Module Initialization Vector (MIV)coooiiiiii e 46
Chipset Initialization VeCtOr............oeiiiiie e 47
VC Connection ReQUESTeeeiiiiiiieee e 48
Port-level Threshold Requestcoooo e, 48
VC MUiCast REQUESToceeiiiiiiieieee e 49
Inband Control Channel REQUESTccccciiiiiiiiiiecceee e 49
VC OAM (FM and PM) Setup RequUESt...........cceeeiiiiiiiiiiiee e 51
DEVICE ID ... 51
o) B RO PRO 51
Structure for OAM Configuration BIOCKccceeevieeiiiiiiiiieeee e, 52
VC F4 to F5 OAM Processing ReqUESt..........cceeeiiiiiiiiiiieeeec e 53
Connection Status and Informationccoooii i 55
Remote Card Information ..o 56
StAtiStIC COUNTS ... e 58

5.4 Structures in the Driver’s Allocated MemOry..........coccviiiiiiie i 59
Global Driver Database (GDD).......ccoouiiiiiiiieiieiiiee e 59
Structure for a VC Queue ENtry.........oocoeeiiiiiiiiiiieeee e 60
Structure for @ VC QUEUEoooiiiiiiiiiiiie e 61
Structures for Connection Admission Control..........ccccceevviiieeeviiieneinenenn, 62
Structure for a VC Table RECOId.........ccueviiiiiiiiiiiieee e 63

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 3

Document ID: PMC-1991216, Issue 3

PI‘ A ~ PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Structure for Port Status.........coooiiiiiii e 65
Structure for Loopback Control BIOCK...........cccuvviiiieiiiiiieee e, 66
Structure for multicast SUPPOIt.........cccuvviieieei i 68
Structure for OAM and F4 to F5 Processing (per VC).......cccevevviieeeininnenn. 69
Structure for Inband Control Channel ... 70
Chipset Data BIOCK (CDB)ccoiiuiiiiiiiiiiie e 72
Chipset Information VeCtor ..o 73
EVENT COUNLS ..o e e e 73
6 VORTEX chipset Hardware Interface ..o 74
6.1 CRIPSEL /O ...t e e e e aaa e 74
SYSVCSRAWREAUB2.......ceeiiiiiiiiiiii e 74
SYSVCSRAWWIE32......e s 74
SYSVCSRAWREAUATG.......uuuiiiiiiiiiiiiiiiiiiii e eeeeeeenennnenes 75
SYSVCSRAWWIE 16 ... s 75
SYSVCSRAWREAUS..... ... 75
SYSVCSRAWWIIES ... 76
6.2 Chipset DeteCtioN.....ooii e 77
SYSVCSCArdDeteCteeiiiiieie e 77
6.3 INtErrUPL SEIVICING ... e 77
7 RTOS INEITACE ... e e 79
7.1 Memory Allocation / De-AlloCationcceeeiiiiiieiiiieee e 79
SYSVCSMEMAIIOC. ... s 79
SYSVCSMEMEFTEEuuiiiiiiiiiiiiiiiii e nenan 79
7.2 THMIEIS ettt e et e e e e e e e e bbb e e e e e e e e e e e e e e e s 80
SYSVCSDEIAYTASK.....uueueiei s 80
7.3 SEMAPNOIES.......uuiiiiieie ettt e e e e e aaa e 81
SYSMVCSSEMOCIEALE ... 81
SysMVESSemMDeElete.........ooiiiiiiii 81
SYSMVCSSEMTAKEociiiiiiiiiiiiie e 81
SYSVCSSEMGIVE.eeiiiiiiiiie ettt 82
7.4 System-specific Inband Control Channel (ICC) module functions................. 83
SYSVCSICCINSIAIl ... 83
SYSVCSICCREMOVE ... 83
SYSVCSICCRXTASKFN ... 83
8 Application Programming Interface..........ccccccoovciiiiiiii e, 85
8.1 Module INItIaliZationcc.uveiiiiii e 85
VCSMOAUIEINIT ... 85
VCSMOAUIESNUIAOWN ...t 85
8.2 Initialization Profile Management............ccccceee i 87
VCSSEINItPIOfile ... 87
VCSGEtINItPIOfile. 87
VCSCIINItPIOfile 88
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 4

Document ID: PMC-1991216, Issue 3

PI‘ A ~ PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.3 Chipset Add and Deleteooevieiiiiiiieiie e 89
107 Yo [o IR TP PP PUPTTPPPPPRN 89
VCSDIBTE ... 89

8.4 Chipset Initialization and Reset...........c..ooiiiiiiiiii e 91
VCSINIL. e aan 91
VESRESEL ...ttt naaan 92

8.5 Chipset Activate and De-Activate...........c.cooiiiiiiiii e 92
VCSACHVALEuueititi e 92
VCSDEACHVALE ... 93

8.6 Chipset Device Read and Write............cooveiiiiiiiiiiiiee e 94
VCSReadReg ... 94
VCSWIEREG. ..o 94

8.7 Chipset Diagnostics and Loopback Self-test.........cccccceevviciiiieiieeciiciieee, 96
VCSReGISterTest ... 96
VCSIMEMTEST ... 96
VCSLPDKSEIUD e 97
VCSLPDKCIAN ... e 98
VCSMPLPDKTEST ... 98

8.8 Connection ManagemMent.........cuuiiiiiiiii i 100
Connection Management at VC level ... 100
(Y21 07 0] o 0 1S] (1] o 1O 100
VCSCONNTEAIAOWNeeiiiiiiiie e eieiee ettt e et e et e e e anneeeean 101
VCSCONNQOSRELNEVE ...ttt 102
VESCONNQOSUPAALE ... 102
VCSCONNDISADIE ... 103
VCSCONNENGDIE......coiiiiii e 103
VCSCONNSIAIUS ...ceeiieiiie ettt s 104
Connection Management at Port Levelcccociiiiiiii e 105
VCSPOMSEIUPD . 105
VCSPOMTEArdOWNuiiiiiiiiiiiie s 106
VCSPOMDISADIEeuuiiiiii e 106
VCSPOMENADIE........eeieiii e 107
VCSPOMSIAtUSuuiiiiiiiiii s 108
Connection Management at Chipset or Module Level 109
VCSCIEAIVECS ...ttt e st e s enneeee s 109
VCSREDUIIAVECS .ot 109
VCSCONNINTO ... s 110

8.9 ShaPEr SUPPOITeeiiiiee ittt e e e e e e e e e e e e s aareaeeeas 111
VCSSNPISEIUP oo e a e 111
VCSSHPITEAIAOWNoiiiiiieiii et e e e e e e e e e e e e e e ennnes 111

8.10 Data Tx via MiCroproCesSOor POM........ccceeeiiiiiieiieeieee e aeiiiee e e e e eeees 113
VCSCONNTXCEIL. ... s 113
VCSCONNTXFIAMEeieiii s 113

8.11 MUItiCast SUPPOIT ...coeiieeee e 115
(V{0211 (o2 T (U o U URRR 115
VCSIMCTEAIAOWN ...ttt e e e e e e 115
(L0211, o7 [[00 o o SRR 116
A[05] 1Y fod B o] o] 0o | o KU SRR 116

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 5

Document ID: PMC-1991216, Issue 3

PI‘ A ~ PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

vesMuUlticastCell ... 117
VCSMUIICASTFIrame...........uiiiiiiieeee e 117
8.12 Inband Control Channels..........cccccooiiiiiii 119
VCSCHIICNISEIUP - 119
VCSCHrIChNITEArdOWN ... 119
(Le1=1 @3 14 (O] o | 1 15RO 120
(Le1=1 @3 14 (0] 11 20 SRR 120
8.13 BOC SigNaliNgcccuviieeiiiiie ettt e e 122
(o= =1 L O I SR 122
VCSBOCRX ... 122
8.14 Addition/Deletion of LINe/WAN Cards............ccccoeeeeeeeeeiiiiieeeeeeeeeeeeeeeeeee, 124
VCSAAACArd ..o 124
VCSREMOVECAId ... 124
vesRemMoteCardINfo ..., 125
8.15 VC OAM (FM and PM) Setup......ccccouiiiiieeiiiciieieee et 126
OAM At ConnecCtioN LEVEL.........ccooeeieeeeeee e 126
VCSVCOAMSEIUP ... 126
VCSVCOAMUCIBAN ...ttt e e 127
VCSVCOAMRELHEVE. ...t 127
VCSVCFMUPAALE ... 128
VCSVCPMUPAALE ... 128
VCSVCOAMGELDEfEC ... 129
OAM At ChipSEt LEVEL.......eviiiiiiee e 130
VCSOAMSEICONTIG ...t 130
VCSOAMGEICONTIG ... e e e 130
8.16 F4 t0 F5 OAM ProCeSSING ..ccccceiieiiiiiiiiee ettt 132
VCSFAIOFSSEIUP.. ... 132
VCSFAOFSCICAT ...t e e 132
VCSFAOFSAAAVCC.... oot 133
VCSFAOFSDIOPVCC et 134
8.17 PM Session Configuration/Statuscccooceiiiiiiiie e 135
VCSPMSEtCONTIG ... 135
VCSPMGELCONTIG....eeeiiiiiiiee e 135
VCSPMREAARECOIM.......uueiiiiiieeecee e 136
8.18 Protection SWItChiNgeeeiiiiiiiiiiieee e 137
VCSREMOVELOAAot 137
VCSAAALOAA ... e 137
VCSREMOVELINELOAA ... 138
VCSAAALINELOAdcooiiiiieee e 138
8.19 Counter Configurationcccoiiiiiiiiiii e 140
VCSSEIRXCNICTG ... 140
VCSGEIRXCNICTG ... 141
VCSSEINCCNTICTGS. ...eeiiiiiiiiie it 141
8.20 Statistical COUNTSccoeiieiiiee e 143
Cell CoUNES PEI VCot 143
VCSGEtSIatVCTXCNES ..o, 143
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 6

Document ID: PMC-1991216, Issue 3

PI‘ A ~ PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

VCSGEtSIatVCRXCNES ..o e 143
VCSGEtSIAatVENCCNLS ..o 144
VCSRESEIVCRXNCCNTS......eeiiiiiiiiie e 145
Cell Counts Per Port e 146
VCSGetSIatPOrtCNES ..o 146
Cell Counts Per LIne/WAN Cardccooiiiiiiiiiieeee e 147
VCSGetStatCardCntsooo e 147
Counts Per ChipSet........ooeeeieeeee e 148
vesGetStatDIscardCNnts ... 148
VCSGetStatEventCONES ... 148
8.21 Congestion counts & Statusccccvveiiiieiiiiiiee e 149
VCSGEICONGDEVCNLeiiiiiie e a e 149
VCSGEICONGDITCNT ... 150
VCSGEICONGPOMCNT....eeiiiiii e 150
VCSGEtCONGCIASSCNL ..eeeiiiiiiieeeee e 151
VCSGEtCONGCONNCNESeiiiiiiiii e 151
vesGetLastDIiscardlCl ... 152
8.22 Callback FUNCHONS ... 152
Microprocessor Data Connection callbackscccocoeeeiiiiiiiieninen, 153
INARXDAIACEI......oeeeiiiieeeeeeeeeeeeeeeee et e e e eeeseeeeeeeeeees 153
IndRxDataFrm ... 153
Inband Control Channel Callbacks...........ccccveiiiiiiiiiiiieeeee e 154
INARXCAIIMST ...t e e e e e e e 154
OAM CallDACKSeeeeeiiiiie ettt e e e 155
INARXOAM ..o e st et e e e 155
1 L0 (0703 v= | 18 - TSRS 155
Event Callbackseeviiiiiiiiiee s 156
INARXBOC ...t e e e e e e e enree e e e e 156
10 To A4 o2 @] 11 Toz= | SO OPOP OO PPPPPPPPPPPPPPPRt 156
INAVCSEITON .ottt e e e e e eeeeeeeeaeaes 157
9 System-Specific Utility FUNCHIONS ..o 158
9.1 Congestion Control SErVICEccoiiiiiiiiiiiie e 158
SYSVCSPOMTHhresholdsc.ooiiiiiii e 158
SYSVCSVCTNIESNOIASeviiiiii e 159
9.2 SChedUliNg SEIVICEc.ccoi it 160
SySVCSLOOPPOSChedUIErcooviiiiieee e 160
SYSVCSWANPOMSChEAUIETooeieiiiieeee e 160
SYSVCSCIassSVCSChEAUIEToeiiiieiiieeeee e 161
9.3 ShaPING SEIVICE ...uuviiiiiii it e e e e e aee s 161
SYSVCSVCSNAPING -.eeeiiiiiiiie ittt 161
9.4 POlICING SEIVICE ...ceiiiiiiii it 163
SYSVCSVCPOIICING....ceiiiiiiiie e 163
LS IS T o4 1Y F= T o] o[T S 164
SYSVCSLOOPIATOPOI ... 164
SYSVCSPOMTOLOOPIA ... 164
SYSVCSCHNIATOPOM.....c.cciiiiieee e 165
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 7

Document ID: PMC-1991216, Issue 3

PI‘ A ~ PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

10 Theory of OPEratioNScoccuiiiiiiie e e 166
10.1 Module Management............oovvviiiiiiiiieeeeeeeeee e 166
10.2 Chipset Managementuviiiieiiiiiiieeee e 167
10.3 Port Managementcoouiiiiiiiiiieei e 168
10.4 Connection Managementooiiiiiiiiiiiiie e 169
10.5 LoOPDACK TSt ... e e e 170
10.6 Multicast SUPPOIT.....cooi e e e 171
10.7 Line/WAN Card Management and Communicationccccccceeviieeens 172
10.8 OAM MaNAGEMENTcoiiiiiiiiiiiiiie et 173
10.9 F4 10 FS ProCessing ..ccoooeveeiiieie e, 174
10.10 Protection Switch and Line Load Transfer.........cccooueeeiiiiieiiiiiiee e 175
10.11 Chipset Reset and QUICK RECOVETY........ccueeiiiiiiiiiiiiiiee e 176
10.12 Interrupt service MOdUIEocovviviiiiiiieeeeeeeeee e 176
Interrupt ServiCing ... 177
Installation and removal of interrupt handlers.............cccocceeeeiiicciieenn e, 179
11 POrtiNg GUIAE ... 180
11.1 Driver SOUrCe FileS ..o 180
11.2 Porting ProCeaUre............uuiiiiiiiiiiiiiiee e 181
Step 1: Porting the Hardware Interfacecccocoeiiiiie e, 182
Step 2: Porting the RTOS interfaceccocviiiii e, 183
Step 3: Porting the System-Specific utility functions.........................c. 185
Step 4: Porting the Application-Specific Elements.............cccceeveeiiiinnnneen. 185
Step 5: BUilding the DIVErooooiiieeeee e 186
12 Coding CONVENTIONS.....ccccciiiiiieiieie et e e e e e 187
12.1 Variable Type Definitionsccoviiiiiiiiiiiiiie e 187
12.2 Naming ConVENTIONScccuiiiiiieee e e e e e e e 187
1= Lo o 1 S ST PPPPT PP 188
(O] 0151 ¢= 1 | S 188
SHUCTUIES ...ttt e e e e e e e e e eeeeas 188
FUNCHIONS <. 189
RV T = o] = 189
12.3 File Organizationcueeiiiiiiiiiiii e 190
o 1= TP 190
Hardware Dependent Files..........ccccoooeei 190
RTOS Dependent FileS........ccccoiiiiiiiiiiieie e 191
Other Driver FilES.....couuiii e 191
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 8

Document ID: PMC-1991216, Issue 3

rd e . VORTEX CHIPSET DRIVER DESIGN SPECIFICATION
r 3 PMC-Sierra, Inc.

13 Appendix A: Calculation of congestion threshold and scheduling parameters192

131 INErOAUCTION ..o 192
13.2 Calculation of congestion thresholds.............cccocciiiiiiiiiiiici e, 192
Direction threshold...............oo e 193
Portthreshold ... 194
Class threShOldoooviiiiiiiiieeeeeeeeeeeeeeeeeeeee e 195
Connection threshold.............ooooiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 197
13.3 Calculation of scheduling parametersc.cococeeiiiiiei e 201
Assigning port WeIghts........coooiiiiiii 201
Calculating class scheduler parameters............ccccceveeeieiicciieeeee e, 202
Calculating the weight for a WFQ connectioncccccccceiiiiieiniieneeee 203
Calculating the shaping parameters for a SFQ connection...................... 204
13.4 Conversion tablesocueiiiiiiiii 204
14 APPendiX B 208
14,1 LISt Of TEIMS e e e eneeee e 218
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 9

Document ID: PMC-1991216, Issue 3

PI‘ A ~ PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

LIST OF FIGURES

Figure 1: Reference DSLAM APPLICALION........ccueriiiieriieniieriesteeieeseesieesresseeseesseesnsesnseenseensens 18
Figure 2: External and Internal interfacesccovviiviiiriiiiiiiie ettt 28
Figure 3: Main COMPONENLS........cccuvieivieiiieeiieeeeieeesteeesteeesereeestseessseeeseeesseeessseesssesassseesssesssssesnns 30
Figure 4: State DIagrammlcccveviierieeieeieeiieieeseesteseeereeteeseeseaessaessseesseesseesssesssesssessseesseesseens 34
Figure 5: Module Management FIow Diagram.............ccecveriienienieniieenieeneesie e eve e e 166
Figure 6: Chipset Management FIow Diagramccccceevvieeciiiiniiiiiiicciie et 167
Figure 7: Port Management FIOW Diagrami...........cccecveriieriinirnieeieenieenee e see e eie e sene e 168
Figure 8: Connection Management FIow Diagram...........ccoccvvvvierriienienieniieeie e 169
Figure 9: Loopback Test FIoW DIiagram.........c.ccccuiiiiiiiiiiiieiieciie et esteeereesveeeiaeesveeeeneesevee e 170
Figure 10: Multicast Support FIow Diagramc.cceccveieiiieiieeeiiie e esreeecieeesveeesveesveeeseveeens 171
Figure 11: Line/WAN Card Management Flow Diagramc.ccceevevienienienceeceeieeeeneeenn, 172
Figure 12: OAM Management FIOW Diagramcccceeeeuiieeciieiniiieiiieeeiieecieeeieeesveeeeveesevee e 173
Figure 13: F4 to F5 Processing FIow DIiagramcccccveeeviieriiiiiiieiiie et eve e 174
Figure 14: Protection Switch and Load Transfer Flow Diagramc.ccoccovirieninienicncencnenne. 175
Figure 15: Chipset Reset and Quick Recovery Flow Diagramccceccvevvevieeiieenieeneenieenenn, 176
Figure 16: Interrupt Service MOlccveiiiiiiiiiieiieee ettt e aa e e sreeeene e 178
Figure 17: Upstream Data FIOWc..cccveviiiiiiiieiieieterieeit ettt st sre e esseeseeessaesnneesseenns 208
Figure 18: Downstream Data FIOWccccovciiiiiiiiiirieiiiiiecie ettt 209
Figure 19: Loop-to-Loop Data FLOWc.cccciiiiiiiiiiieciiece ettt e e e ive e seveeen 210
Figure 20: uP-to-WAN and WAN-t0-UP Data FIOWcccceeviiiiiiiiiicceeeee e 211
Figure 21: uP-to-Loop and Loop-to-uP Data FIOWccccevviiiiiiiiiiieieciece e 212
Figure 22: Loopback Data FIow via miCrOproCESSOI POTt.......cuueerveeerreeerieerveeesreeesreessseeessseeenes 213
Figure 23: Inband Control Channel Data FIOWcccciiiiiiiiiiiiiiic et 214
Figure 24: Multicasting Data FIOWccoecieriiniiiiiiiecieereecee e 215
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 10

Document ID: PMC-1991216, Issue 3

rd e . VORTEX CHIPSET DRIVER DESIGN SPECIFICATION
r 3 PMC-Sierra, Inc.

Figure 25: OAM Data FIOWcc.ooiiiiiiiiicie ettt ettt sttt v e ebe e veebe e aae s eve e 216
Figure 26: MicroprocesSOr OAM SUPPOIL.......eecvieieiireriieeitieesieeesteeesreeesreesseesssseesseesssesessseesnes 217
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 1

Document ID: PMC-1991216, Issue 3

PMC

. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION
PMC-Sierra, Inc.

LIST OF TABLES

Table ©1: RETEIENCESoouiiiiiiiiiiicicc et 16
Table 2: VORTEX chipset VPI and VCI (SVCS_VPI VCI)...oooviviviiiiciieieeseeceee e, 38
Table 3: VORTEX chipset VC and Port Descriptor (sVCS_VC PORT DES).....cccccocveviviieennns 38
Table 4: VC QOS Structure (SVCS_VC QOS) ..ouiiiiieiiieieeie ettt ereeite e sve e eseessaesseesnnessneens 38
Table 5: VC FM Structure (SVCS_VC OAM FM)....occoiiiiiiieiiiieeiecieeieesee e sieesee e 39
Table 6: VC PM Structure (SVCS VC OAM PM)....cccviiiiiiiiiieciieete ettt 41
Table 7: VC Policing Structure (SVCS_VC POLICING).....ccccovveriiriieiieriienieesee e eieesieesnesneens 41
Table 8: Congestion Threshold Level Structure (sVCS THRSH LEVEL)c.ccccvevviviivieiiees 41
Table 9: Port Threshold Structure (SVCS _PORT THRSH)......c.ccoovviiiiieiiieeiiecee e 42
Table 10: VC Threshold Structure (SVCS_VC THRSH)ccccoviiiiiieiiiiieeeeeveeeee e 42
Table 11: Shaped VC Parameters (SVCS VC SHPR)........cccoocivviiniiiiceeeeeeeee e 42
Table 12: Shaper Control VECTOR (sVCS SHPR _VECTOR)......cccociiieiiieiieeiieeieeeee e 43
Table 13: VC OAM Defect Structure (sVCS_VC_OAM _DEFECT)ccccoiiviiieiiieieeieeeee e, 43
Table 14: VC Connection Status Structure (SVCS _CONN_STATUS) ..cceevievierierierienieeieeiens 44
Table 15: VC Cell Header Structure (SVCS _CELL HDR)oooviviiiviiiiieieieceeceee e 45
Table 16: VORTEX chipset Module Initialization Vector (SVCS MIV)....ccccoevivevciieiiieeeeeeeee, 46
Table 17: VORTEX chipset Initialization Vector (SVCS_INIT VECTOR)......cccccocevvieciveniennnnns 47
Table 18: VORTEX chipset VC Request (sVCS_CONN_REQUEST)ccccevevvciivciiiiinieeieeiens 48
Table 19: Port-level Threshold Request (sVCS_PORT_THRSH REQUEST)cccccociviiiiinen. 48
Table 20: VORTEX chipset Multicast Request (sVCS_MULTICAST REQUEST) 49
Table 21: VORTEX chipset Channel Request (sVCS _CHNL REQUEST).....cccccovvivvcvincivenieninnne 49
Table 22: VC OAM Structure (SVCS_VC_OAM_ REQUEST)..ccccoiiiiiiiiiiiiieieieeeeeee 51
Table 23: Device Identification Structure (SVCS_DEV _ID) ..ccccooiiiiiiiiiiiiiniiiieeeieeeeeeeee 51
Table 24: Port Identification Structure (SVCS PORT ID).....ccccveviiriiniieiieniienie e esieesee e 51

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 12

Document ID: PMC-1991216, Issue 3

PI‘ A ~ PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Table 25: VORTEX chipset OAM Configuration Block (sVCS_ OAM_CFQG)......cccccecvevveeieennnn. 52
Table 26: VORTEX chipset F4 to F5 OAM Request (sVCS _F4TOF5 REQUEST)................... 53
Table 27: VORTEX chipset F4 to F5 VCC (SVCS_F4TOF5_VCC) .c..ooiviiiiiiiiiiieieiiiene 54
Table 28: Connection Status (SVCS CONN_STATUS) ...ccvvvviriieiieiieeieerieesieeseeseeseesenesnesneens 55
Table 29: Connection Information (sSVCS _CONN INFO).....c.cccceoviiiiiiiiiiiiieiececceecee e 56
Table 30: Remote Card Information (sVCS_RCARD INFO).......cccecviiviiriiniiniicieenee e eie e 57
Table 31: VC Statistic Counts (SVCS_VC _STAT CNT)..coveoierieriieiieieeniieneesee e eieesieesnessneens 58
Table 32: VORTEX chipset Global Driver Database (SVCS _GDD)ccccevvievciieeciieeieecieee, 59
Table 33: VORTEX chipset VC QUEUE ENTRY (sVCS_VC INDEX)...ccccccecviininenenciinenne 60
Table 34: VORTEX chipset VC QUEUE TABLE (sVCS_VC_LIST) ..ccovvoiiininiiiieicicene 61
Table 35: VORTEX chipset Connection Admission Control (SVCS CAC).......ccocvevvveecveenreennee. 62
Table 36: VORTEX chipset VC TABLE (sVCS_VC RECORD)cccceeeviiieiieeieeieeeeeeeee e 63
Table 37: Loop/WAN Port Status Structure (SVCS_PORT STATUS)ocovvvvieveeiieeieeieerieeeenns 65
Table 38: VORTEX chipset Loopback Control Block (sVCS _LPBK CB)......cccceecvvvvevirniennnnns 66
Table 39: VORTEX chipset Loopback Data Block (sVCS _LPBK DATA)ccccceeevvvevveeeireenee. 67
Table 40: VORTEX chipset Multicast Record (sVCS_MULTICAST RECORD)...................... 68
Table 41: VORTEX chipset Multicast Record Table (sVCS_MULTICAST TABLE)................ 68
Table 42: VC OAM Structure (SVCS_VC OAM)....ooiiiiiiiiieeieecee ettt et 69
Table 43: F4 to F5 OAM Processing Control Block (sVCS_FATOF5 CB)....ccooevvveivvevveeeiieenee. 69
Table 44: VORTEX chipset Channel Record (sVCS_CHNL RECORD).......ccccccovvvviinciiiiieinens 70
Table 45: VORTEX chipset Channel Record Table (sVCS CHNL TABLE)........ccccecvvevvevvennen. 71
Table 46: VORTEX chipset Data BIock (SVCS CDB) ...ccvviioiieiiiieiie et 72
Table 47: VORTEX chipset Information Block (SVCS_CIB)......ccccevieiiiiriierienienieeieesee e 73
Table 48: VORTEX chipset Driver Statistic Counts (SVCS_STAT CNT)ccceevevevierveecieerieennnens 73
Table 49: Chipset Driver SOUrCe Filescccuviiiiiiiiiiiiiecieecee ettt e 180
Table 50 : Chipset Driver INClude FAles.........oooiiiiiiiiiiiicis ettt e 181
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 13

Document ID: PMC-1991216, Issue 3

PI‘ A ~ PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Table 51: Variable Type Definitions........cceevieiiiiiieiicciieciiecite ettt et veeste e sereeeveeave s 187
Table 52: Naming CONVENTIONScc.ecvveerreerieeireereeteesteesseessesreeseesseessessseessseesseessessseesssessessnes 187
Table 53: File Naming CONVENTIONS.c.evcverrieerieereereerreereeseesseesseessesseesseesseesseesssesssessseensens 190
Table 54: QOS parameters provided by the application............c.cecveeierierciieciierienieree e eeeeenn 197
Table 55: Class assignment for different traffic types........cccovevveviiiiiivieniicceee e, 198
Table 56: Calculation of connection congestion thresholds............ccccevievciiecienienienieeeeeeee, 198
Table 57: Loop port LOOKUP taDIEccviiieeiieiieeieeie ettt seresebe e 201
Table 58: WAN port I00KUP tabIe........ccoiiiiiiieeiiieciie ettt e 201
Table 59: Class Limit field (ClassXCellLmt) SEtNg......cccvueereiririieeeriirerieeerreeereeesveeeeneenes 202
Table 60: 4 Bit Logarithmic, 4 Bit Fractional encoding............ccccceceeveririenenenenienceeeeeene, 205
Table 61: 4 Bit Logarithmic, 2 Bit Fractional encoding..........c.ccccceeiviieiciieeniiieeeieecieeeevee e 206
Table 62 : 3 bit encoding for VCMINTRIesh..........cccocviiiiiiiiiiiciiceeeee e 206
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 14

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

1 INTRODUCTION

1.1 Scope

This document is the design specification for the VORTEX chipset (PM7326,
PM7324, PM7350 and PM7351) driver software. It describes the features and
functionality provided by the chipset driver, the software architecture, and the
external interfaces of the chipset driver software. The document also describes how
the chipset driver can be ported to a different platform.

1.2 Objectives

The main objectives of this document are as follows:

Provide a detailed list of the functions supported by the chipset driver.

Describe the software architecture of the chipset driver (data structures,
algorithms, flow diagrams, component descriptions, etc...).

Describe the external interfaces of the chipset driver. The external interfaces
illustrate how the chipset driver interacts with the underlying devices and RTOS
as well as external application/validation software.

1.3 Audience

This document has been created to ensure consistency across all of the software
written by PMC and is intended for the following audience:

Applications (when applicable): Applications should review the functions
provided by the chipset driver and make sure that the driver’s features meet
their requirements for use on Applications hardware.

Marketing: Marketing should review the driver’s features and make sure it
meets customers’ requirements.

Software Group: The Software group should use this document as a reference
for implementing the VORTEX chipset driver.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 15
Document ID: PMC-1991216, Issue 3

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

P“ A C PMC-Sierra, Inc.

1.4 References

Table 1: References

Document ID: PMC-1991216, Issue 3

S/UNI-ATLAS Driver Manual PMC-2000949 Issue 1 PMC-Sierra Inc.
S/UNI-ATLAS Long Form PMC-1971154 Issue 5 PMC-Sierra Inc.
Data Sheet.
S/UNI-ATLAS Long Form PMC-1981505 Issue 1 PMC-Sierra Inc.
Data Sheet Errata.
S/UNI-APEX Device Driver PMC-1991727 Issue 2 PMC-Sierra Inc.
Manual
S/UNI-APEX Engineering PMC-1980448 Issue3 PMC-Sierra Inc.
Document
S/UNI-APEX Hardware PMC-1991454 Issue 2 PMC-Sierra Inc.
Programmer’s Guide
S/UNI-DUPLEX Driver PMC-1990799 Issue 1 PMC-Sierra Inc.
Manual
S/UNI-DUPLEX Engineering PMC-1980169 Issue3 PMC-Sierra Inc.
Document
S/UNI-VORTEX Driver PMC-1990786 Issue 1 PMC-Sierra Inc.
Manual
S/UNI- VORTEX Engineering PMC-1980170 Issue3 PMC-Sierra Inc.
Document
DSLAM Reference Design: PMC-1990832 Issuel PMC-Sierra Inc.
System Design
DSLAM Reference Design: PMC-1990815 Issue 1 PMC-Sierra Inc.
Core Card
DSLAM Reference Design: PMC-1990354 Issue2 PMC-Sierra Inc.
Line Card
DSLAM Reference Design: PMC-1990474 Issue 1 PMC-Sierra Inc.
WAN Card
B-ISDN OAM Principles and 1.610 Feb. ITU-T
Function Abstract 1999

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 16

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Traffic Management Af-tm-0056.000 Version The ATM Forum
Specification 4.0
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 17

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

2 VORTEX CHIPSET OVERVIEW

This section briefly describes each VORTEX chipset device, and provides an
overview of VORTEX chipset architecture in DSLAM application or other similar
architecture system. This shall help understanding the chipset driver and its design
architecture.

The VORTEX chipset is ideally suited for Digital Subscriber Line Access
Multiplexers (DSLAMSs) where the cell processing requirements are centralized on
a single core card. Figure 1 depicts a scalable, cost effective DSLAM based on the
PMC-Sierra S/UNI-VORTEX chip set.

Figure 1: Reference DSLAM Application

Up to 8 line cards per
S/UNI-VORTEX

LOOP - .
Ports Line cards . Core Card 1 . WAN card
X LU
SN, S/UNI-
\MT : it
XK LIV .
< 32 devices '
I
i WAN Uplinks
Up to 64 line cards P
SIUNI- HSTUNI-M | [z WAN card
APEX JATLAS DUPLEX| S/UNI-
DUPLEX

’ Host CPU

S/UNI-PHY

The DUPLEX (PM7351) and VORTEX (PM7350) provide non-statistical, flow
controlled multiplexing of ATM cells over point to point high speed serial
interconnect between a single centralized core card and up to 64 line cards. Each
DUPLEX is capable of supporting up to 32 xDSL PHY devices via a UTOPIA L2
bus or providing termination of the ATM TC layer for up to 16 xDSL PHY devices
with clock and data interfaces. The DUPLEX/VORTEX devices are capable of
aggregating ATM traffic from 2048 xDSL PHY devices or Loop ports onto a single
core card.

The ATLAS (PM7324) performs ATM layer functions including full space address
resolution for both up and downstream traffic flows, cell rate policing for both up
and downstream traffic flows and full ITU 1.610 OAM cell processing for OAM
flows on both the loop side and the WAN side.

The S/UNI APEX performs advanced ATM layer traffic management functions
including cell switching, per VC queuing, and hierarchical (per VC, per Class of
Service, and per port) scheduling and congestion management to up to 2048 loop
ports and up to 4 WAN ports.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 18
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

In a typical DSLAM application, the DSLAM system includes two redundant core
cards, and multiple line cards and (up to 2) WAN cards, as shown in Figure 1. The
two core cards are operating in either load-sharing or protection mode. In load-
sharing mode, a core card acts as the working card for some line cards (typically
half of them) and as the spare card for the remaining line cards. In the (1:1)
protection mode, one core card is active, while the other one is left in a hot standby
mode. If one of two core cards has a failure, the service for the existing connection
ports or line cards can be switched and provided by the other core card with a
minimum cell loss or corruption. See Ref. 11-14 (document # PMC-1990832,
990815, 990354, 990474) for a more detailed description of the reference design.

The chipset driver is built around the typical DSLAM architecture described in the
reference design. A chipset card or core card consists of one APEX , one ATLAS
device, multiple VORTEX chips, and one DUPLEX chip. However, the chipset
driver is designed to be modular so that it can be easily ported for other different
designs with fewer VORTEX or DUPLEX chips on a core card.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 19
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

3 DRIVER FEATURES AND FUNCTIONALITY

The VORTEX Chipset Driver integrates the four underlying device drivers for the PMC
VORTEX chipset devices (consisting of PM7324 S/UNI-ATLAS, PM7326 S/UNI-APEX,
PM7350 S/UNI-DUPLEX and PM7351 S/UNI-VORTEX), and provides a synchronized
access and control over the devices for DSLAM or other similar applications. The chipset
driver directly monitors and controls chipset core cards, not the remote Line/WAN cards.
However, it provides communication channels between the core cards and Line/WAN cards
for remote control of the Line/WAN card. The definition of communication message
content, or how the remote cards are controlled, is beyond the scope of this chipset driver.
The following describes the functionality supported by the VORTEX chipset driver.

3.1 Module

Initialization and Shutdown

Allocates all memory needed by the chipset driver and initializes Module level data
structures. It also initializes all underlying device driver modules.

Shuts down the chipset driver module gracefully after deleting all chipset (core
cards) that are currently registered with the chipset driver.

3.2 Chipset

Chipset Control (Add and Delete)

Adding a chipset involves verifying that the chipset (core card) exists, allocating a
memory buffer to store chipset context information, and associating a chipset
handle to the user context passed by the Application. The chipset context buffer
stores the device handles to each chipset device on the core card. The Application
uses this chipset handle as a parameter in most of the API calls to refer to this
particular chipset (core card). Reciprocally, the Chipset Driver uses this user
context as a parameter when doing a callback to the Application code regarding that
particular chipset (core card).

Deleting a chipset involves applying a reset to the chipset (core card) and releasing
the chipset handle, as well as device handles within the chipset context.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 20
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Chipset Initialization

Initialization of a chipset involves initializing enough memory to store context
information about the chipset card. The Chipset driver uses this context information
to control and monitor the chipset card or underlying devices. Once the context
memory is setup, the chipset driver invokes device initialization routine provided
by each underlying device driver, and configures each device interface properly.
This involves using the profile number passed by the Application to set the chipset
card configuration.

A profile simply serves as a “canned configuration” that is used to initialize a
chipset (card) without having to pass all the initialization parameters every time a
chipset (card) is configured. Instead, the user passes a profile number, which is an
index to an array of profiles that the USER is required to create. The chipset driver
indexes this array, obtains the initialization vector corresponding to the profile
number and configures the chipset (card) or chipset devices accordingly.

Chipset Reset

It supports two levels of reset:

e Reset the chipset hardware only, but all software context information and
connection table are preserved. The card can be recovered to the pre-reset state
and all connections can be quickly restored.

e Reset both hardware and software. It applies an internal (soft) reset to each
VORTEX chipset device on the card, (or resets whole chipset card at once if the
chipset card supports the feature). Also clears the context and statistics
information for the devices and the chipset system. All connections will be
destructed. The system has to be re-initialized from scratch.

De-Activate / Activate Chipset

The USER can de-activate and activate the operation of a chipset (card) at any time.
After activation, the chipset (card) will start to handle cell traffic. The chipset
driver still maintains the connection table after the de-activation.

Interrupt Servicing

Interrupt servicing of individual chipset device is implemented and provided by
each underlying device driver. Typically, each driver provides an Interrupt
Servicing Routine (ISR) and a deferred processing routine (DPR) for handling
interrupts of the device.

The ISRs clear the interrupts raised by the devices and store the interrupt status for
later processing by the deferred processing routine (DPR). The DPR runs in the
context of a separate task within the RTOS and takes appropriate actions based on
the interrupt status retrieved by the ISRs.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 21
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Interrupt servicing is an optional feature. The user can disable device interrupts and
instead poll the device periodically to monitor status and check for alarm/error
conditions.

Both polling and interrupt driven approaches detect a change in device status and
report this status to a DPR. The DPR then invokes some callback functions based
on the status information retrieved. The chipset driver implements the device-level
callback functions of each device driver. The chipset driver may handle certain
alarms internally, or relay some event conditions to the applications. In the latter
case, the chipset driver provides chipset-level callback functions for passing the
event information to the application.

Alarms, Status and Statistics

Routines are provided that read the various counts accumulated by the VORTEX
chipset devices. These routines are generally called on a periodic basis by the
application. It is also possible to set the chipset driver such that some counts are
periodically read by the chipset driver watchdog task and presented to the
application via a callback function, or stored in context memory for retrieval by the
application. The application should ensure that the counters are polled at frequent
intervals to prevent counters from rolling over. The various counts include Cell
Counts for Tx and Rx, Discarded/Errored Cell Counts. The statistics are available
per-VC, per-Port, and per-Chipset. The chipset driver provides an API to determine
the VC connection ID of the last cell discarded.

In addition to system level statistics, individual driver statistical numbers, such as
count of interrupts for a particular device, are maintained by each device driver.
They can be retrieved by application through a chipset APIL.

Chipset self-test and Device Diagnostics

e Verifies each chipset device with simple read and write checks (register test)
and validates the associate SRAM/SDRAM memory access. The chipset driver
reports any error condition to the application.

e Conducts loopback tests for integrity check of the chipset card:

[e]

Set the chipset into a variety of loopback modes, and then insert test cells
from an APEX microprocessor port, or Loop, or WAN port, and check to
see if the same test cells are looped back to the same testing port. See
Figure 22 of Appendix B which shows the loopback data flow via the
microprocessor port.

Microprocessor OAM support

Certain types of OAM cells (such as Loopback, System Management and
Activation/Deactivation) are not directly supported by the VORTEX chipset
devices. However, such support can be provided by the chipset driver through
Microprocessor OAM Interface Functions.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 22
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Microprocessor OAM Interface Functions configures, controls and monitors the
Microprocessor interface of ATLAS device. Ingress OAM cells that are terminating
at this VC/VP endpoint and that are NOT handled by the ATLAS device will
automatically be passed to the Microprocessor Ingress Cell interface. The chipset
driver is responsible for ensuring that cells are extracted from this interface in a
timely manner. The chipset driver processes the Ingress OAM requests for OAM
functions from a remote system. It may generate some response OAM cells, which
are presented to the Microprocessor Egress Cell Interface for transmission, as
shown in Appendix B, Figure 26.

Scheduling and Congestion Control Service

Utility routines are provided to calculate appropriate congestion threshold levels,
scheduling and cell rate policing parameters for service classes defined by TM 4.0
(CBR, VBR, VBR-RT, GFR, UBR). These functions are normally called by the
chipset driver APIs, and therefore should be considered as internal library functions.
However, USER may implement them using a different algorithm for the
scheduling and congestion control.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 23
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

3.3 Application Programming Interface

The chipset driver provides some system level API routines to support VC/VP
Connection setup/maintenance/ teardown, QOS service, multicasting support, OAM
setup and processing, Performance Monitoring (PM) setup and maintenance, Cell
rate policing.

WAN-port to Loop-port connection (Upstream/downstream)

Connection Setup: The connection request contains traffic parameters such as
bandwidth and QOS service parameters. The chipset driver’s Resource
Management determines whether the request should be honored or rejected.
The chipset driver is responsible for configuring the appropriate devices for the
connection establishment. . Figure 17 and Figure 18 of Appendix B show the
data flow paths for the upstream and downstream connections, respectively.

Connection Teardown: Tears down a connection by re-configuring the
appropriate devices, and de-allocate the related resource back to the Resource
Management.

Port Setup and Teardown: Setup port or teardown a port, which clears all the
VCs associated with the port.

Connection Traffic Parameter Retrieval/Modification: Retrieves the traffic
descriptor parameters for a specified connection, and/or changes the traffic
parameters without tearing down the connection.

Connection Activation/ Deactivation(or Standby): suspends a VC connection,
or activates the connection to a normal operation.

Connection Status Monitoring: reports connection status.

Loop to Loop-port connection

Connection Setup: The connection request contains traffic parameters such as
bandwidth and QOS service parameters. The chipset driver’s Resource
Management determines whether the request should be honored or rejected.
The chipset driver is responsible for configuring the appropriate devices for the
connection establishment. Figure 19 of Appendix shows its data flow path
within the chipset.

Connection Teardown: Tears down a connection by re-configuring the
appropriate devices, and de-allocates the related resource back to the Resource
Management.

Port Setup and Teardown: Setup port or teardown a port, which clears all the
VCs associated with the port.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 24
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

e Connection Traffic Parameter Retrieval/Modification - It retrieves the traffic
descriptor parameters for a specified connection, and/or changes the traffic
parameters without tearing down the connection.

e Connection Activation/ Deactivation(or Standby): suspends a VC connection,
or activates the connection to a normal operation.

e Connection Status Monitoring: reports connection status.

Microprocessor-port to WAN/Loop port connection

e Connection Setup: The connection request contains traffic parameters such as
bandwidth and QOS service parameters. The chipset driver’s Resource
Management determines whether the request should be honored or rejected.
The chipset driver is responsible for configuring the appropriate devices for the
connection establishment. Figure 20 of Appendix B shows the data flow path
between Microprocessor port and a WAN port, and Figure 21 shows the data
flow path between Microprocessor port and a Loop port

e Connection Teardown: Tears down a connection by re-configuring the
appropriate devices, and de-allocates the related resource back to the Resource
Management.

e Port Setup and Teardown: Setup port or teardown a port, which clears all the
VCs associated with the port.

e Connection Traffic Parameter Retrieval/Modification: Retrieves the traffic
descriptor parameters for a specified connection, and/or changes the traffic
parameters without tearing down the connection.

e Receive/Transmit Data (via Microprocessor port of APEX device).

Multi-casting support

With software or driver assistance, cells come in from WAN or loop port, are
replicated across a list of destination VCs via the APEX microprocessor port, as
shown in Figure 24 of Appendix B. Even after a multicasting group is setup,
connections can be dynamically added to or dropped from the group.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 25
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Inband Control Channel

e Channel Setup: The channel request specifies a destination line/WAN card,
VPI/VCI as well as AAL type (AALO, raw cell or AALS). The chipset driver
allocates resources such as memory buffer for the connection channel, and
establishes the channel communication via a HSS link between a VORTEX or
DUPLEX device on core card and the DUPLEX device on the line/WAN card.
For the channels between a line card and cord card, the chipset driver passes the
message through the microprocessor port of the APEX on the core card. For the
channels between a WAN card and core card, the messages are routed through
microprocessor port of DUPLEX on the core card. Their data flow paths are
shown in Figure 23 of Appendix B.

e Channel Teardown: Tears down the channel connection and de-allocates the
related resource back to the Resource Management.

e Receive/Transmit Message: Sends a message out over a specified channel, or
receives messages from the line/WAN cards.

BOC signaling

BOC signaling over the HSS links between the core card and Line/WAN cards
provides a simple communication channel between the core card and a remote card.
The BOC code, including Reset and user-defined code, can be sent to or received
from the VORTEX or DUPLEX device which is directly connected to the
line/WAN card via a HSS link cable.

Retrieving Current VC Connections and Resources

The chipset driver provides API functions to reports the current VC connection
status, as well as available resources, such as available VCs, logical channels and
ports.

FM function (RDI, AIS, CC) Setup

Setup OAM service through ATLAS device driver. The APEX is configured in a
way that all OAM cells can pass through transparently. The OAM data path is
shown in Figure 25.

The F4 and F5 OAM cell sourcing/termination can be setup per VC. F4 to F5
processing is also supported.

Performance Monitoring Setup

Individual VC can be configured and associated to one or two of 256 PM sessions
for full performance monitoring.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 26
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

The Application shall be responsible to read the performance information gathered
through the chipset driver.

Protection switching

The chipset driver supports the hot switching of the operating modes of two
redundant core cards by bringing a spare core card to an active mode, while
switching the active core card into a standby mode. The switching procedures are
optimized to minimize the cell corruption or cell loss.

It also supports the hot switching of line card connections between two active core
cards which operates in a load-sharing mode. A line card and its associated VC
connections which were originally serviced by one of two redundant core cards, can
be serviced by the other core card after a load switch or transfer.

Addition/deletion of Line cards, WAN card

It manages the addition or removal of line or WAN card. The resource manager
updates its resource database to reflect the change in the loop/WAN port
availability. The port or connection setup is prevented when the associated
line/WAN card is absent from the system.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 27
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

4 ARCHITECTURE OVERVIEW

This section provides an overview of the VORTEX chipset driver’s architecture.
The chipset driver’s external interfaces and its main components are briefly
described here.

41 External Interfaces
Figure 2 illustrates the external interfaces defined for the VORTEX chipset driver.

Figure 2: External and Internal interfaces

Application
Function CallsI Indication Callbacks
VORTEX RTOS
Chipset Driver Service Calls
APEX || ATLAS ||VORTEX ||DUPLEX
Drive Driver Driver Driver
Register Access Interrupt
APEX |ATLAS ||VORTEX ||DUPLEX
Device [Device Device Device
pa .
VORTEX Chipset Board
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 28

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

VORTEX chipset Hardware Interface

The hardware interface consists of routines that allow the VORTEX chipset driver
to interact with the underlying VORTEX chipset devices. These routines provide
read/write access and interrupt handling services. The implementation of these
routines is system-dependent. Therefore, the USER typically implements these
routines when porting the chipset driver to a specific platform. A reference
implementation as well as detailed documentation is provided to help facilitate the
implementation of these routines. The reader is referred to Section 6 for further
details on the hardware interface routines.

RTOS Interface

The RTOS interface consists of the RTOS services required by the VORTEX
chipset driver. The chipset driver requires the following RTOS services:

e Memory: allocate, free
e Timers: sleep

e Semaphores: create, set, clear, delete

The RTOS service calls vary from one RTOS to another. In order to minimize the
porting effort (from one RTOS to another), the chipset driver abstracts these service
calls using a set of “wrapper” routines. The USER only has to modify these routines
while porting the chipset driver to a specific RTOS. For more details on the RTOS
interface, the reader is referred to Section 7.

Application Programming Interface

The term “Application” in this document refers to protocol software used in a real
system as well as validation software written to validate the VORTEX chipset
driver on a validation platform. The Application interfaces with the VORTEX
chipset driver via the Application Programming Interface (API). The API consists
of functions and indication callback routines.

The application software calls the API functions to perform specific operations on
the VORTEX chipset. The API functions typically are not executed in the context of
a separate task within the RTOS. Instead, they are executed in the context of the
calling software’s task. It is important to note that the API functions are not to be
modified by the USER. These functions are not platform or RTOS dependent and
therefore should remain unchanged during the porting process.

The callback routines are used by the chipset driver to notify the application of
events within the device(s) (such as alarms). The callback routines, unlike API
functions, are system-dependent and are implemented by the USER.

For more detailed information on the API functions and callback routines, please
see Section 8.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 29
Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

4.2 Main Components

Figure 3 illustrates the main components of the VORTEX chipset driver.

Figure 3: Main Components

< Application

I

v
Driver API Interface
Connection Remote- Global Driver Self-test & Load-sharing &
IAdmission Card Database Diagnostics Pro.tect-mn
Control (CAC)| | Manager || CAC Control Block Switching
Callbakck W
VC
Management IQ)(SISCIiLg Chipset Data Block OAM & PM Status &
Modul Statisti Q
Module H odule atistics :“5
l R
E Event uP YC & uP OAM BOC Inband Lo :
—1 | Handling multi-cast | | gypport signaling | | Control : ©
1 | Module support Channel Y
T T . 3 tnermai nerface &
VORTEX APEX ATLAS DUPLEX
Device Driver Device Driver Device Driver Device Driver L
Hardware Interface
<—i—> VORTEX APEX ATLAS DUPLEX l ! I
Line cards Core cards WAN cards
30

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Global Driver Database (GDD)

The Global Driver Database (GDD) is the top layer data structures, created by the
VORTEX chipset driver to keep track of its initialization and operating parameters,
modes and dynamic data. The GDD is allocated via an RTOS call, when the chipset
driver is first initialized and contains all the Chipset Structures.

The Chipset Data Block (CDB) is contained in the GDD and initialized by the
VORTEX chipset Module for each Chipset card that is registered, to keep track of
that Chipset’s initialization and operating parameters, modes and dynamic data.
There is a limit on the number of Chipset Blocks (Devices) and that limit is set by
the USER when the Module is initialized.

The GDD also contains the Connection Admission Control (CAC) data block. It
consists of VC connection table, multicast groups, and inband control channel
information. The structure is mostly used by CAC control Module, and Inband
Control Channel Module.

CAC Control Module

The Connection Admission Control Module manages and maintains the system
resources such as VC connections and traffic bandwidth. The module determines
whether a User request for a connection or channel establishment should be
honored or rejected, based on the availability of resources. All the resource
information is stored in the CAC data block.

Status & Statistics Module

The Status and Statistics Section is responsible for tracking chipset status
information and accumulating statistical counts for each chipset registered with
(added to) the chipset driver. This information is stored for retrieval by the
application software.

VC Management Module

The VC Management Module provides routines to configure each chipset device
for VC connection setup, modification, and teardown. The VC Management module
configures the devices of the chipset in different ways depending on the type of
connection being set up. In addition, the CAC data block or the VC table is updated
each time the service routines are called.

VC QOS & Policing Module

The module calculates the scheduling parameters and congestion threshold levels
for VC, Classes and Ports, as well as the cell rate policing parameters based on
QOS contract. It is also responsible for manipulating the Queue Engine Schedulers
in APEX and configuring the rate policing parameters in ATLAS.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 31
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

VC OAM & PM Module

The VC OAM & PM module is responsible for configuring individual VCs for
OAM support by ATLAS, and full performance monitoring.

Remote-card Manager Module

The module manages the addition or deletion of remote Line/WAN cards, and keeps
track of the port availability.

Self-test & Diagnostics Module

The module performs the self-test, such as register and memory port test. It also
provides routines to prepare the chipset into a loopback mode for the integrity
check purpose.

Load-sharing & Protection Switching

The module manages the load-sharing of the connections or traffics between two
redundant chipset card. It provides service for the hot switching of active and spare
cards.

Event Handling Module

The Event Handling Module is responsible for handling the event raised by the
underlying devices or device drivers. Depending on the type of events, the module
may pass the event information directly to the Application.

Microprocessor VC & Multicast Module

The module performs the data transmission/receiving of cells or frame to/from the
Microprocessor VC connections. It supports multicasting of VC cells, in which cells
coming in from a WAN or Loop port are replicated across a list of destination VCs
in a multicast group. The module uses the SAR Assist features of the APEX device
to perform the insertion/extraction of cells through its microprocessor interface.

Microprocessor OAM Support Module

The module performs the support for certain type of OAM cells (Loopback,
Activation/Deactivation), which are not supported by the ATLAS device.

Inband Control Channel (ICC) Module

The module provides services for the inband control channel messaging between a
remote Line/WAN card and a chipset core card. The module is transparent to the
message content. Therefore it’s up to User to compose and interpret the messages.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 32
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

BOC Signaling Module

The module provides a simple communication path between a remote Line/WAN
card and a chipset core card. The module is transparent to the user BOC code.
Therefore it’s up to User to define and interpret the BOC code.

Driver API

The Driver Application Programming Interface (API) is a list of high-level
functions that can be invoked by application programmers to configure, control and
monitor the VORTEX chipset devices. The API functions perform operations that
are more meaningful from a system’s perspective. The API includes functions that
initialize the devices, perform diagnostic tests, validate configuration information to
prevent incorrect configuration of the devices, retrieve status and statistics
information, and setup/modify/teardown VC connections. The chipset driver API
functions use the services of the other driver modules to provide this system-level
functionality to the application programmer.

The Chipset driver API also consists of callback routines that are used to notify the
application of significant events that take place within the device(s) and chipset
driver module.

Hardware Interface

The Hardware Interface is a list of low-level functions that are invoked by the
device drivers to access the VORTEX chipset registers. The Hardware Interface
functions are architecture-dependent and are to be implemented by the USER when
porting the chipset driver code to a specific platform.

RTOS Interface

The RTOS Interface is a list of low-level functions that are invoked by the device
driver itself to allocate or free RTOS resources. The RTOS Interface functions are
RTOS-dependent and are to be implemented by the USER when porting the chipset
driver code to a specific platform.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 33
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

4.3 Software State Description

Figure 4 shows the software state diagrams for the VORTEX chipset module and
device(s) as maintained by the chipset driver.

Figure 4: State Diagram

vesModuleInit vesModuleShutdown

VCS_START)

[MODULE STATES |

vesAdd vcsDelete

VCS_
PRESENT

vcsReset

vcsReset

vesInit

vcsActivate

VCS_
STANDBY

vcsDeActivate

[PER-Chipset STATES

State transitions are made on the successful execution of the corresponding
transition routines shown. State information helps maintain the integrity of the
GDD and CDB(s) by controlling the set of operations that are allowed in each state.

VORTEX chipset Module States

The following is a description of the VORTEX chipset module states.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 34
Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

START

The VORTEX chipset driver Module has not been initialized. The only API
function that will be accepted in this state is vesModuleInit. In this state the
chipset driver does not hold any RTOS resources (memory, timers, etc...), has no
running tasks, and performs no actions.

READY

This is the normal operating state for the chipset driver Module. The VORTEX
chipset driver Module has been initialized successfully via the API function
vcsModuleInit. The Module Initialization Vector (MIV) has been validated, the
Global Driver Database (GDD) has been allocated and loaded with current data, the
per-chipset data structures have been allocated, and the RTOS has responded
without error to all the requests sent to it by the chipset driver.

The chipset driver is ready for chipsets to be added. The chipset driver Module
remains in this state while chipsets are in operation. Chipsets can be added via

vesadd. The API function accepted here for Module control is
vcsModuleShutdown.

VORTEX chipset States
The following is a description of the per-chipset states.
VCS_START

The VORTEX chipset (card) has not been initialized. The only API function that
will be accepted in this state is vesAdd. In this state the chipset (card) is unknown
by the chipset driver and performs no actions.

VCS_PRESENT

The VORTEX chipset card has been successfully added via the API function
vesAdd. A Chipset Data Block (CDB) has been associated to the card and updated
with the user context, and a card handle has been given to the USER. In this state,
the card performs no actions. The only API functions that will be accepted in this
state are vesInit and vesDelete.

VCS_STANDBY

This state is entered via the vesInit and vesDeActivate function calls. In this
state the Chipset Card remains configured but all data functions are de-activated
including interrupts and Alarms, Status and Statistics functions. vcsActivate
will return the chipset to the vCS_ACTIVE state, while vesReset will de-
configure the Chipset.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 35
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

VCS_ACTIVE

This is the normal operating state for the Chipset Card(s). State changes can be
initiated from the vCS_ACTIVE state via vcsDeActivate, and vcsReset.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 36
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

5 CONSTANTS, AND DATA STRUCTURES

This section describes the elements of the chipset driver that configure or control its
behavior and therefore should be of interest to the application programmer. For more
information on our naming convention, the reader is referred to Section 12.

5.1 Constants

The following Constants are used throughout the chipset driver code:

<VCS_ERR_CODES>: a list of error codes used throughout the chipset driver
code, returned by the API.

VCS_MAX_ CARDS: defines the maximum number of chipset core cards that can
be supported by this chipset driver. This constant must not be changed without
a thorough analysis of the consequences to the chipset driver code. It should be
either 1 or 2. The default value is 2.

vCs_MAX_ VC: define the maximum number of VCs the system supports. It
depends on the card’s context memory capacity such as APEX SSRAM size. It
should be either 16K or 64K. The default value is 16K.

VCS_MAX LOOP_ PORTS: define the maximum number of Loop ports the
chipset driver supports. The default value is 2048 (2K).

VCS_MAX WAN PORTS: define the maximum number of WAN ports the chipset
driver supports. The default value is 4.

VCS_MAX_ CELL_RATE: define the maximum traffic throughput in half duplex
in cells per second. The default value is (1420*1024).

VCS_MAX CELL_RATE PER_LOOP: define the maximum traffic throughput for
a loop port in cells per second. The default value is (230*%1024).

VCS_MAX_ VORTEX: define the maximum number of VORTEX devices on a
core card (from 1 to 8). The default value is 2.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 37
Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

5.2 General Structure Definition

These structures are defined for general use by the application and the chipset

driver.

Table 2: VORTEX chipset VPI and VCI (sVCS_VPI VCI)

Field Type Field Name Field Description
UINT2 vpi VPI of ATM cells
UINT2 vei VCI of ATM cells

Table 3: VORTEX chipset VC and Port Descriptor (sVCS_VC_PORT _DES)

Field Type

Field Name | Field Description

evCS_PORT TYPE

ePortType | specifies a port type: VCS_LOOP_PORT,
VCS_WAN PORT, VCS UP_PORT.

UINT2 u2PortNum | Specify a Loop or WAN port number
UINT2 vpi VPI value
UINT2 vei VCI value

Table 4: VC QOS Structure (sVCS VC _QO0S)

Field Type Field Name Field Description

eVCS_TRAFFIC_TYPE | eTrfcType Indicates the VC type: CBR, rtVBR,
nrtVBR, GFR, UBR, ABR

UINT4 Pcr Peak cell rate in cells/second

UINT4 Scr Sustained Cell Rate in cells/second

UINT4 Mcr Minimum Cell Rate in cells/second, used
for ABR type VC

UINT2 Mbs Maximum Burst Size at the Peak Cell
Rate in cells

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 38

Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Field Type Field Name Field Description

UINT2 Mfs Maximum Frame Size in bytes , used in
GFR

UINT2 cdvt Cell Delay Variation Tolerance (CDVT)

in microsecond

UINT2 Clr Cell Loss Ratio in percentage
UINT2 maxCTD Maximum Cell Transfer Delay in cells
UINT1 ulNcAction Specifies an action for non-compliant

cells at ATLAS level, can be one of

VCS_PLC_COUNT ONLY (increment NC
cell count)

VCS_PLC_TAG ONLY (tag CLPO cell)

VCS_PLC_TAG DISCARD (tag CLPO,
discard CLP1)

VCS_PLC_DISCARD (discard both CLPO
and CLP1)

VCS_ PLC_DEFAULT (using default
policing actions defined by the chipset
driver)

Table 5: VC FM Structure (sVCS VC OAM_FM)

Field Type Field Name | Field Description
UINT1 ulEndPoint | Bit I: 1= terminating segment OAM cells, 0 =
pass through
Bit 0: 1= terminating end-to-end OAM cells, 0 =
pass through
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 39

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Field Type

Field Name

Field Description

UINT1

ulConfig

OAM configuration

Bit 7: reserved

Bit 6: Send AIS segment

Bit 5: send AIS_end-to-end

Bit 4: send RDI segment

Bit 3: send_RDI end-to-end

Bit 2: CC_RDI

Bit 1: CC_ACTIVATE_Segemnt

Bit 0: CC_ACTIVATE_end-to-end

UINT1

ulDtSelect

Bit 0-3: select one of 16 defect types to be
inserted in OAM (AIS, RDI) cells generated by

the chipset.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 40
Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Table 6: VC PM Structure (sVCS_VC _OAM _PM)

Field Type

Field Name

Field Description

UINT1

ulPMIdl

Bits [6:0]: the PM session address in bank 1.

Bit 7: active flag. If 1, it indicates the PM
session is active.

UINT1

ulPMId2

Bits [6:0]: the PM session address in bank 2

Bit 7: active flag. If 1, it indicates the PM
session is active.

Table 7: VC Policing Structure (sVCS_VC POLICING)

Field Type Field Name | Field Description

UINT2 u2Limit Limit field for Generic Cell Rate Algorithm
parameters.

UINT2 u2Incr Increment field for Generic Cell Rate Algorithm
parameters.

Table 8: Congestion Threshold Level Structure (sVCS_THRSH LEVEL)

Field Type | Field Name Field Description

UINT1 ulCLPOThrsh Maximum threshold for CLPO cells.

UINT1 ulCLP1Thrsh Maximum threshold for CLP1 cells.

UINT1 ulMaxThrsh Maximum threshold for all cells.
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 41

Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Table 9: Port Threshold Structure (sVCS PORT THRSH)

Field Type Field Name Field Description

sVCS_THRSH_LEVEL | sPortThrsh Maximum threshold levels per port.
The port threshold levels are coded as
4 bit logarithmic and 4 bit fractional
values

SVCS_THRSH_LEVEL | sClassThrsh[4] (array of) Maximum threshold levels
per Class. The class threshold levels
are coded as 4 bit logarithmic and 4 bit
fractional values.

Table 10: VC Threshold Structure (sVCS_VC_THRSH)

Field Type Field Name Field Description

sVCS_THRSH_LEVEL | sVcThrsh Maximum threshold levels per VC
The threshold levels are coded as 4
bit logarithmic and 2 bit fractional

values.

UINT1 ulVeCLPOMinThrsh | Minimum number of CLPO cells
guaranteed to be allowed on a per-
VC basis. This threshold value is
coded as a 3 bit code value

Table 11: Shaped VC Parameters (sVCS_VC_SHPR)

Field Type Member Name Description
UINT1 ulShpPrescale Resolution of the Incr field
UINT2 u2ShpLateBits Number of bits used to

represent ShpTxSlotsLate

UINT2 u2ShpCdvt CDVT for the connection
UINT2 u2ShpIncr Increment field for SCR-
GCRA
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 42

Document ID: PMC-1991216, Issue 3

P“ A c PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Table 12: Shaper Control VECTOR (sVCS_SHPR VECTOR)

Field Type

Member Name

Description

UINT1

state

State for the shaper:
UNUSED or USED
(ENABLED).

UINT1

ulPortClass

the port/class to which the
shaper is applied.

Bit 0-1: port number

bit 2-3: Class number

UINT1

ulShpSlowDownEn

Enable the slow down of the
time reference clock used by
the shaper.

UINT1

ulShpThrshEn

Defines the method of
speeding up/slowing down the
shaper rate.

UINT1

ulShpMeasInt

Define absolute number of
clock cycles over which to
measure congestion levels for
the shaper.

UINT1

ulShpThrshval

Class queue length threshold

UINT1

ulShpRedFact

Shaper slow down factor

UINT1

ulShpRTRate

The maximum shaped data
rate in clocks/timeslot

Table 13: VC OAM Defect Structure (sVCS VC OAM DEFECT)

Field Type Member Name Description
UINT1 ulSegDefType Received Segment Defect Type
UINT1 ulE2EDefType Received End-to-end Defect
Type
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 43

Document ID: PMC-1991216, Issue 3

P“ A c PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Field Type Member Name Description

UINT4 ulE2EdefLocation[4] Received End-to-end AIS
Defect Location. Total 128
bits.

UINT4 ulSegDefLocation [4] Received Segment AIS Defect
Location. Total 128 bits.

Table 14: VC Connection Status Structure (sVCS_CONN_STATUS)

Field Type

Member Name

Description

eVCS_VC_ STATE

state

VC state; can be one of the
following: VC_UNUSED,
VC _STANDBY or
VC_ACTIVE

eVCS_VC_CLASS

eVcClass

Bit 0-1: VC class; 00 = Class
0,01 =Class 1, 10 = Class 2
11=Class 3.

evCS _VC_TYPE

evVcType

VC connection type; 00 =
VCC Cells, 01 = VCC Frame,
10 = VPC Cell, 11=VPC
Frame

sVCS_VC_VECTOR

Vciln

specifies incoming cell ID,
(VcPortID/vpi/vei)

SVCS_VC_VECTOR

VcOut

specifies outgoing cell ID,
(VcPortID/vpi/vci)

UINT1

CardID

specifies an active chipset
card, through which the VC
cells pass.

SVCS_VC_THRSH

sVcThrsh

Contains threshold values for
the VC connection

SVCS_VC_QOS

sQos

specifies QOS parameters for
the VC, including peak cell
rate, VC type (CBR, VBR etc)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 44

Document ID: PMC-1991216, Issue 3

P“ A c PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Field Type Member Name Description

UINT1 ulVcWeight VC WFQ weight (linear
encoding - 6 bits)

sVCS_VC_OAM sVcOAM Contains OAM configuration
for the VC.

UINT1 mcFlag 1=the connection belongs to a
multicasting group
O=the connection doesn't
belong to a multicasting group

UINT2 mcId multicasting group ID, if the

above flag is 1

Table 15: VC Cell Header Structure (sVCS CELL HDR)

Field Type Member Name Description
UINT1 ulHdr [4] 4 Cell Header bytes
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 45

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

5.3 Structures Passed by the Application

These structures are defined for use by the application and are passed by reference
to functions within the chipset driver.

Module Initialization Vector (MIV)

Passed via the vesModuleInit call, this structure contains all the information
needed by the chipset driver to initialize and connect to the RTOS.

® maxVCs specifies the maximum number of VCs the chipset driver needs to

support.

e maxChnls specifies the maximum number of inband control channels the
chipset driver shall support.

Since the control channel requires two VC connections for each channel, the VC
Record Context resource of APEX and ATLAS are shared between the User’s VC
connections and Control Channels. Therefore, the values of maxvCs and maxChnls
are limited by the following relationship: maxvCs + 2 * maxChnls <

VCS MAX_VC

Table 16: VORTEX chipset Module Initialization Vector (sVCS _MIV)

Field Type Field Name Field Description

UINT2 maxVCs Maximum number of user VCs
supported by the chipset driver

UINT2 maxChnls Maximum number of inband control
channels

UINT2 maxInitProfs Maximum number of initialization
profiles

VCS_IND _RX CELL | indRxDataCell Callback function pointer for cell Rx
on user connections

VCS_IND_RX FRM indRxDataFrm Callback function pointer for frame
Rx on user connections

VCS_IND_RX CTRL_ | indRxCtrlMsg Callback function pointer for

MSG message Rx on control channels

VCS_IND_RX_ BOC indRxBOC Callback function pointer for BOC
code Rx

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 46

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Field Type Field Name Field Description

VCS_IND_RX_OAM indRxOAM Callback function pointer for OAM
(CC and Activation/Deactivation)
cell Rx

VCS_IND COS_STAT | indCosStatus Callback function pointer for

us Change of Status on OAM operation

VCS_IND_INTR indCritical Callback function pointer for critical
interrupt events

VCS_IND_INTR indError Callback function pointer for non-
critical interrupt events

Chipset Initialization Vector

Passed via the vesInit call, this structure contains all the information needed by
the chipset driver to initialize (eventually activate) a VORTEX chipset card.

valid indicates if this is a validated Initialization Vector or not.

sDevInitVector (where Dev denotes Apx, Atls, Dpx, Vtx)
contains the initialization vector for each VORTEX chipset device on the

chipset card.

Table 17: VORTEX chipset Initialization Vector (sVCS_INIT VECTOR)

Field Type Field Name Field Description

UINT4 valid VCS_VALID - indicates that the contents
of this vector are validated
(VCS_INVALID otherwise)

sAPX INIT_VECT sApxInitVect an Initialization vector for APEX chip

SATLS_ INIT VECT sAtlsInitVect an Initialization vector for ATLAS chip

sVIX_INIT VECTOR | sVtxInitVect an Initialization vector for VORTEX chip

sDPX INIT VECTOR | sDpxInitVect an Initialization vector for DUPLEX chip

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use

Document ID: PMC-1991216, Issue 3

47

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

VC Connection Request

Passed via the vesConnSetup call. It contains the necessary information to set
up a VC connection.

Table 18: VORTEX chipset VC Request (sVCS CONN_REQUEST)

Field Type Field Name Field Description
sVCS_VC_PORT _DES | InVC specifies incoming port and VPI/VCI
sVCS_VC_PORT_DES | OutVvC specifies output port and VPI/VCI
SVCS_VC_QOs sQos specifies QOS parameters for the VC,
including peak cell rate, VC type (CBR,
VBR etc)
eVCS_VC_TYPE eVcType bit 0: cell type, Frame or Cell; 1 =
Frame, 0 = Cells
bit 1: VC type, VPC or VCC; 1 = VPC,
0=VCC

Port-level Threshold Request

Passed via the vesPortSetup call. It contains port-level threshold request.

Table 19: Port-level Threshold Request (sVCS_PORT _THRSH REQUEST)

Field Type Field Name Field Description

UINT4 u4CLPOThrsh CLPO per-port threshold level in cells

UINT4 vACLP1Thrsh CLP1 per-port threshold level in cells

UINT4 ualaxThrsh maximum per-port threshold level in cells

UINT4 u4MinThrsh minimum guaranteed port threshold level in
cells. The value is used by driver software
to maintain cell buffer "guarantee" for the
port.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 48

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

VC Multicast Request

Passed via the vesMcSetup call. It contains the necessary information to set up a

multicasting group.

Table 20: VORTEX chipset Multicast Request (sVCS MULTICAST REQUEST)

Field Type Field Name Field Description

sVCS_VC_PORT_DES InvC specifies incoming port and VC

sVCS_VC_PORT_DES * | pOutVvC Pointer to a list of output ports and VCs

UINT2 numoutve Number of output VCs in the list for
multicasting

SVCS_VC_QO0S sQos specifies QOS parameters for the VC,
including peak cell rate, VC type
(CBR, VBR etc)

UINT1 flagFCQ Data type: Frame or Cell. 1 = Frame, 0
= Cells

Inband Control Channel Request

Passed via the vesChnlSetup call. It contains the information to set up a control
channel between a core card and a WAN/Line card.

Table 21: VORTEX chipset Channel Request (sVCS CHNL REQUEST)

Field Type

Field Name

Field Description

UINT1

cardId

specifies which HSS line, and which VORTEX
or DUPLEX device is connected to the Line or
WAN card

bit 0-2: HSS link number (0 to 7)

bit 3-6: device number

bit7 : =VORTEX, 1 = DUPLEX

UINT2

VpioOut

VPI for output message cells towards remote
cards

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 49
Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Field Type Field Name Field Description

UINT2 VeciOut VCI for output message cells towards remote
cards

UINT2 VpilIn VPI for incoming message cells from remote
cards

UINT2 Veiln VCI for incoming message cells from remote
cards

UINT4 maxMsgSz maximum message size (number of bytes)

UINT1 flagFCQ Data type: Frame or Cell. 1 = Frame, 0 = Cells

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 50

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

VC OAM (FM and PM) Setup Request

Passed via the vesvcOaMSetup call. It contains the information to setup OAM and
PM configuration on a VC connection.

Table 22: VC OAM Structure (sVCS_VC_OAM_REQUEST)

Field Type Field Name | Field Description
sVCS_VC_OAM_FM sFMcfg Contains the FM configuration for the VC
sVCS_VC_OAM_PM sPMcfg Contains the PM configuration for the VC

Device ID

Used to specify a particular device on the chipset core card.

Table 23: Device Identification Structure (sVCS_DEV _ID)

Field Type Field Name Field Description

eVCS_DEV_TYPE ebevType Device Type, can be VCS_APEX,
VCS_ATLAS, VCS_VORTEX,
VCS DUPLEX.

UINT1 ulDevNum Specify one of multiple VORTEX devices
on the core card. It ranges from 0 to
(VCS_MAX VORTEXS -1)

Port ID

Used to specify a particular port.

Table 24: Port Identification Structure (sVCS PORT ID)

Field Type Field Field Description
Name
eVCS_PORT_TYPE | ePortType | Port Type, can be VCS LOOP_PORT,
VCS_WAN PORT, VCS UP_ PORT.
UINT2 u2PortNum | port number of a Loop/WAN port.
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 51

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Structure for OAM Configuration Block

The structure contains the configuration information for OAM control of the chipset
ATLAS device. It effects all OAM connections associated with the chipset. In
contrast, the structure sVCS_VC_OAM contains the configuration data on per-

connection basis

Table 25: VORTEX chipset OAM Configuration Block (sVCS_0OAM _CFG)

Field Type

Field Name

Field Description

UINT1

ulcCtl

Control Flag for OAM cell generation and
configuration

Bit 0: AutoRDI; 1 = automatically
generate RDI upon termination of an AIS
cell. 0 = otherwise.

Bit 1: ForceCC; 1 = CC cells to be inserted
regardless of user bandwidth. 0 =no CC
cells when high user bandwidth.

Bit 2: AISCopy; 1 = copies the Defect
Location and Type fields of all received
AIS cells to the VC Table. The associated
SRAM should be populated in the VC
table. 0 =no copying of the fields. The
associated SRAM should not be
populated in the VC table.

UINT2

u2AisCcCp

AIS and CC cell pacing limit.

UINT4

u4AisPhy

If bit x is set, AIS cells are generated
automatically on all associated
connections when a PHYx failure occurs.

UINT4

u4RdiPhy

If bit x is set, RDI cells are generated
automatically on all associated
connections when a PHYx failure occurs.

UINT1

ulDT [VCS_OAM D
EFECT TYPES]

16 defect types used for non-automatic
OAM cell generation.

UINT2

u2DL [8]

The 128 bits of defect location to be
inserted into non-automatic OAM cell
generation.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 52
Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Field Type

Field Name

Field Description

UINT2

u2MaxIndex

Maximum VC Table index, reflecting
ATLAS SRAM depth

UINT4

u4Aps

Automatic Protection Switching bits for
controlling the automatic propagation of a
segment AIS flow into an end-to-end AIS
flow at a segment end point on per-PHY
basis. If PHY x doesn’t exist, the bit x
should be 1, i.e. no end-to-end AIS
generated.

UINT2

u2Bcp

ATLAS Egress OAM cell interface pacing:
the number of cell intervals between the
transfer of backward OAM cells. Not used
for Ingress.

UINT2

u2Bto

The timeout limit before a cell at the head
of the ATLAS Egress Backward Cell
Interface FIFO is discarded. To prevent a
malfunctioning PHY holding a Backward
FIFO, consequently blocking all other
cells that follow. Unit: cell periods. Not
used for Ingress.

VC F4 to F5 OAM Processing Request

Passed via the vesF4toFsSetup call. It contains a list of F5 (VCC) connections
which are associated with one or two terminated F4 (VPC) connections for the F4
to F5 OAM processing.

Table 26: VORTEX chipset F4 to F5 OAM Request (sVCS_F4TOFS5_

REQUEST)

Field Type Field Name Field Description

UINT2 F4EtoEConnId | specifies an End-to-End OAM VPC
connection (VCI = 4)

UINT2 F4SegConnId | specifies an Segment OAM VPC
connection (VCI = 3). If the field is set
to be the same value as
“F4EtoEConnId”, it indicates the
Segment OAM VPC connection does
not participate in the processing.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 53

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Field Type

Field Name Field Description

UINT2

u2Numvcc

specifies number of VCC in the list of
sSVCS_F4TOF5_VCC data buffer array
pointed to by pvcc

SVCS_F4TOF5_VCC* pVcc

Pointer to the first
sVCS_FATOFS5_VCC data buffer in the
list

Table 27: VORTEX chipset F4to F5 VCC (sVCS _F4TOF5_ VCC(C)

Field Type

Field Name

Field Description

UINT2

u2ConnlId

VCC connection ID

UINT1

ulF4ToF5CEtg

F4 to F5 processing Configuration for the
VCC.

Bit 0: F4toF5AIS,

1=F5 FM cells will be generated at F4
OAM termination;

0=F5 FM cells will not be generated at
F4 OAM termination; only CC cells will be
generated.

Bit 1: SegmentFlow,

1 = An F5 Segment AIS cell will be
generated while the F4 connection is in AIS
alarm.

0 =an F5 end-to-end AIS will be
generated instead. The bit should be set when
the VCC connection is within a defined
segment or not a VC end-point, i.e. the VCC
extends beyond the end-point of the VPC.

Note: the bit should not be set to 1 at Segment
end-point

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 54
Document ID: PMC-1991216, Issue 3

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

P“ A C PMC-Sierra, Inc.

Connection Status and Information

Passed out via the vesConnStatus call. It contains status of a VC connection
which is maintained in the VC Record table.

Table 28: Connection Status (sVCS CONN_STATUS)

Field Type Field Name Field Description

eVCS_VC_STATE | state VC state; can be one of the following:
VC_UNUSED, VC_STANDBY or
VC _ACTIVE

eVCS_VC_CLASS | eVcClass VC class; 00=Class 0, 01=Class 1, 10=Class 2
11=Class 3

eVCS_VC_TYPE evcType VC connection type; 00=VCC Cells, 01=VCC
Frame, 10=VPC Cell, 11=VPC Frame

sVCS_VC_PORT_ | VcIn specifies incoming cell ID, (VcPortID/vpi/vci)

DES

sVCS_VC_PORT_ | VcOut specifies outgoing cell ID, (VcPortID/vpi/vci)

DES

UINT1 CardID specifies an active chipset card, through which
the VC cells pass.

UINT1 ulvcWeight VC queuing weight (linear encoding - 6 bits)

sVCS_VC_THRSH | sVcThrsh Threshold values for the connection

SVCS_VC_QOs sQos current QOS parameters for the VC

UINT1 mcFlag 1=the connection belongs to a multicasting
group
O=the connection doesn't belong to a
multicasting group

UINT4 mcId multicasting group ID if the above flag is 1

Passed out via the vesConnInfo call. It reports current active VCs, and loads on
each chipset (core card). It also lists available resources, such as number of empty
VCs, logical channels and ports.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 55
Document ID: PMC-1991216, Issue 3

P“ A c PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Table 29: Connection Information (sVCS _CONN _INFOQO)

Field Type Field Name Field Description

UINT2 activeVCs number of active VCs

UINT2 inactiveVCs number of inactive or disabled
VCs

UINT2 availableVCs number of unused VCs

UINT2 activeLoopPorts number of active loop ports

UINT2 inactiveLoopPorts number of inactive loop ports

UINT2 availableLoopPorts number of unused loop ports

UINT2 activeWanPorts number of active loop ports

UINT2 inactiveWanPorts number of inactive loop ports

UINT2 availableWanPorts number of unused loop ports

UINT2 activeChnls number of Inband Control
Channels

UINT2 availableChnls number of unused Channels

UINT2 loadVCs [VCS MAX CARDS] load or number of active VCs
per card

UINT2 loadPorts [VCS_MAX_CARDS] number of active ports per card

Remote Card Information

Passed out via the vesRemoteCardInfo call. It reports the availability of remote
Line/WAN cards at each HSS link and the HSS link status of a specified core card,
as well as the total number of remote cards being added.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 56
Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Table 30: Remote Card Information (sVCS _RCARD INFO)

Field Type

Field Name

Field Description

UINT1

lineInfo
[VCS_MAX_VORTEXS]
[VITX_NUM HSS_ LINKS]

contains the remote Line card info at
each HSS links

Bit 0: 0= Line card not added

1 = Line card connected or
added

Bit 1: 0 =1inactive HSS link
between the Line card and Core Card

1 = active HSS link between
the Line card and Core Card

UINT1

wanInfo
[VCS_DPX_HSS LINKS]

contains the remote WAN card info at
each HSS links

Bit 0: 0= WAN card not added

1 = WAN card connected or
added

Bit 1: 0 =1nactive HSS link
between the WAN card and Core Card

1 = active HSS link between
the WAN card and Core Card

UINT2

u2RemoteCardCount

number of remote Line/WAN cards
added to the core card

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 57
Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Statistic Counts

Passed out via the vcsGetStatVeRxCnts and vesGetStatVeNceCnts calls. It
reports the statistic counts as well as the counter configurations on per-VC basis.

Table 31: VC Statistic Counts (sVCS VC STAT CNT)

Field Type

Field Name

Field Description

UINT1

ulCntType]

programmable count type: A logical 1 in any
of bits indicates that counting on that
particular stream is enabled.

Bit 0 — CLPO Cells with PTI=111 (F5) or
VCI=T to 15 (F4)

Bit 1 — CLP1 Cells with PTI=111 (F5) or
VCI=T to 15 (F4)

Bit 2 — CLPO RM Cells
Bit 3 — CLP1 RM Cells
Bit 4 — CLP0 OAM Cells
Bit 5 — CLP1 OAM Cells
Bit 6 — CLPO User Cells

Bit 7 — CLP1 User Cells

UINT4

u4Count

per-VC Cell Counts

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 58
Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

5.4 Structures in the Driver’s Allocated Memory

These structures are defined and used by the chipset driver and some are part of the
context memory allocated when the chipset driver is opened.

Global Driver Database (GDD)

The GDD is the top-level structure for the Module. It contains configuration data
about the Module level code and pointers to card level configuration data structure
(CDB) and Connection Admission Control (CAC) block.

Table 32: VORTEX chipset Global Driver Database (sVCS_GDD)

Field Type Field Name Field Description
UINT2 u2NumCards Number of Chipset cards
currently registered
SVCS_CDB sCdb [VCS_MAX_CA | array of Chipset Data Blocks
RDS] (CDB) in context memory
SVCS_DEV_CTXT sDevCtxt [VCS_MA | Contains device contexts for
X_CARDS] [VCS_MA | each underlying device driver
X _DEVS]
SVCS_CAC SCAC Connection Admission Control
block.
SVCS_CHNL TABLE sChnlTable control channel table
sVCS_VC_LIST * pFreeVcList Pointer to a pre-allocated
memory buffer for storing free
VC queue table and queue entry
pool. This is used to minimize
memory fragmentation.
UINT2 maxInitProfs Maximum number of
initialization profiles
SVCS_INIT_VECT * psInitProfs (array of) Pointers to different
initialization profiles
VCS IND RX CELL indRxDataCell Callback function pointer for
cell Rx on user connections
VCS_IND_RX FRM indRxDataFrm Callback function pointer for
frame Rx on user connections
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 59

Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Field Type Field Name

Field Description

UINT2 u2NumCards

Number of Chipset cards
currently registered

VCS_IND RX CTRL MSG | indRxCtrlMsg

Callback function pointer for
message Rx on control channels

VCS_IND_RX_BOC indRxBOC Callback function pointer for
BOC code Rx

VCS_IND RX OAM indRxOAM Callback function pointer for
OAM (CC and
Activation/Deactivation) cell Rx

VCS_IND COS_STATUS indCosStatus Callback function pointer for
Change of Status on OAM
operation

VCS_IND_INTR indCritical Callback function pointer for
critical interrupt events

VCS_IND_ INTR indError Callback function pointer for

non-critical interrupt events

Structure for a VC Queue Entry

Table 33: VORTEX chipset VC QUEUE ENTRY (sVCS_VC_INDEX)

Field Type Field Name Field Description

SVCS_VC_INDEX * prev a pointer to the previous element in the
queue table

SVCS_VC_INDEX * | next a pointer to the next element in the queue
table
UINT2 Ici Index of a VC in the VC Table
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 60

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Structure for a VC Queue

Table 34: VORTEX chipset VC QUEUE TABLE (sVCS_VC_LIST)

Field Type Field Name | Field Description

SVCS_VC_INDEX * | head a pointer to the head of queue table

SVCS_VC_INDEX * | tail a pointer to the tail of queue table

UINT2 numvCs number of VCs associated with the queue (list)
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 61

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Structures for Connection Admission Control

This is a high level, system-independent data structure, used to maintain the VC
resources, and control the connection admission.

Table 35: VORTEX chipset Connection Admission Control (sVCS _CAC)

Field Type Field Name Field Description
VCS_SEM_ID semvC Semaphore object

UINT2 maxVCs maximum VCs for the system
UINT2 numvCs number of VCs being setup
SVCS_VC_RECORD * psVcRecord pointer to a VC Table with

maxVCs number of VC
Connection Records.

SVCS_VC_LIST

VcPerLoopPort [VCS
MAX LOOP_PORTS]

A queue table for the VCs
associated with a particular Loop
port.

SVCS_VC_LIST

VcPerWANPort [VCS

MAX_WAN PORTS]

A queue table for the VCs
associated with a particular WAN
port.

sVCS_VC LIST VcPerUpPort A queue table for the VCs
associated with the
microprocessor port.

SVCS_MULTICAST TA | sMcTable A queue table for multicast group

BLE record

UINT4 ud4TotalCellRate Total bandwidth (in cell rate) has
been used.

UINT4 ud4UpCellRate Total Cell rate in Upstream
direction has been used

UINT4 u4DownCellRate Total Cell rate in Downstream

direction has been used.

sVCS PORT_ STATUS

sLoopPortState [VC
S_MAX LOOP_PORTS]

(array of) loop port status
information.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 62

Document ID: PMC-1991216, Issue 3

P“ A c PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Field Type Field Name Field Description

sVCS_PORT_ STATUS sWanPortState [VCS | (array of) WAN port status
_MAX WAN_PORTS] information

SVCS_PORT STATUS sMpPortState Microprocessor port status

information

SVCS_SHPR_VECTOR

psShaper [4]

Control Vectors for the four
APEX shapers

Structure for a VC Table Record

Table 36: VORTEX chipset VC TABLE (sVCS_VC_RECORD)

Field Type Field Name Field Description

eVCS_VC_STATE state VC state; can be one of the following:
VC UNUSED, VC _STANDBY or
VC _ACTIVE

evVCS_VC_CLASS evVcClass VC class; 00=Class 0,01 =Class 1, 10
= Class 2 11=Class 3.

evCs_VC_TYPE evcType VC connection type; 00 = VCC Cells, 01
=VCC Frame, 10 = VPC Cell, 11=VPC
Frame

sSVCS_VC_VECTOR Veln specify incoming cell ID,
(VcPortID/vpi/vei)

sVCS_VC VECTOR Vcout specify outgoing cell ID,
(VcPortID/vpi/vci)

UINT1 CardID specify active chipset card, through
which the VC cells pass.

SVCS_VC_QO0S sQos specifies QOS parameters for the VC,
including peak cell rate, VC type (CBR,
VBR etc)

UINT1 ulvcWeight | VC queuing weight (linear encoding — 6
bits)

SVCS_VC_THRSH sVcThrsh Contains per-VC Congestion Control
Thresholds

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 63

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Field Type

Field Name

Field Description

SVCS_VC_OAM *

psVcOAM

Contains OAM configuration for the
VC. If Null, OAM is not enabled.

sVCS F4TOF5 CB *

psF4toF50AM

Pointer to F4 to F5 OAM processing
control block. If NULL, the F4 to F5
processing is not enabled, or the VC is
not a member of any F4 to F5
processing list.

UINT1

ulF4ToF5Cfg

F4 to F5 processing Configuration for
the VCC.

Bit 0: F4toF5AIS,

1=F5 FM cells will be generated at F4
OAM termination;

0=F5 FM cells will not be generated
at F4 OAM termination; only CC cells
will be generated.

Bit 1: SegmentFlow,

1 = An F5 Segment AIS cell will be
generated while the F4 connection is in
AIS alarm.

0 = an F5 end-to-end AIS will be
generated instead.

The bit should be set when the VCC
connection is within a defined segment
or not a VC end-point, i.e. the VCC
extends beyond the end-point of the
VPC.

SVCS_MULTICAST REC
ORD *

psMulticast

A pointer to a multicast record which the
VC belongs. If null, it means the ICI
doesn’t belong to any Multicast group.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 64

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Structure for Port Status

Table 37: Loop/WAN Port Status Structure (sVCS _PORT STATUS)

Field Type

Field Name

Field Description

UINT1

state

Indicate the current port
state.

Bit 0-1: 00 = not available,
(Line/WAN card not present)
01 = inactive,
(remote card available, but

associated HSS links are
inactive)

11 = active (remote
card available and an
associated HSS link is active)
Bit 2-3: specifies an active
core card ID

Bit 4: 1= the port is
configured (in APEX), 0 =
Otherwise

Bit 5: 1= the port is enabled
(in APEX), 0 = Otherwise

Bit 6: 1= its associated HSS
link is in Loopback mode,

0 = otherwise.

Not used for uP port.

Bit 7:For Loop port: it
indicates whether this port is
reserved for control channel
to the remote line card. 1=
yes. For WAN port: indicates
an Active DUPLEX HSS link
toa WAN card. 1=Link 1,0
= Link 0. For uP port, not
used.

UINT4

maxInCellRate

maximum cell rate allowed in
Inward (towards chipset)
direction.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 65

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Field Type

Field Name

Field Description

UINT4

minOutCellRate

minimum cell rate
guaranteed in Outward(away
from chipset) direction.

UINT4

InCellRate

Bandwidth (cell rate) in
Inward direction has been
used.

UINT4

OutCellRate

Bandwidth (cell rate) in
Outward direction has been
used.

UINT1

ulWeight

Per-port polling weight used
in APEX queue engine.

For loop ports: its value
ranges from 0 to 7.

For WAN ports: its value
range from 0 to 3.

UINT1

ulThrshForceFlag

Flag indicating whether the
port thresholds was specified
by the user when the port
was set up.

UINT2

minPortThrsh

a minimum guaranteed port
threshold level

SVCS_CLASS_SCHEDULER

sClassSchdl

Contains the class scheduling
parameters for the port.

sVCS_ PORT THRSH

sPortClassThrsh

Contains the per-port and
per-class congestion control
thresholds.

Structure for Loopback Control Block

Table 38: VORTEX chipset Loopback Control Block (sVCS LPBK CB)

Field Type Field Name

Field Description

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 66

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Field Type

Field Name

Field Description

VCS_DEV_HANDLE

DevHandle

Device handle to the loopback
device, whose HSS link is in
loopback mode. Either VORTEX
or DUPLEX handle. If NULL,
the chipset is not in Loopback
mode.

SVCS_VC_PORT DES

sTestingVcPort

testing point for testing cell
insert/extract

UINT1

HssLinkId

Specifies the HSS Link in
loopback mode,
bit 7: 0 = VORTEX, 1 = DUPLEX

UINT2

ForwardIci

Index of the forward VC in the
VC table

UINT2

BackwardIci

index of the forward VC 1in the
VC table

UINT1

TestPortState

It stores the testing port state
before the Loopback mode being
setup

UINT1

LpbkPortState

It stores the loopback port state
before the Loopback mode being
setup

SVCS_LPBK_DATA *

psLpbkData

control block for received
loopback data from
microprocessor port

Table 39: VORTEX chipset Loopback Data Block (sVCS_LPBK DATA)

Field Type Field Name Field Description
UINT1 maxsz maximum size of Rx loopback data buffer
UINT1 actualsz actual size of loopback data received
UINT1 * PRxData pointer to the loopback data buffer of ‘maxSz’
bytes
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 67

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Structure for multicast support

Table 40: VORTEX chipset Multicast Record (sVCS MULTICAST RECORD)

Field Type Field Name Field Description

VOID * prev a pointer to the previous element in the queue
table

VOID * next a pointer to the next element in the queue table

UINT4 InIci specifies incoming VC connection ICI

sVCS_VC_LIST sOutICIList | Contains a list of output connection ICIs

Table 41: VORTEX chipset Multicast Record Table
(sVCS MULTICAST TABLE)

Field Type Field Name | Field Description

SVCS_MULTICAST_ | head a pointer to the head of queue table

RECORD *

SVCS_MULTICAST | tail a pointer to the tail of queue table

RECORD *

VCS_SEM ID semMc Semaphore object for the multicast table

UINT2 numGroups | Number of multicast groups in the table
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 68

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Structure for OAM and F4 to F5 Processing (per VC)

The structure sVCS_VC_OAM contains the OAM configuration and F4 to F5
OAM processing parameters on per-connection basis.

Table 42: VC OAM Structure (sVCS _VC OAM)

Field Type Field Name Field Description

sVCS_VC_OAM_FM | sFMcfg Contains the FM configuration for the
vC

sVCS_VC_OAM_PM | sPMcfg Contains the PM configuration for the
vC

UINT2 OAMBackPath A connection ID in backward direction,
used for OAM backward reporting cells.

Table 43: F4 to F5 OAM Processing Control Block (sVCS _F4TOF5 _CB)

Field Type Field Name Field Description

UINT1 ulTermType VPC termination type; could be one of
eVCS_VP_ETE SEG; eVCS VP ETE;
eVCS_VP _SEG.

UINT2 u2SegConnld Segment OAM Connection ID (VCI = 3). if 0,
not provisioned

UINT2 u2EtEConnId | End-to-End OAM Connection ID (VCI =4). if
0, not provisioned

sVCS_VC_LIST | sVccList Contains a list of VCC connection Ids which
are associated with the VPC

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 69

Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Structure for Inband Control Channel

Table 44: VORTEX chipset Channel Record (sVCS_CHNL_RECORD)

Field Type Field Name Field Description

UINT1 state specifies the state of the record, UNUSED or
USED (active)

UINT1 cardId specifies which HSS line, and which VORTEX
or DUPLEX device is connected to the Line or
WAN card

bit 0-2: HSS link number (0 to 7)
bit 3-6: device number
bit7 : 0=VORTEX, 1 = DUPLEX

sVCS_VPI_VCI sVpciTx VPI and VCI for the Tx message channel
sVCS_VPI_VCI sVpciRx VPI and VCI for the Rx message channel
UINT1 * PRxBuff Pointer to a Data buffer for the Rx message
UINT4 maxMsgSz maximum message size

UINT4 dataLength Data length in the Rx buffer

UINT1 flagFCo VC type: Frame or Cell. 1 = Frame, 0 = Cells
UINT2 u2InConnID Connection ID used for incoming control

message from remote Line card to the APEX
microprocessor port. The value shall be
between (VCS_MAX_ VC-2*maxChnls-1) and
(VCS_MAX VC-1).

UINT2 u20utConnID | Connection ID used for outgoing control
message from the APEX microprocessor port
to remote Line card. The value shall be
between (VCS_ MAX VC-2*maxChnls-1) and
(VCS_MAX VC-1).

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 70
Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Table 45: VORTEX chipset Channel Record Table (sVCS CHNL TABLE)

Field Type Field Name Field Description

VCS SEM ID semChnl Semaphore object

UINT2 maxChnls Maximum number of control
channels.

UINT2 numChnls Number of active control channels

SVCS_CHNL_RECORD * | psChnlRecord | (array of) the control channel
records

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 71

Document ID: PMC-1991216, Issue 3

P“ A c PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Chipset Data Block (CDB)

The CDB is the top-level structure for each Chipset card. It contains card level
configuration data and device handles to each chipset device on the card.

Table 46: VORTEX chipset Data Block (sVCS _CDB)

Field Type Field Name Field Description

UINT4 udvalid Indicates whether the CDB is used or not.

eVCS_STATE eState indicates one of the chipset state: VCS_START,
VCS_PRESENT, VCS_STANDBY, VCS_ACTIVE

VOID * pSysInfo Pointer to system specific card information. For
example, in PCI bus environment, the bus number,
IRQ assignment etc.

VCS_USR_CTXT usrCtxt Pointer to user’s context for this card. The user
passes this pointer while adding the card. The
chipset driver passes this context when it invokes
the indication callbacks.

sVCS_CIB sVesCib Contains the chipset information, such as base
address, memory map and number of VORTEX
and DUPLEX chips.

VCS_ DEV_HANDLE ApxHandle Device handle to the APEX device on the Core
card

VCS_DEV_HANDLE | AtlasHandle Device handle to the ATLAS device on the Core
card

VCS_DEV_HANDLE DpxHandle Device handle to the DUPLEX device on the Core

card

VCS DEV_HANDLE

pVtxHandle [VCS
_MAX_VORTEXS]

(array of) Device handles to the VORTEX devices
on the core card

Document ID: PMC-1991216, Issue 3

UINT2 u2RemoteCardCo | number of remote line/WAN cards which are
unt actively connected to the core card
SVCS_LPBK_CB sLpbkCtrl Contains Loopback Control Block
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 72

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Chipset Information Vector

This structure contains all the information needed by the chipset driver to access
each individual device of the VORTEX chipset.

Table 47: VORTEX chipset Information Block (sVCS _CIB)

Field Type Field Name Field Description

UINT4 u4BoardBaseAddr Base address of the chipset card, i.e. the first
accessible address of the card. Stored here for
bookkeeping purpose.

UINT4 u4ApexBaseAddr Base address of the APEX chip on the chipset card

UINT4 u4AtlsBaseAddr Base address of the ATLAS chip on the chipset
card

UINT4 u4DpxBaseAddr Base address of the DUPLEX chip on the chipset
card

UINT4 u4VtxBaseAddr [VC | (array of) Base address of the VORTEX chips on

S_MAX VORTEX] the chipset card

Event Counts

The structure contains the event counts accumulated by each device driver.

Table 48: VORTEX chipset Driver Statistic Counts (sVCS STAT CNT)

Field Type Field Name Field Description

sDPX_STAT_COUNTS sDpxCounts event counts maintained by the DUPLEX
device driver

SVTX_STAT_COUNTS sVtxCounts event counts maintained by the VORTEX
device driver

SAPX_STAT_COUNTS sApxCounts event counts maintained by the APEX
device driver

SATLAS_STAT COUNTS sAtlasCounts event counts maintained by the ATLAS
device driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 73
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

6

6.1

VORTEX CHIPSET HARDWARE INTERFACE

Chipset I/O

The VORTEX chipset driver interfaces with the chipset hardware via its underlying
device drivers. Each device driver uses the following low-level system specific
macro for accessing the device registers.

sysVcsRawRead32
This low-level system specific macro is used to read the 32 bit long contents of a
specific address location. This macro should be defined by the user to reflect their

system’s addressing logic. This macro is used by APEX device driver to access its
32 bit register space.

Format #define sysVcsRawRead32 (addr)
Inputs addr : address location to be read
Outputs None

Return Codes value read from the address location

sysVcsRawWrite32
Low-level system specific macro is used to write the 32 bit long contents to a
specific address location. This macro should be defined by the user to reflect their

system’s addressing logic. This macro is used by APEX device driver to access its
32 bit register space.

Format #define sysVcsRawWrite32 (addr, val)

Inputs addr : address location to write
val : 32 bit value to be written

Outputs None

Return Codes None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 74
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

sysVcsRawRead16

Low-level system specific macro is used to read the 16 bit long contents of a
specific address location. This macro should be defined by the user to reflect their
system’s addressing logic. This macro is used by ATLAS device driver to access its
16 bit register space.

Format #define sysVcsRawReadlé6 (addr)
Inputs addr : address location to be read
Outputs None

Return Codes value read from the address location

sysVcsRawWrite16
Low-level system specific macro is used to write the 16 bit long contents to a
specific address location. This macro should be defined by the user to reflect their

system’s addressing logic. This macro is used by ATLAS device driver to access its
16 bit register space.

Format #define sysVcsRawWritelé6 (addr, val)
Inputs addr : address location to write
val : 16 bit value to be written

Outputs None

Return Codes None

sysVcsRawRead8

Low-level system specific macro is used to read the 8 bit long contents of a specific
address location. This macro should be defined by the user to reflect their system’s
addressing logic. This macro is used by DUPLEX and VORTEX device drivers to
access their 8 bit register space.

Format #define sysVcsRawRead8(addr)
Inputs addr : address location to be read
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 75

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Outputs None

Return Codes value read from the address location

sysVcsRawWrite8
Low-level system specific macro is used to write the 8 bit long contents to a
specific address location. This macro should be defined by the user to reflect their
system’s addressing logic. This macro is used by DUPLEX and VORTEX device
drivers to access their 8 bit register space.
Format #define sysVcsRawWrite8(addr, val)
Inputs addr : address location to write

val : 8 bit value to be written

Outputs None

Return Codes None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 76
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

6.2

6.3

Chipset Detection

sysVcsCardDetect

This function is used to detect the chipset core card in the system, and retrieve
system specific information about the card and VORTEX chipset devices. The
information includes the base address of the card, and memory map for each chipset
device, as well as interrupt IRQ number in the case of PCI platform. This function
is called within the vcsAdd API function.

Note: the device detection functions (e.g. sysApexDeviceDetect,
sysVtxDevice Detect, sysDpxDeviceDetect, sysAtlasDevice

Detect) in each device driver should be modified to reflect the memory mapping
of the card.

Prototype INT4 sysVcsCardDetect (VCS_USR_CTXT usrCtxt, void
**ppSysInfo, sVCS CIB *pVcsCib)

Inputs usrCtxt : user handle for the core card being added

Outputs ppSysInfo :user-maintained system information
(e.g., PCI slot, board base address, irq etc.); this
pointer is stored by the chipset driver

pVecsCib : contains base address of each chipset device on
the card, as well as number of VORTEX and
DUPLEX device on the card.

Return Codes VCS SUCCESS

VCS FAILURE

Interrupt Servicing

Interrupt servicing of the VORTEX chipset devices is provided by each underlying
device driver. However, the chipset driver specifies which device interrupts should
be masked or delivered, based on the chipset initialization vector passed in from
Users.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 77
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

The chipset driver provides a high level service task called “vcsRxTask”, to
process the cells received from the underlying DUPLEX microprocessor port. The
task waits for messages, sent from the DPR tasks of DUPLEX device drivers, to
arrive at its associate message queue. Once a message has been received, the task
extracts cells/frames out of the device buffers and reports the cells/frames to the
application via indication callback functions. This task can provide an inband
communication channels between the core card and WAN cards.

The apexSarRxTask task, provided by APEX device driver, are used to support
any data communication over the VC connections between the microprocessor port
and a Loop/WAN port, as well as the control channel messaging between the core
card and remote line cards.

The atlasRxCellTask task, provided by ATLAS device driver, is implemented to
support the Microprocessor OAM end-point processing. The supported OAM cells

include Loopback, and Activation/Deactivation.

Please refer to Section 10.12 and Figure 16 for a detailed description.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 78
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

7 RTOS INTERFACE

The VORTEX chipset driver requires the use of some RTOS resources. In this
section, a listing of each required resource is shown, along with a declaration and
any specific porting instructions. It is the responsibility of the USER to connect
these requirements into the RTOS, either by defining a macro or writing a function
for each item listed. Care should be taken when matching parameters and return
values.

7.1 Memory Allocation / De-Allocation

sysVcsMemAlloc

Allocates specified number of bytes of memory.

Format #define sysVcsMemAlloc (numBytes)
Prototype UINT1 *sysVcsMemAlloc (UINT4 numBytes)
Inputs numBytes : number of bytes to be allocated
Outputs None

Returns Pointer to first byte of allocated memory

NULL pointer (memory allocation failed)

sysVcsMemFree

Frees memory allocated using sysvCSMemAlloc.

Format #define sysVcsMemFree (pfirstByte)
Prototype void sysVcsMemFree (UINT1 *pfirstByte)
Inputs pfirstByte : pointer to memory region being de-allocated
Outputs None
Returns None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 79

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

7.2 Timers

sysVcsDelayTask

Suspends execution of a chipset driver task for a specified number of milliseconds.

Format #define sysVcsDelayTask (time)
Prototype void sysVcsDelayTask (UINT4 time)
Inputs time :sleep time in milliseconds
Outputs None
Returns None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 80

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

7.3 Semaphores

sysmVcsSemCreate

Creates a binary semaphore.

Prototype
Inputs

Outputs

VCS_SEM ID sysmVcsSemCreate (VOID)
None

None

Return Codes pointer to semaphore object OR nul

sysmVcsSemDelete

Deletes a binary semaphore object.

Prototype
Inputs

Outputs

VOID sysmVcsSemDelete (VCS _SEM ID semId)
semId :semaphore identifier

None

Return Codes None

sysmVcsSemTake

Acquires a binary semaphore.

Prototype

Inputs

Outputs

INT4 sysmVcsSemTake (VCS_SEM ID semId)
semId :semaphore identifier

None

Return Codes 0 : success, -1 : failure

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 81
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

sysVcsSemGive

Relinquishes a semaphore.

Prototype INT4 sysmVcsSemGive (VCS_SEM ID semId)
Inputs semId :semaphore identifier
Outputs None

Return Codes O : success, -1 : failure

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 82
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

7.4 System-specific Inband Control Channel (ICC) module
functions
sysVcslccinstall
Creates the vesIccRx task, which handles the rx for inband control channel
messages from the microprocessor port of the DUPLEX. It also creates the message
VesRxMsgQ to allow the application task to communicate with the task.
Prototype INT4 sysVesIccInstall (VOID)
Inputs None
Outputs None
Return Codes O : success, -1 : failure
sysVcslccRemove
This routine deletes the vesIccRx tasks and the corresponding message queue
VcsRxMsgQ.
Prototype INT4 sysVcsIccRemove (VOID)
Inputs None
Outputs None
Return Codes 0 : success, -1 : failure
sysVcslccRxTaskFn
This routine is spawned as a separate task within the RTOS. It retrieves interrupt
status information saved for it by the DPR tasks of DUPLEX device driver. It
invokes the vcsRxTaskFn routine for each device handle received in the
message.
Prototype VOID sysVcsIccRxTask (VOID)
Inputs None
Outputs None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 83

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Return Codes None

Pseudocode begin
do wait for interrupt status messages sent by DPR task of DUPLEX
driver
dequeue a message when it arrives
for each device handle in the message
invoke vcsRxTaskFn
loop forever
end.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 84
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8 APPLICATION PROGRAMMING INTERFACE

This section provides a detailed description of each function that is a member of the
VORTEX chipset driver Application Programming Interface (API).

8.1 Module Initialization

vesModulelnit

Performs module level initialization of the chipset driver. This involves allocating
all of the memory needed by the chipset driver and initializing the Global Driver
Database (GDD) with the passed Module Initialization Vector (MIV). It also opens
each device driver module for the chipset devices on the card.

The whole VC table (with VCS_ MAX_ VC number of connection entries or IDs) is
divided into two parts: connection IDs from 0 to (psMiv->maxVCs) are used for
USER data connections, while the top 2*(psMiv->maxChnls) connections are
reserved for control channel useges. Hence, there exists the following constraint
between maxVCs and maxChnls in the MIV parameters: (maxVCs + 2 * maxChnls)
=<VCS _MAX VC

Valid States START

Side Effects = Changes MODULE state to READY

Prototype INT4 vcsModuleInitn(sVCS _MIV *psMiv)

Inputs psMiv : (pointer to) Module Initialization Vector
Outputs None

Returns VCS_SUCCESS

VCS ERR _MODULE ALREADY INIT

VCS_ERR_MEM_ALLOC

VCS_ERR MIV (invalid Module Init Vector)
VCS ERR_SEMAPHORE

vcsModuleShutdown

Performs module level shutdown of the chipset driver. This involves deleting all
chipset devices being controlled by the chipset driver (by calling vesDelete for
each chipset card) and de-allocating the VC, Control Channel Table, and GDD.
Valid States ~ ALL STATES

Side Effects = Changes MODULE state to VCS_START

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 85
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Prototype VOID vcsModuleShutdown (VOID)
Inputs None
Outputs None
Returns None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 86

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.2 Initialization Profile Management

vesSetlnitProfile

Creates an initialization profile that is stored by the chipset driver. A chipset can
now be initialized by simply passing the initialization profile number. This function
should only be called after "vcsModuleInit".

Valid States
Side Effects

Prototype

Inputs

Outputs

Returns

Pseudocode

READY
None

INT4 vcsSetInitProfile(sVCS INIT VECTOR
*pProfile, UINT2 *pProfileNum)

pProfile : (pointer to) initialization profile being added

pProfileNum : (pointer to) profile number to be assigned by
the chipset driver

pProfileNum : profile number assigned by the chipset driver

VCS SUCCESS

VCS ERR _MODULE NOT INIT

VCS ERR_INVALID INIT VECTOR
VCS ERR_PROFILE FULL

begin

check passed profile

reserve unassigned profile number
update corresponding profile

end

vesGetlnitProfile

Gets the contents of an initialization profile given its profile number. The user
should allocate enough memory to receive the initialization vector.

Valid States READY
Side Effects None
Prototype INT4 vcsGetInitProfile (UINT2 profileNum,
sVCS_ INIT VECTOR *pProfile)
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 87

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Inputs profileNum : initialization profile number

pProfile :(pointer to) initialization profile
Outputs pProfile : contents of the corresponding profile
Returns VCS_SUCCESS

VCS ERR_MODULE NOT INIT
VCS ERR_INVALID PROFILE

Pseudocode begin
make sure profile exists
make copy of the profile
end

vesClrinitProfile
Clears an initialization profile given its profile number.
Valid States READY

Side Effects None

Prototype INT4 vcsClrInitProfile (UINT2 profileNum)
Inputs profileNum : initialization profile number
Outputs None

Returns VCS_SUCCESS

VCS_ERR_MODULE_NOT_ INIT
VCS_ERR_INVALID PROFILE

Pseudocode Begin
make sure profile exists
release profile number
End

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 88
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.3 Chipset Add and Delete

vecsAdd

Verifies the presence of a new Chipset card in the hardware, then return a handle
back to the user. The Chipset handle should be used to identify the Chipset card on
which the operation is to be performed.

Valid States READY
Side Effects Changes the CHIPSET state to VCS_PRESENT
Prototype INT4 vcsAdd(VCS_USR_CTXT usrCtxt, VCS *pVcs)

Inputs usrCtxt : User maintained context
information for the chipset card being added.

Outputs pVcs : (pointer to) Chipset Handle

Returns VCS_SUCCESS
VCS ERR MODULE NOT INIT
VCS ERR CARDS FULL
VCS ERR CHIPSET NOT DETECTED
VCS ERR CHIPSET ALREADY ADDED

Pseudocode Begin
make sure Chipset present
reserve a Chipset Handle or CDB
save user context in the CDB
add each device to its device driver module.

Store each device handle in the CDB.
output Chipset handle
End

vcsDelete

This function is used to remove a specified Chipset card from the list of chipset
cards being controlled by the chipset driver. Deleting a Chipset involves clearing
the CDB for that Chipset and releasing its associated Chipset handle.

Valid States VCS_PRESENT

Side Effects The chipset state change to READY

Prototype INT4 vcsDelete (VCS vcs)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 89
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Inputs ves : Chipset Handle (from vesAdd)
Outputs None
Returns VCS_SUCCESS

VCS_ERR_INVALID HANDLE
VCS_ERR_INVALID STATE

Pseudocode Begin
validates the handle
delete the chipset devices from device drivers
releases Chipset handle
End

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 90
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.4 Chipset Initialization and Reset

veslnit

Initializes the chipset based on an initialization vector passed by the user. Each
chipset device is configured according to the contents of the initialization vector.
Alternatively, the user can also use an initialization vector profile number. In this
case, the device is now initialized as per the profile contents (stored in GDD).

Valid States
Side Effects

Prototype

Inputs

Outputs

Returns

Pseudocode

VCS_PRESENT
Changes CHIPSET state to VCS_STANDBY

INT4 vcsInit (VCS ves, sVCS _INIT VECTOR
*psInitVect, UINT2 profileNum)

vcs : chipset Handle (from vesadd)

psInitVect :initialization vector that is used by the chipset
driver to configure the chipset devices. The
pointer should be set to NULL if an initialization
vector profile is being used instead.

profileNum : profile number to be used to get the initialization
vector from the GDD. This variable should be set
to Oxfffftfff if an initialization vector is being
passed directly instead.

None

VCS_SUCCESS

VCS_ERR_INVALID HANDLE (invalid chipset handle)

VCS_ERR_INVALID STATE (chipset is not in a valid state)

VCS_ERR_INVALID INIT VECTOR (invalid initialization vector)

VCS_ERR_INVALID PROFILE NUM (invalid profile number)

VCS_ERR_PROFILE VECTOR BOTH VALID (both profile and
vector inputs were valid — not allowed)

Begin

if using profileget a InitVect from profile
validate the InitVect

reset Chipset devices

configure Chipset and initialize all devices
End

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 91
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

vcsReset

Applies a software reset to each VORTEX chipset device. Also resets all the CDB
contents (except for the user context). This function is typically called before re-
initializing the Chipset.

Note that the VC connection table, maintained by the chipset driver module, is not
cleared by this function. This allows a quick restore of the connections after the
Reset by calling vcsRebuildvcs. However, if the associated VC connections are
to be cleared, one need exclusively call vesClearvCs to tear down the connections
before calling the APl vcsReset.

Valid States VCS_ACTIVE, VCS_STANDYBY, VCS_PRESENT

Side Effects Changes CHIPSET state to VCS_PRESENT

Prototype INT4 vcsReset (VCS ves)

Inputs vces : chipset handle (from vesadd)
Outputs None

Returns VCS_SUCCESS

VCS_ERR_INVALID HANDLE (invalid chipset handle)

Pseudocode Begin
reset each Chipset device
clear initialization part of the CDB
End

8.5 Chipset Activate and De-Activate

vcsActivate

Activates each chipset device by preparing it for normal operation. Activation
involves installing and enabling device interrupts, enabling the APEX queue
engine’s external interfaces. However, the LVDS links to WAN/Line cards are not

activated. These links are activated only when calling vesAddCard to add the
Line/WAN cards to the system.

Valid States VCS_STANDBY
Side Effects Change the CHIPSET state to VCS_ACTIVE

Prototype INT4 vcsActivate (VCS ves)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 92
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Inputs ves : Chipset Handle (from vesAdd)
Outputs None
Returns VCS_SUCCESS

VCS_ERR_INVALID HANDLE (invalid chipset handle)
VCS_ERR_INVALID STATE (chipset is not in a valid state)

Pseudocode Begin
activate each chipset device
End

vesDeActivate

De-activates the Chipset from normal operation. Interrupts are masked and the
Chipset is put into a quiet state by disabling APEX queue engine.

Valid States VCS_ACTIVE

Side Effects Changes the CHIPSET state to VCS_STANDBY

Prototype INT4 vcsDeActivate (VCS ves)
Inputs ves : chipset Handle (from vesadd)
Outputs None

Returns VCS_SUCCESS

VCS_ERR_INVALID HANDLE (invalid chipset handle)
VCS_ERR_INVALID STATE (chipsetis not in a valid state)

Pseudocode Begin
deactivate devices by calling device driver API
End

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 93
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.6 Chipset Device Read and Write

vcsReadReg

This function can be used to read a register in a specific VORTEX chipset device
by providing the register number and device ID.

Valid States
Side Effects

Prototype

Inputs

Outputs

Returns

Pseudocode

ALL CHIPSET STATES
May affect registers that change after a read operation

INT4 vcsReadReg(VCS vcs, sVCS DEV_ID sDevId,
UINT2 u2RegOff, UINT4 * pu4Val)

ves : chipset Handle (from vesadd) to a specified card

sDevId : specifies a chipset device

u2RegOff : register register offset from its device base
address

pudval : contains value read from the register

VCS_SUCCESS
VCS_ERR_INVALID HANDLE (invalid chipset handle)
VCS_ERR_INVALID DEV_ID (invalid device ID)

Begin

get a device handle from CDB

call device driver API to read the register value
End

vesWriteReg

This function can be used to write to a register in a specific VORTEX chipset
device by providing the register number and device ID

Valid States ALL CHIPSET STATES
Side Effects = May change the configuration of the chipset device
Prototype INT4 vcsWriteReg (VCS vecs, sVCS DEV _ID sDevId,
UINT2 u2RegOff, UINT4 u4Val)
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 94

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Inputs vcs : chipset Handle (from vcsadd)
sDevId : specifies a chipset device
u2RegOff : register offset from its device base address
uaval : value to be written

Outputs None

Returns VCS_SUCCESS

VCS_ERR_INVALID HANDLE (invalid chipset handle)
VCS_ERR_INVALID DEV_ID (invalid device ID)

Pseudocode Begin
get a device handle from CDB
call device driver API to write the register
End

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 95
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.7 Chipset Diagnostics and Loopback Self-test

vcsRegisterTest

Verifies the correctness of the microprocessor’s access to each chipset device by
writing to and reading back values of its registers.

Valid States VCS_PRESENT

Side Effects The chip is reset and kept in the VCS_PRESENT state

Prototype INT4 vcsRegisterTest (VCS ves, sVCS DEV_ID sDevId)
Inputs ves : chipset handle

sDevId : specifies a chipset device.
Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID HANDLE (invalid chipset handle)
VCS_ERR_INVALID STATE (chipset is not in a valid state)
VCS_ERR_INVALID DEV ID (invalid device ID)
VCS_FAILURE (test failed)

vesMemTest

Verifies the correctness of the microprocessor’s access to the external memory
associated with the APEX and ATLAS chip.

Valid States VCS_PRESENT

Side Effects the chipset is reset after the test.

Prototype INT4 vcsMemTest (VCS vecs, sVCS DEV_ID sDevId)
Input vcs : chipset handle

sDevId : specifies a chipset device.
Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID HANDLE (invalid chipset handle)

VCS_ERR_INVALID STATE (chipset is not in a valid state)
VCS_ERR_INVALID DEV _ID (invalid device ID)
VCS_FAILURE (test failed)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 96

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

vcsLpbkSetup

Used for the integrity check of a chipset system. It sets one of HSS link port of
VORTEX or DUPLEX on the core card into a Diagnostic Loopback mode, and
setup Loopback connections within APEX and ATLAS devices. The loopback point
has to be specified at one of HSS links or Loop/WAN ports, while the cell
insert/extract point can be one of LOOP/WAN ports or the Microprocessor port (of
APEX).

If the specified HSS link port is already in use by some active VC connections, the
Loopback request will be rejected.

If the chipset is already in a LOOPBACK state, the current Loopback link port will
be reset to normal, before the new HSS link port is configured into a diagnostic
Loopback mode. The Loopback VC connections are also re-configured to reflect
the new loopback path. In other words, only one loopback path can be setup at any
time.

Valid States VCS_ACTIVE

Side Effects Changes a HSS link port state into a LOOPBACK mode. This
prohibits any normal VC connections over the link port.

Prototype INT4 vcsLpbkSetup (VCS ves, sVCS _VC PORT DES
sTestingPort, UINT1 ullLpbkLink, sVCS VC QOS sQos,
UINT1 ulFrameFlag)

Inputs ves : chipset handle
sTestingPort : specifies a testing port, where the testing cell
are inserted and loopbacked cells are
extracted. The VPI/VCI values of testing cells
are also specified.
ulLpbkLink : specifies a HSS link to be set up into a
diagnostic loopback mode.
bit 0-2: HSS link number (0 to 7)
bit 3-6: VORTEX device number.
Unused if DUPLEX.
bit 7 : 0=VORTEX, 1 = DUPLEX

sQos : contains QOS parameters for testing cell VC.
ulFrameFlag : flag for testing cell type. 1= Frame, 0 = Cell
Outputs None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 97

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Return Codes

VCS_SUCCESS
VCS_ERR_INVALID HANDLE (invalid chipset handle)
VCS_ERR_INVALID STATE (chipset is not in a valid state)
VCS_ERR_INVALID PORT DES
VCS_ERR_LPBKPORT IN USE

VCS ERR_INVALID HSS LINK ID

VCS_ERR_LPBK INVALID PARAM

vcsLpbkClear

Configures the loopback port to a normal mode. It also clears the associated
loopback connections.

Valid States

Side Effects

Prototype
Inputs
Outputs

Return Codes

VCS_ACTIVE

The loopback link port is back to normal, and normal VC
connections over the link port can be resumed.

INT4 vcsLpbkClear (VCS vcs)
ves : chipset handle
None

VCS_SUCCESS
VCS_ERR_INVALID HANDLE (invalid chipset handle)

VCS_ERR_INVALID STATE (chipset is not in a valid state)
VCS_ERR_NO LPBK
VCS_ERR_INVALID HSS LINK ID

vesMpLpbkTest

When a LOOPBACK state has been setup for the chipset, and its testing port being
set at the Microprocessor port, this function can be called to send out a buffer of
data through the Microprocessor port, and check if the same testing data is being

looped back.
Valid States VCS_ACTIVE
Side Effects None
Prototype INT4 vcsMplpbkTest (VCS vcs, UINT1 *pData, UINT4
ud4Length, UINT4 ud4WaitTime)
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 98

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Inputs vcs : chipset handle
pData : buffer pointer to the data to be sent.
u4Length : the length of testing data in bytes
udWaitTime : waiting time for receiving the loopback data in
milliseconds.
Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID HANDLE (invalid chipset handle)

VCS_ERR_INVALID STATE (chipset is not in a valid state)
VCS_ERR_NO LPBK
VCS_ERR_NON_ MP_PORT

VCS _ERR TIMEOUT (timeout for receiving any loopback
testing cells)
VCS_ERR_CELL_MISSING (received less number of cells which
have been transmitted)
VCS_ERR_CELL_CORRUPTION (received corrupted testing cells)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 99
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.8

Connection Management

Connection Management at VC level

vcsConnSetup

A connection request from User, which shall contain traffic parameters such as
bandwidth and QOS service. The connection path could be from WAN port to Loop
port (downstream), Loop port to WAN port (Upstream), or Loop to Loop port,
Microprocessor port to WAN or Loop port. The chipset driver may honor or reject
the connection request based on the resource availability. The associated Line/WAN
card should have already been added to system and the port should be enabled and
setup in a non-Loopback mode, or the request would be rejected. If the requested is
honored, the chipset driver sets up and enables the VC connection by configuring
the appropriate chipset devices, and returns a unique connection ID.

The API configures the Connection Context Tables in both APEX and ATLAS, and
enables cell rate policing (by ATLAS), and congestion control service (by APEX)
based on the QOS contract.

Note 1: the OAM support is, by default, disabled for the connection by setting the
chipset (ATLAS) as a non-termination point. Therefore, all OAM cells will be
passed through transparently. To setup and enable the OAM support, one must
specifically call vesOAMSetup () APL

Note 2: If the VC is in upstream direction and the VC belongs to a shaped
port/class, the per-VC shaping context is determined by calling a utility function
“sysVecsVCShaping()”, which converts the QOS request to the Shaper Rate
parameters.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsConnSetup (sVCS_CONN_REQUEST
*psConnRequest, UINT2 *pConnlID)

Inputs psConnRequest : connection request

Outputs pConnID : connection ID (from 0 to maxvCs-1)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 100
Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Return Codes VCS SUCCESS
VCS_ERR_INVALID HANDLE
VCS_ERR_INVALID STATE
VCS_ERR_CONN_FULL
VCS_ERR_INVALID VC REQUEST
VCS_ERR_OUT OF_ RESOURCE
VCS_ERR_CONN_REDUNDANT
VCS_ERR_PORT NOT READY
VCS_ERR_ACTIVE CORE_CARD

Pseudocode Begin
Consult with CAC to see if sufficient resources
are available to accommodate the requested
connection, and determine which core card to
service the VC connection.
If yes, call connection configuration function
End

vesConnTeardown

Tears down a specified VC connection in the chipset. Its associated resource is
recycled to CAC.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsConnTeardown (UINT2 u2ConnID)

Inputs u2ConnlID : connection ID for the connection to be shut
down

Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID CONNID
VCS_ERR _MULTICAST CONN (the connection can't be
removed by the API if it is a multicasting VC)

Pseudocode Begin
Call an appropriate connection teardown function
Recycle the resource to CAC
End

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 101
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

vesConnQOSRetrieve

Used to retrieve the connection traffic parameter or QOS parameters, such as peak
cell rate, class.

Valid States VCS_ACTIVE
Side Effects None

Prototype INT4 vcsConnQOSRetrieve (UINT2 u2ConnlD,
sVCS_VC_QOS *psQos)

Inputs u2ConnID : connection ID (from 0 to maxVCs-1).
Outputs psQos : contains current QOS parameters.

Return Codes VCS SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID CONNID

vesConnQOSUpdate

Used to update the connection traffic parameter or QOS parameters, such as peak
bandwidth. The traffic type and/or WFQ VC weight change are not supported by
the APL. The request might be rejected by the chipset driver due to resource
limitation.

Note: If the VC is in upstream direction and the VC belongs to a shaped port/class,
the per-VC shaping context is re-determined by calling a utility function
“sysVecsVCShaping()”, which converts the new QOS request to the Shaper Rate
parameters.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsConnUpdate (UINT2 u2ConnID, sVCS VC QOS
*psQos)
Inputs u2ConnID : connection ID.
psQos : contains requested QOS parameters.
Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_OUT OF RESOURCE
VCS ERR_INVALID CONNID

VCS_ERR_TRFC _TYPE (new QOS require Class Id change)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 102
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

vesConnDisable

Disables a VC connection after it has been configured (using vesConnSetup).).
All incoming cells of the VC connection will be discarded. It clears the VC context
Record of APEX device, while the Active bit in the associated ATLAS Ingress VC
table is not changed.

Valid States
Side Effects
Prototype

Inputs

Outputs

Return Codes

VCS_ACTIVE
None
INT4 vcsConnDisable (UINT2 u2ConnID)

u2ConnID : connection ID for the connection to be
disabled

None

VCS_SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID CONNID
VCS_ERR_INVALID VC STATE

vesConnEnable

Re-enables a disabled VC connection. Cells of the VC connection can now pass
through the chipset. It sets up the VC context Record of APEX device, while the
Active bit in the associated ATLAS Ingress VC table is not changed.

Valid States
Side Effects
Prototype
Inputs
Outputs

Return Codes

VCS_ACTIVE

None

INT4 vcsConnEnable (UINT2 u2ConnlID)

u2ConnID: connection ID for the connection to be enabled
None

VCS_SUCCESS
VCS_ERR_INVALID CONNID
VCS_ERR_INVALID STATE
VCS_ERR_INVALID VC_STATE

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 103
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

vcsConnStatus
Checks the current status of a connection.
Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsConnStatus (UINT2 u2ConnID, sVCS _VC STATUS
*psConnStatus)

Inputs u2ConnID : connection ID

Outputs psConnStatus : contains the status information of the
connection.

Return Codes VCS SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID CONNID

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 104
Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Connection Management at Port Level

vcsPortSetup

Sets up and enables a specified Loop/WAN port. It also specifies the maximum
throughputs which would be allowed in either (Inbound or outbound) direction of
the port. If the request is honored by CAC module, the function also setups and
enables all four classes for the port.

Valid States VCS_ACTIVE

Side Effects The routine will change the congestion thresholds for all the ports
in the direction of the new port (i.e. all active loop ports if a loop
port is being configured) and all the classes for these ports.

Prototype INT4 vcsPortSetup (sVCS _PORT_ID sPortId, UINT4
u4InCellRate, UINT4 u4OutCellRate,
sVCS_ PORT THRSH REQUEST *pPortThrshRgt, UINTL

ulFlag)
Inputs sPortId : contains port type (can be WAN, LOOP or uP
port), and port number for LOOP/WAN port
u4InCellRate : maximum cell rate limit in inbound direction
of the port
u4InCellRate : minimum cell rate limit in outbound direction
of the port

pPortThrshRgt : contain per-port threshold level request

ulFlag : forcing flag for per-port maxThreshold
clp0Threshold, and clplThreshold.

If 0, these three threshold levels are provided by the chipset driver using the default
algorithm in the utility functions (in the file vcs_sys.c).

If 1, these three threshold values in the per-port threshold request (pointed by
pPortThrsh) are used. No dynamicaly adjustment will be made to the port
threshold levels even when spare resource is available for cell buffering..

Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID PORT ID
VCS_ERR_PORT ALREADY CFG
VCS_ERR_EXCEED MAX PORT RATE
VCS_ERR_INVALID THRSH
VCS_ERR_INVALID CELL_RATE

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 105
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Pseudocode Begin
Consult with CAC to see if the port is available.
Call an appropriate port setup function
update the CAC data block
End
vcsPortTeardown

Tears down a specified Loop/WAN port, and all VC connections and classes
associated with the port. Its associated resource is recycled to CAC.

Valid States

Side Effects

Prototype

Inputs

Outputs

Return Codes

Pseudocode

VCS_ACTIVE

The routine will change the congestion thresholds for all the ports
in the direction of the port being cleared (i.e. all active loop ports if
a loop port is being tear down) and all the classes for these ports.

INT4 vcsPortTeardown (sVCS PORT ID sPortId)

sPortId : contains port type (can be WAN, LOOP or uP
port), and port number for LOOP or WAN port

None

VCS_SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID PORT ID
VCS_ERR_PORT NOT_CFG

Begin

consult with CAC for a list of related VCs.
teardown the VCs in the list

call an appropriate port teardown function
recycle the associated resource to CAC

End

vecsPortDisable

Disables all the VC connections associated with a specified
Loop/WAN/Microprocessor port, i.e. cells received from or destined to the port will
be discarded. However, the affected VC connections and classes still exist.

The API clears the PortEn bit in the Port context Record of APEX device, which
forces the discard of cells destined to the port. It also clears the Active bits in the
ATLAS Ingress VC tables for all the VC originated from the port.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 106
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Valid States
Side Effects
Prototype

Inputs

Outputs

Return Codes

VCS_ACTIVE
None
INT4 vcsPortDisable (sVCS PORT ID sPortId)

sPortId : contains port type (can be WAN, LOOP or uP
port), and port number for LOOP or WAN port

None

VCS_SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID PORT ID
VCS_ERR_PORT NOT_ ENABLED

vcsPortEnable

Re-enables a disabled Loop/WAN/Microprocessor port. It sets the PortEn bit in the
Port context Record of APEX device, and sets the Active bits in the ATLAS Ingress
VC tables for all the VC originated from the port.

Note: those VCs which were disabled by calling vesConnDisable, will remain in
the Inactive state even though the connections are associated with the port being
enabled. One must call vesConnEnable API to re-enable the individual VC. The
approach gives the USER a flexibility to control the connections independently at

VC and port levels.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsPortEnable (sVCS_PORT_ID sPortId)

Inputs sPortId : contains port type (can be WAN, LOOP or uP
port), and port number for LOOP or WAN port

Outputs None

Return Codes

VCS_SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID PORT ID
VCS_ERR_PORT NOT_CFG
VCS_ERR_PORT ALREADY ENABLED

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 107
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

vcsPortStatus

It reports the status information of a specified port. The information includes the
number of VC connections associated with the port.

Valid States
Side Effects

Prototype

Inputs

Outputs

Return Codes

VCS_ACTIVE
None

INT4 vcsPortStatus(sVCS_PORT ID sPortlId,
sVCS_PORT_INFO *psPortInfo, UINT2 *pu2VcNum,
UINT2 **ppu2ConnId)

sPortId : contains port type (can be WAN, LOOP or uP
port), and port number for LOOP or WAN port

psPortInfo :contains the current port status information.

pu2veNum : contains the number of connections
associated with the port
ppConnId : point to an array of Connld buffer, which is

allocated by the API and contains a list of
connection ID. The size is "2 * u2VcNum"
bytes. It is a responsibility of the caller to free
the memory buffer.

VCS_SUCCESS
VCS_ERR_INVALID HANDLE
VCS_ERR_INVALID STATE
VCS_ERR_INVALID PORT

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 108
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Connection Management at Chipset or Module Level

vcsClearVCs

Tears down all existing connections, channels, shapers and ports. If used together
with vcsReset, this means that both hardware and software have been reset, and
the chipset needs to be re-initialized from scratch.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsClearVCs (VOID)
Inputs None
Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INTERNAL (driver internal error)

vcsRebuildVCs

Re-builds the existing connections, ports, channels, OAM and F4toF5 processing
list which are maintained in the software, after a specified core card has been reset
by vesReset. This provides a fast way to recover the system to the pre-reset state.
The caller should call vesInit and vesActivate after the reset, before calling
the API function.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsRebuildVCs (VCS ves)
Inputs ves : chipset Handle
Outputs None

Return Codes VCS SUCCESS
VCS ERR_INVALID HANDLE
VCS _ERR INVALID STATE

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 109
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

vesConnlinfo

Reports information on the current active VCs, and loads on each chipset (core
card). It also indicates available resources, such as number of empty VCs, logical
channels and ports.

Valid States
Side Effects
Prototype
Inputs

Outputs

Return Codes

VCS_PRESENT, VCS_STANDBY, VCS_ACTIVE

None

INT4 vcsConnInfo (sVCS CONN_INFO *psConnInfo)
None

psConnInfo : contains the system information for the VC
connections and available resources.

VCS_SUCCESS
VCS_ERR_CARD ID (internal error in active card ID)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 110
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.9

Shaper support

The following APIs are used to configure any of 4 Shapers, and associate 4 out of
16 possible WAN Port/Class to the 4 shapers in APEX.

vcsShprSetup

Configures and enable a shaper based on a shaper-parameters vector passed by the
user. It is used for shaping traffic on one of the WAN ports.

Note: A shaper should be configured before any of its associated port-classes are
configured. Also, a shaper should be configured before the APEX queue engine is
enabled (i.e., before APEX device activation)

Valid States vCS_STANDBY
Side Effects None

Prototype INT4 vcsShprSetConfig (UINT1 ulShprNum,
sVCS_SHPR_VECT *psShprVect)

Inputs ulShprid : shaper to be configured (0-3)
psShprVect : shaper parameters vector that is used by driver
to program the APEX port context records.
Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID STATE (chipset is not in a valid state)
VCS_ERR_INVALID SHPR NUM (invalid shaper number)
VCS_ERR_INVALID SHPR STATE (shaper is already used)
VCS_ERR_INVALID SHPR RATE (invalid shaper vector)

vcsShprTeardown

Tears down a shaper. Shaper can only be torn down if the APEX queue engine is
disabled (i.e., APEX device is de-activated). Note that a shaper should be torn
down only after its associated port is torn down .

Valid States vCS_STANDBY

Side Effects None

Prototype INT4 vcsShprTeardown (UINT1 ulShpriId)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 111
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Inputs ulShprid : shaper to be torn down (0-3)
Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID STATE (chipset is not in a valid state)
VCS_ERR_INVALID SHPR NUM (invalid shaper number)
VCS_ERR_INVALID SHPR STATE (shaper was not used)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 112
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.10 Data Tx via Microprocessor port

The following APIs are used to transmit cells or frames via a microprocessor data
connection, which is established between the APEX microprocessor port and a
loop/WAN port.

vesConnTxCell

Transmit a data cell over a specified microprocessor port connection established by
vesConnSetup or vesMcSetup call.

Valid States VCS_ACTIVE
Side Effects None

Prototype INT4 vcsConnTxCell (UINT2 u2ConnID, sVCS CELL HDR
*pHdr, UINT1 *pPyld, UINT1 ulcrcFlag)

Inputs u2ConnID : connection ID.
psHdAr : pointer to the cell header structure that
contains the header bytes.
pulPyld : pointer to first byte of cell payload
(48 contiguous bytes)
ulCrcFlg : this is a control flag; can be one of —
0 - no CRC protection required
1 — overwrite end-of-cell with CRC-10.
Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID CONNID
VCS_ERR_INVALID VC STATE
VCS_ERR_NO ACTIVE CARD

vesConnTxFrame

Transmits a data frame over a specified microprocessor port connection established
by vesConnSetup or vesMcSetup call.

Valid States VCS_ACTIVE

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 113
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Prototype

Inputs

Outputs

Return Codes

INT4 vcsConnTxFrame (UINT2 u2ConnID, sVCS_CELL_HDR
*pHdr, UINT1 *pFrame, UINT4 u4Length)

u2ConnlID : connection ID.

psHAr : cell header to be transmitted with each cell in
each frame.

pulFrame : pointer to first byte of frame (buffer)

u4Length : frame length (in bytes)

None

VCS_SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID CONNID
VCS_ERR_INVALID VC STATE
VCS_ERR_NO ACTIVE_CARD

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 114
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.11 Multicast support

vcsMcSetup

A multicasting connection request from User, which shall contain traffic parameters
such as bandwidth and QOS service. The connection path could be from a WAN
port to multiple Loop ports (downstream), from a Loop port to multiple WAN ports
(Upstream), from a Loop to multiple Loop ports, or a Microprocessor port to
multiple WAN/Loop ports. The chipset driver may honor or reject the connection
request based on the resource availability. If honored, the chipset driver sets up and
enables the multicasting connection by configuring the appropriate chipset devices,
and returns a unique Multicasting ID. The multicasting group is also registered with
the Multicast Record Table.

Valid States VCS_ACTIVE
Side Effects None

Prototype INT4 vcsMcSetup (sVCS_MULTICAST REQUEST
*psVcsMcRequest, UINT4 *pMcastID)

Inputs psVcsMcRequest: contains a Multicasting Connection request
Outputs pMcastID : multicasting ID.

Return Codes VCS SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID MCAST PORT
VCS_ERR_INVALID MCAST REQUEST
VCS_ERR_MEM ALLOC

vesMcTeardown

Tears down a specified multicasting connection group. The group is also removed
from the Multicast Record Table.

Valid States VCS_ACTIVE
Side Effects None
Prototype INT4 vcsMcTeardown (UINT4 u4McastID)

Inputs u4McastID : multicasting ID for the multicasting connection
group to be shut down.

Outputs None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 115
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Return Codes VCS SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID MCAST ID

vesMcAddConn

Adds an outgoing connection for a particular vpi/vci/port to an existing
multicasting group.

Valid States VCS_ACTIVE
Side Effects None

Prototype INT4 vcsMcAddConn (UINT4 u4McastID,
sVCS_VC_PORT_DES *psVcPort)

Inputs u4McastID :amulticasting ID
psVcPort : a VC/port descriptor of an outgoing connection
to be added.
Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID MCAST ID
VCS_ERR_INVALID MCAST PORT

vesMcDropConn

Removes an outgoing connection for a particular VC/portfrom an existing
multicasting group.

Valid States VCS_ACTIVE
Side Effects None

Prototype INT4 vcsMcDropConn (UINT4 u4McastID,
sVCS_VC PORT DES *psVcPort)

Inputs u4McastID :amulticasting ID
psVcPort : a VC/port descriptor of an outgoing connection
to be dropped.
Outputs None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 116

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Return Codes

VCS_SUCCESS

VCS_ERR_INVALID STATE
VCS_ERR_INVALID MC_ID
VCS_ERR_VC NOT FOUND

vesMulticastCell

Transmits a cell on each outgoing connection of the multicasting group.

Valid States
Side Effects

Prototype

Inputs

Outputs

Return Codes

VCS_ACTIVE
None

INT4 vcsMulticastCell (UINT4 u4McastGroupld,
sVCS CELL HDR *pHdr, UINT1 *pPyld, UINT1
ulCrcFlag)

u4McastGroupld : ID identifying the multicasting group
pHdAr : header for the cell

pPyld : payload of the cell

ulCrcFlag : flag indicating whether the end of the cell

should be overwritten with CRC10
None

VCS_SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID MCAST ID
VCS_ERR_NO ACTIVE_CARD
VCS_ERR_INVALID VC_STATE

vesMulticastFrame

Transmits a frame on each outgoing connection of the multicasting group.

Valid States VCS_ACTIVE
Side Effects None
Prototype INT4 vcsMulticastFrame (UINT4 u4McastGroupId,
sVCS CELL_HDR *pHdr, UINT1l *pFrame, UINT4
u4Length)
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 117

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Inputs u4McastGroupld : ID identifying the multicasting group
pHdAr : header for the cell
pFrame : payload for the frame
u4Length : length of the payload in bytes
Outputs None

Return Codes VCS SUCCESS
VCS ERR INVALID STATE
VCS ERR INVALID MCAST ID
VCS_ERR_NO ACTIVE CARD
VCS_ERR_INVALID VC STATE

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 118
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.12 Inband Control Channels

vesCtriChnlSetup

Sets up an inband, bi-directional control channel between a core card and a remote
Line or WAN card. It allocates all necessary resource to prepare for the subsequent
inband message Tx/Rx.

For a channel between a line and core card, the data path (as shown in Figure 19)
requires the establishment of two VC table records in APEX and ATLAS, which
route the control messages between the APEX microprocessor port and the
microprocessor port of DUPLEX device on the remote line card.

For a channel between a WAN and core card, the data path (as shown in Figure 19)
doesn’t require any establishment of VC table records in APEX and ATLAS. The
messages are passed between the microprocessor ports of two DUPLEX devices on
the remote WAN card and core card.

Note the Receive VPI/VCI in the sVCS_CHNL REQUEST data structure should
be unique among the control channels.

Valid States VCS_ACTIVE
Side Effects None

Prototype INT4 vcsCtrlChnlSetup (sVCS CHANNEL REQUEST
*psChnlRequest, UINT2 *pu2ChnlID)

Inputs psChnlRequest : inband channel request

Outputs pu2ChnlID : channel ID (index of the channel record
table), from 0 to maxChnls-1.

Return Codes VCS SUCCESS
VCS ERR INVALID STATE
VCS_ERR MEM ALLOC
VCS_ERR CHNL FULL
VCS_ERR_INVALID CHNL REQ
VCS_ERR_CHNL DUPLICATE VPCI

vesCtriChnlTeardown

Shuts down a specified control channel between a core card and a remote Line or
WAN card. It also de-allocates the associated resource.

Valid States VCS_ACTIVE

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 119
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Side Effects
Prototype
Inputs
Outputs

Return Codes

None

INT4 vcsCtrlChnlTeardown (UINT2 u2ChnlID)
u2ChnlID : ID of the channel to be shut down
None

VCS_SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID CHNL_ID

vesCtriChnlTx

Sends a message to a remote card over a specified control channel.

Valid States
Side Effects

Prototype

Inputs

Outputs

Return Codes

VCS_ACTIVE
None

INT4 vcsCtrlChnlTx (UINT2 u2ChnlID, UINT1 *pMsg,
UINT4 u4Length)

u2ChnliID : channel ID

pMsg : pointer to a message buffer to be sent
u4Length : length of message in bytes.

None

VCS_SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID CHNL ID
VCS_ERR_CTRL_MSG LENGTH

vesCtriChnlIRx

Retrieves a message that was received from a remote card over a specified control

channel.
Valid States VCS_ACTIVE
Side Effects None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 120

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Prototype

Inputs

Outputs

Return Codes

INT4 vcsCtrlChnlRx (UINT2 u2ChnlID, UINT1 *pMsg,
UINT4 * pLength)

u2ChnliID : channel ID
pMsg : pointer to a message buffer received.
plLength : length of the message in bytes.

VCS_SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID CHNL ID

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 121
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.13 BOC Signaling

vesBOCTXx

Sends a BOC signal to a remote card over a specified HSS link.
Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsBOCTx (UINT1 ulCardId, UINT1 ulBOCcode)

Inputs ulCardID : identify a remote Line or WAN card, by specifying
HSS line, and VORTEX or DUPLEX device, to
which it is connected.

bit 0-2: HSS link number (0 to 7)
bit 3-6: device number
bit 7: 0=VORTEX, 1 = DUPLEX

ulBOCcode : BOC code to be sent.
Outputs None
Return Codes VCS SUCCESS
VCS_ERR_INVALID STATE

VCS_ERR_INVALID CARD ID
VCS_ERR_PORT NOT READY

vcsBOCRX

Retrieves a BOC signal from a remote card over a specified HSS link.
Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsBOCRx (UINT1 ulCardId, UINT1 *pBOCcode)

Inputs ulCardID : identify a remote Line or WAN card, by
specifying HSS line, and VORTEX DUPLEX
device, to which it is connected.

bit 0-2: HSS link number (0 to 7)
bit 3-6: device number
bit7 : 0=VORTEX, 1 = DUPLEX

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 122
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Outputs pBOCcode : contains a BOC code received.

Return Codes VCS SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID CARD ID
VCS_ERR_PORT_NOT READY

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 123
Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.14 Addition/Deletion of Line/WAN Cards

vcsAddCard

Adds a Line or WAN card to the system. This shall activate the associated HSS link,
and mark the availability of the corresponding loop or WAN ports in the resource

database of the chipset driver.

Note: the API should not be called when the chipset card is in Loopback testing

mode.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsAddCard(VCS ves, UINT1 ulCardId)

Inputs ves

ulCardID

Outputs None

Return Codes VCS SUCCESS

: chipset handler for the core card, to which the
remote card is actively connected.

: specifies a HSS line of VORTEX or DUPLEX
device, to which the remote card is connected.
bit 0-2: HSS link number (0 to 7)
bit 3-6: device number
bit7: 0=VORTEX (Line card),
1 =DUPLEX (WAN card)

VCS_ERR_INVALID HANDLE
VCS_ERR_INVALID STATE
VCS_ERR_INVALID CARD ID
VCS_ERR_CARD ALREADY ADD
VCS_ERR_LPBKPORT IN USE

vesRemoveCard

Removes a Line or WAN card from the system. It tears down the ports in the APEX
Port and Class Context Records after all related VC connections being deleted. This
shall also de-activate the associated HSS link, and mark the non-availability of the
corresponding loop or WAN ports in the chipset driver resource database to prevent
any future request for connections over the deleted ports.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 124

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Note: the API should not be called when the chipset card is in Loopback testing

mode.
Valid States
Side Effects

Prototype

Inputs

Outputs

Return Codes

VCS _STANDBY, VCS_ACTIVE
None

INT4 vcsRemoveCard (UINT1 ulCardId)

ulCardID : specifies a HSS line of VORTEX or DUPLEX
device, to which the remote card is connected.
bit 0-2: HSS link number (0 to 7)
bit 3-6: device number
bit 7: 0=VORTEX (Line card),
1 = DUPLEX (WAN card)

None

VCS_SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID CARD ID
VCS_ERR_CARD NOT_ ADDED
VCS_ERR_LPBKPORT IN USE

vcsRemoteCardinfo

Reports the availability of remote Line/WAN cards at each HSS link of a specified
core card, as well as the HSS link status, and total number of remote cards being

added.
Valid States
Side Effects

Prototype

Inputs

Outputs

Return Codes

VCS _STANDBY, VCS_ACTIVE
None

INT4 vcsRemoteCardInfo (VCS ves, sVCS _RCARD INFO
*psCardInfo))

vcs : chipset handler for the core card

psCardInfo : contains Remote Card and HSS link status
information

VCS_SUCCESS
VCS_ERR_INVALID HANDLE
VCS_ERR_INVALID STATE

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 125
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.15 VC OAM (FM and PM) Setup

The OAM support only applies to upstream or downstream connections between
Loop and WAN ports, not the connections associated with microprocessor port.

OAM At Connection Level

vcsVcOAMSetup

Sets up and enables an OAM (FM and PM) support over an existing F4 or F5
connection. It configures the chipset (ATLAS) as a terminating point (Segment
Point, or End_to_End Point, or both) for OAM cells on the VCconnection, and
associates a backward connection for its RDI and Backward Reporting PM cell
flow. The connection and its backward connection should be already setup, and
their paths must be associated with the same Loop port and WAN port.

Note 1: By default, the F4 to F5 processing is disabled, i.e. the VPC pointer is set to
the address of the VC (or point to itself). One must specifically call
vcesF4atoF5Setup API to setup and enable the termination of F4 (VPC) to F5
(VCO).

Note 2: the PM sessions should already be properly configured before the sessions
are associated with the connection. Each connection may participate in two active
PM sessions at the same time, and multiple connections may share one PM session.
A common implementation of PM will involve monitoring and generation at the F4
and F5 level. This means that for an F4 pipe, each constituent F5 connection will
have one F5 PM session and one F4 PM session (both active at the same time),
while all constituent F5 connections point to the same F4 PM session.

Valid States VCS_ACTIVE
Side Effects None

Prototype INT4 vcsVcOAMSetup (UINT2 u2InConnlID,
sVCS_VC_OAM REQUEST sVcOAM, UINT2 u2BackConnlID)

Inputs u2InConnID : connection ID for incoming OAM cell path
SVcOAM : contains per-VC OAM configuration
parameters

u2BackConnID: connection ID for backward OAM cell path.
Note: If the incoming connection is F4 OAM
type, the backward connection is required
to be the same type of the F4 OAM
connection.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 126
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Outputs

Return Codes

None

VCS_SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID CONNID
VCS_ERR_BACKWARD_VC
VCS_ERR_OAM ALREADY SETUP
VCS_ERR_CONN MP ORIGIN
VCS_ERR_MEM_ ALLOC

vesVcOAMClear

Disables the OAM support over a specified F4 or F5 connection. It re-configures
the chipset (ATLAS) as a non-end-point for OAM cells on the VCC connection.
Therefore, all incoming OAM cells will be passed transparently through the chipset.
The PM measurement for the connection is disabled too.

Valid States
Side Effects
Prototype
Inputs
Outputs

Return Codes

VCS_ACTIVE

None

INT4 vcsVcOAMClear (UINT2 u2ConnID)
u2ConnID : connection ID for incoming OAM path.
None

VCS_SUCCESS

VCS_ERR_INVALID STATE
VCS_ERR_INVALID CONNID
VCS_ERR_OAM NOT SETUP

vcsVcOAMRetrieve
Used to retrieve the current OAM Configurations (PM and FM) on a specified
connection.
Valid States VCS_ACTIVE
Side Effects None
Prototype INT4 vcsVcOAMRetrieve (UINT2 u2ConnID, sVCS VC_OAM
*psVcOAM)
Inputs u2ConnID : connection ID
Outputs pPsVcOAM : contains current OAM parameters.
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 127

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Return Codes VCS SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID CONNID
VCS_ERR_OAM NOT SETUP

vcsVcFMUpdate

Used to update/modify the FM (RDI, AIS, CC) part of the OAM Configurations on
a specified connection. The backward path is not changed.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsVcFMUpdate (UINT2 u2ConnlID, sVCS_VC_OAM FM
psVcFM)
Inputs u2ConnID : connection ID
psVcFM : contains per-VC FM configuration parameters
Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID STATE
VCS ERR_INVALID CONNID
VCS_ERR _OAM NOT SETUP

vcsVcPMUpdate

Used to update/modify the PM part of the OAM Configurations on a specified
connection. The backward path is not changed.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsVcePMUpdate (UINT2 u2ConnID, sVCS VC OAM PM
psVcPM)
Inputs u2ConnID : connection ID
psVcPM : contains per-VC PM configuration parameters
Outputs None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 128

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Return Codes

VCS_SUCCESS

VCS_ERR_INVALID STATE
VCS_ERR_INVALID CONNID
VCS_ERR_OAM NOT SETUP

vesVcOAMGetDefect

Used to retrieve the received OAM defect type and location on a specified

connection.
Valid States
Side Effects

Prototype

Inputs
Outputs

Return Codes

VCS _ACTIVE
None

INT4 vcsVcOAMGetDefect (UINT2 u2ConnlID,
sVCS_VC OAM DEFECT *psVcOAMDefect)

u2ConnlID : connection ID
psVcOAMDefect : contains OAM defect type and location.

VCS_SUCCESS

VCS_ERR_INVALID STATE
VCS_ERR_INVALID CONNID
VCS_ERR_OAM NOT SETUP

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 129
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

OAM At Chipset Level

vcsOAMSetConfig

Used to setup the OAM configuration registers on a specified chipset card. The
configuration is not on per-connection basis, i.e. It will globally effect all
connections associated with the chipset card.

Valid States
Side Effects

Prototype

Inputs

Outputs

Return Codes

VCS _STANDBY, VCS_ACTIVE
None

INT4 vcsOAMSetConfig(VCS ves, UINT1 ulDir,
sVCS_OAM CFG *psOAM)

ves : chipset handler

ulDir : OAM Flow Direction, either eVCS ATLAS EGRESS or
eVCS_ATLAS INGRESS

psOAM : contains OAM parameters to be configured.
None

VCS_SUCCESS

VCS_ERR_INVALID HANDLE
VCS_ERR_INVALID STATE

VCS_ERR _INVALID FLAG (invalid ulDir flag)

vcsOAMGetConfig

Used to get the OAM configuration information on a specified chipset card.

Valid States VCS_STANDBY, VCS_ACTIVE
Side Effects None
Prototype INT4 vcsOAMGetConfig(VCS ves, UINT1 ulDir,
sVCS_OAM CFG *psOAM)
Inputs vcs : Chipset handler
ulDir : OAM Flow Direction, either eVCS ATLAS EGRESS
or eVCS ATLAS INGRESS
Outputs pPsSOAM : contains current OAM configurations.
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 130

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Return Codes VCS SUCCESS
VCS ERR_INVALID HANDLE
VCS_ERR_INVALID STATE
VCS_ERR _INVALID FLAG (invalid ulDir flag)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 131
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.16 F4 to F5 OAM Processing

vcsF4toF5Setup

Sets up and enables the F4 to F5 OAM processing support.

Note: (1) End-to-end OAM connection of the VPC is required to be setup as a
connection end-point before the API being called. i.e. the end-to-end termination
OAM support should be already setup and enabled on the F4 (VPC) connection.

(2) Segment OAM connection of F4 (VPC) is optional in the F4-to-F5 OAM
processing.Setting the field "F4SegConnld" with the same value as
"F4EtoEConnld" in the sVCS_F4TOF5 REQUEST, means that the Segment VPC
connection is disabled in the F4toF5 processing chain.

(3) OAM terminations on its constituent F5 (VCC) connections are not required,
although they might be setup and enabled if desired.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsF4AtoF5Setup (sVCS FATOFS REQUEST
*psF4toF5Request)
Inputs psF4toF5Request : contains the F4 to F5 processing
request.
Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID VPC REQUEST
VCS_ERR_F4TOF5 ALREADY SETUP
VCS_ERR_VC TYPE (invalid VC type)
VCS_ERR_INVALID VCC FA4TOF5_ CFG

vesF4toF5Clear

Disables the F4 to F5 OAM processing over a specified F4 VPC connection by
removing all the associated VCCs from the processing list.

Valid States VCS_ACTIVE

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 132
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Prototype
Inputs
Outputs

Return Codes

INT4 vcsF4toF5Clear (UINT2 u2F4ConnlID)
u2F4ConnID : F4 OAM connection ID.
None

VCS_SUCCESS

VCS_ERR_INVALID CONNID
VCS_ERR_INVALID STATE
VCS_ERR_INVALID VPC REQUEST
VCS_ERR_F4TOF5 NOT_ SETUP
VCS_ERR_INTERNAL

vesF4toF5AddVcece

Adds a VCC connection to a F4 to F5 OAM processing list associated with a
specified F4 VPC connection.

Valid States VCS_ACTIVE
Side Effects None
Prototype INT4 vcsF4toF5Addvec (UINT2 u2F4ConnID, UINT2
u2vVccId, UINT1 ulF4ToF5CEg)
Inputs u2F4ConnID : F4 OAM connection ID.
u2veeld : connection ID of the VC to be added
ulF4ToF5CEg : F4 to F5 processing Configuration for the VCC.
Bit 0: F4toF5AIS,
1=F5 FM cells will be generated at F4
OAM termination;
0=F5 FM cells will not be generated at
F4 OAM termination; only CC cells
will be generated.
Bit 1: Segment Flow,
1 = An F5 Segment AIS cell will be
generated while the F4 connection
is in AIS alarm.
0 =an F5 end-to-end AIS will be
generated instead. The bit should be
set when the VCC connection is
within a defined segment or nota VC
end-point, i.e. the VCC extends
beyond the end-point of the VPC.
Note: the bit should not be set to 1 if the VCC
set as a Segment end-point
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 133

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Outputs

Return Codes

None

VCS_SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID CONNID
VCS_ERR_INVALID VPC REQUEST
VCS_ERR_F4TOF5 NOT SETUP
VCS_ERR_VCC ALREADY IN LIST
VCS_ERR_INTERNAL
VCS_ERR_VC_TYPE
VCS_ERR_INVALID VCC F4TOF5_ CFG

vcsF4toF5DropVcece

Drops a VCC connection from a F4 to F5 OAM processing list associated with a
specified F4 VPC connection.

Valid States
Side Effects

Prototype

Inputs

Outputs

Return Codes

VCS _ACTIVE
None

INT4 vcsF4toF5DropVec (UINT2 u2F4ConnID, UINT2
u2vVecId)

u2F4ConnID :an F4 OAM connection ID.
u2vccId : connection ID of the VC to be droped
None

VCS_SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID CONNID
VCS_ERR_VCC NOT IN LIST
VCS_ERR_F4TOF5 NOT_ SETUP
VCS_ERR_INVALID VPC REQUEST
VCS_ERR_INTERNAL

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 134
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.17 PM Session Configuration/Status

The following APIs allow the USER to configure PM sessions, and retrieve the
statistic performance record accumulated by the PM sessions. It’s up to USER to
interpret the performance record data reported by the PM session.

Note: In the architecture of the DSLAM reference design, only the ATLAS Ingress

PM sessions are used. Therefore, there are total 256 sessions available to the USER,
which are divided into two banks, with128 PM sessions for each bank.

vcsPMSetConfig

Configures a PM session at a specified PM address (0 to 127) on a specified bank
(BANKI1 or BANK2)

Valid States VCS_STANDBY, VCS_ACTIVE
Side Effects None

Prototype INT4 vcsPMSetConfig (UINT1 ulSessionlID,
eVCS_PM BANK ePmBank, UINT2 u2PmCfg)

Inputs ulSessionID : PM session ID (0 to 127)
ePmBank : PM Bank, could be one of eVCS_PM_BANKI or
eVCS PM BANK2.
u2PmCfg : contains the 16 bit long PM configuration for the
session.
Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID STATE
VCS_ERR_INVALID SESSION ID
VCS_ERR_INVALID BANK
VCS_ERR_INVALID PM CFG

vcsPMGetConfig

Retrieves the configures of a PM session at a specified PM address (0 to 127) on a
specified bank (BANK1 or BANK2)

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 135
Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

Prototype

Inputs

Outputs

Return Codes

INT4 vcsPMGetConfig (UINT1 ulSessionID,
eVCS PM BANK ePmBank, UINT2 *pu2PmCfg)

ulSessionID : PM session ID (0 to 127)

ePmBank : PM Bank, could be one of eVCS_PM_BANKI1
oreVCS PM_BANK2.

pu2PmCfg : current PM configurations (16 bit long) for the
session.

VCS_SUCCESS
VCS_ERR_INVALID HANDLE
VCS_ERR_INVALID STATE
VCS_ERR_INVALID SESSION ID
VCS_ERR_INVALID BANK

vcsPMReadRecord

Reads a Performance record from a specified PM session

Valid States
Side Effects

Prototype

Inputs

Outputs

Return Codes

VCS_STANDBY, VCS_ACTIVE
None

INT4 vcsPMConfig(VCS vecs, UINT1 ulSessionlID,
eVCS PM BANK ePmBank, sVCS _PM RECORD *psRecord)

ves : Chipset handler
ulSessionID : PM session ID (0 to 127)

ePmBank : PM Bank, could be one of evCS_PM_ BANKL1 or
eVCS_PM_BANK2.

psRecord : contains the PM record data for the session.
Note: the structure sVvCS PM_RECORD is the
same as sATLS_PM RECORD.

VCS_SUCCESS
VCS_ERR_INVALID HANDLE
VCS_ERR_INVALID STATE
VCS_ERR_INVALID SESSION ID
VCS_ERR_INVALID BANK

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use

Document ID: PMC-1991216, Issue 3

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

136

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.18 Protection Switching

vcsRemoveload

Removes the connection load from a specified chipset card. The card should be in
VCS_STANDBY or VCS_ACTIVE state before calling the function. Note:
vesRemoveLoad and vesAddLoad should be used as a pair.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects the core card will be in a hot-standby state.

Prototype INT4 vcsRemoveLoad (VCS ves)

Inputs ves : chipset handler for the core card, whose
active connections or load are to be removed

Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID HANDLE
VCS_ERR_INVALID STATE

vesAddLoad

Adds the connection load to a specified chipset card. The card should be in

VCS _STANDBY or VCS_ACTIVE state. In addition, The load has to be removed
first from its current serving chipset card before calling the function. Note:
vesRemoveLoad and vesAddLoad should be used as a pair.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects the core card takes over all connection load, including those hot-
standby connections serviced by other core card.

Prototype INT4 vecsAddLoad (VCS ves)

Inputs ves : chipset handler for the core card which will
take over the load.

Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID HANDLE
VCS_ERR_INVALID STATE

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 137
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

vecsRemovelinelLoad

Removes a part of the connection load, which is associated with a specified line
card, from a chipset card. The active HSS links between the core card and line card
are deactivated and the associated VC connection are disabled at ATLAS Ingress
VC Table. This effectively prevents the connection data flow through the line card
and core card.

Note: vesRemoveLineLoad and vesAddLineLoad should be used as a pair.
Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects the effected active connections switched into hot-standby state on
the core card.

Prototype INT4 vcsRemoveLineLoad (VCS ves,UINT1 ulCardID)

Inputs ves : chipset handler for the core card, whose
active connections or load are to be removed

ulCardId : specifies a line card, whose associated
connections are to be load switched.

Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID HANDLE
VCS_ERR_INVALID STATE
VCS_ERR_INVALID CARD ID
VCS_ERR_INVALID LINE CARD ID

vcsAddLinelLoad

Adds a part of the connection load, which is associated with a specified line card, to
a chipset card. The part of load has to be removed first from its current serving
chipset card before calling the function.

Note: vesRemoveLineLoad and vesAddLineLoad should be used as a pair.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects the effected active connections switched into active state on the

core card.
Prototype INT4 vcsAddLineLoad (VCS ves,UINT1 ulCardID)
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 138

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Inputs vcs : chipset handler for the core card which will
take over the load.

ulCardId : specifies a line card, whose associated
connections are to be load switched.

Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID HANDLE
VCS ERR INVALID STATE
VCS ERR INVALID CARD ID
VCS_ERR_INVALID LINE CARD ID

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 139
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.19 Counter Configuration

vcsSetRxCntCfg

Sets up the configuration for the two VC level counters in ATLAS for counting the
number of incoming cells (before policing). The two 32-bit cell counters can be
programmed to count any combination of the following incoming cells: CLPO user
cells, CLP1 user cells, CLP0O OAM cells, CLP1 OAM cells, CLPO RM cells, CLP1
RM cells, CLPO cells with invalid VCI/PTI, CLP1 Cells with invalid VCI/PTL

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsSetRxCntCfgs (VCS ves,UINT1 ulCntSelect,
UINT1 ulCntlCfg,UINT1 ulCnt2Cfg)

Inputs ves : chipset handle

ulCntSelect :select flag for counting configurations.
if 0, Counting Configuration 1 is selected.
Otherwise, Counting Configuration 2 is

selected.
ulCntlCfg : configuration for counter 1.
ulCnt2Cfg : configuration for counter 2.

Note: A logic 1 in the configuration bits enables
counting on that particular stream.

Bit 7: CLP1 user cells

Bit 6: CLPO user cells

Bit 5: CLP1 OAM cells

Bit 4: CLPO OAM cells

Bit 3: CLP1 RM cells

Bit 2: CLPO RM cells

Bit 1: CLPI cells with PTT= 111 VCI=7to 15
Bit 0: CLPO cells with PTI= 111 ,VCI=7to 15

Outputs None.

Return Codes VCS SUCCESS
VCS_ERR_INVALID HANDLE (invalid chipset handle)
VCS_ERR _INVALID STATE (chipset is notin a valid state)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 140
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

vcsGetRxCntCfg

This function retrieves the configuration for the two VC level counters in ATLAS.
Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsGetRxCntCfgs (VCS ves, UINTL
ulCntSelect,UINT1 *pulCntlCfg, UINT1l *pulCnt2Cfg)

Inputs vcs : chipset handle

ulCntSelect :select flag for counting configurations. if 0,
Counting Configuration 1 is selected.
Otherwise, Counting Configuration 2 is
selected.

Outputs pulCntlCfg : contains configuration for counter 1.

pulCnt2Cfg : contains configuration for counter 2
Note: A logic 1 in the configuration bits indicates
counting on that particular stream is enabled.

Bit 7: CLP1 user cells

Bit 6: CLPO user cells

Bit 5: CLP1 OAM cells

Bit 4: CLPO OAM cells

Bit 3: CLP1 RM cells

Bit 2: CLPO RM cells

Bit 1: CLPI cells with PTT= 111 ,VCI=7to 15
Bit 0: CLPO cells with PTT= 111 ,VCI=7to 15

Return Codes VCS SUCCESS
VCS_ERR_INVALID HANDLE (invalid chipset handle)
VCS_ERR_INVALID STATE (chipset is not in a valid state)

vcsSetNcCntCfgs

Sets up the configurations for the three VC level counters in ATLAS for counting
the number of incoming non-compliant cells (as a result of policing).

The three 16-bit cell counters can be programmed to count offend cells: Non-
compliant CLPO cells, Non-compliant CLPO+1 cells, Tagged CLPO cells, Discarded
CLPO cells, Discarded CLPO+1 cells.

Valid States VCS_STANDBY, VCS_ACTIVE

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 141
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Side Effects None

Prototype vcsSetNeCntCfgs (VCS ves, eVCS NON COMPLIANT TYPE
ulNcCntlCfg, eVCS NON COMPLIANT TYPE
ulNcCnt2Cfg, eVCS NON COMPLIANT TYPE ulNcCnt3Cfg
)

Inputs ves : chipset handle

ulNeCnt1Cfg : configuration for counter 1. It can be one of
VCS NC CLPO, VCS NC CLPO1,
VCS _DISCARD_CLPO, and
VCS _DISCARD_CLPO1

ulNcCnt2Cfg : configuration for counter 2.1t can be one of
VCS_NC_CLPO, VCS_NC_CLPO1,
VCS _DISCARD_CLPO, and
VCS_DISCARD CLPO1

ulNcCnt3C£fg : configuration for counter 3. It can be one of
VCS NC CLPO, VCS_NC CLPO1,
VCS _TAG CLPO, and
VCS_DISCARD_CLPO1,

Outputs None.

Return Codes VCS SUCCESS
VCS_ERR_INVALID HANDLE (invalid chipset handle)
VCS_ERR_INVALID STATE (chipsetis not in a valid
VCS_ERR_INVALID CFG

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 142
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

8.20 Statistical Counts

The statistical counts are cell counts that increase monotonically as they accumulate
over time. There are four levels of counts: per VC, per port, per Line/WAN card,
and per chipset

Cell Counts Per VC

vesGetStatVeTxCnts

This function retrieves the connection level cell transmission counts. The counts
are maintained by the APEX device

Valid States VCS_STANDBY, VCS_ACTIVE
Side Effects None

Prototype INT4 vcsGetStatVeTxCnts (UINT2 u2ICI, UINT4
*pudVceClp0TxCnt , UINT4 *pu4VcClplTxCnt)

Inputs u2ICI : connection ID
Outputs pPu4veClp0TxCnt : count of all CLPO cells transmitted.
pu4VeClplTxCnt : count of all CLP1 cells transmitted.

Return Codes VCS SUCCESS

VCS_ERR_INVALID CONNID (invalid connection ID)
VCS_ERR_INVALID STATE (chipset is not in a valid state)
vcsGetStatVcRxCnts

This function retrieves the cell receive counts at the connection level. The counts
are maintained by the ATLAS device. The two 32-bit cell counts are programmed to
count any combination of the following incoming cells: CLPO user cells, CLP1 user
cells, CLPO OAM cells, CLP1 OAM cells, CLPO RM cells, CLP1 RM cells, CLPO
cells with invalid VCI/PTI. CLP1 Cells with invalid VCI/PTL. Typically, counterl
can be used to count CLPO cells (including user OAM and RM cells), while the
counter? for CLP1 cells. The count type can be configured by calling API function
vesSetRxCntCfgs().

Valid States = VCS_STANDBY, VCS_ACTIVE

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 143
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Prototype

Inputs

Outputs

Return Codes

INT4 vcsGetStatVeRxCnts (UINT2 u2ICI,
sVCS VC_STAT CNT *pRxCntl, sVCS VC STAT CNT
*pRxCnt2)

u2ICI : connection ID

pPRxCnt1l : contains count type and count of cells received,
which is maintained in counter 1.

PRxCnt2 : contains count type and count of cells received,
which is maintained in counter 2.

VCS_SUCCESS
VCS_ERR_INVALID CONNID (invalid connection ID)

VCS_ERR_INVALID STATE (device is not in a valid state)
VCS_ERR_CONN MP ORIGIN

vesGetStatVeNcCnints

This function retrieves the non-compliant cell counts at the connection level. The
counts are incremented as a result of cell rate policing by the ATLAS device. The
programmable 16 bit counts can be programmed as follows: Non-compliant CLPO
cells, Non-compliant CLP0+1 cells, Tagged CLPO cells, Discarded CLPO cells,
Discarded CLPO+1 cells. The count type can be configured by calling API function

vesSetNeCntCfgs ().
Valid States VCS _VCS STANDBY, VCS_ACTIVE
Side Effects None
Prototype INT4 vcsGetStatVeNeCnts (UINT2 u2ICI,
SVCS_VC_STAT CNT *pNcCntl, sVCS VC STAT CNT
*pNcCnt2, sVCS VC_STAT CNT *pNcCnt3)
Inputs u2ICI : connection ID
Outputs pNcCntl : contains count type and count for non-compliant
counter 1.
pNcCnt2 : contains count type and count for non-compliant
counter 2.
pNcCnt3 : contains count type and count for non-compliant
counter 3..
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 144

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Return Codes VCS SUCCESS

VCS_ERR_INVALID CONNID (invalid connection ID)
VCS_ERR_INVALID STATE
VCS_ERR_CONN MP ORIGIN

vcsResetVcRxNcCnts

This function resets the Rx and non-compliant cell counts at the connection level.
Valid States vVCS_VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsResetVcRxNcCnts (UINT2 u2ConnId)

Inputs u2ICI : connection ID, whose connection must be
originated from Loop or WAN port.

Outputs None

Return Codes VCS SUCCESS
VCS_ERR_INVALID CONNID (invalid connection ID)
VCS_ERR_INVALID STATE
VCS_ERR_CONN MP ORIGIN

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 145
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Cell Counts Per Port

vesGetStatPortCnts

This function retrieves counts of VC cells which are transmitted or received through
a specified Loop/WAN port. The counts are the sum of VC cell counts over the
connections associated with the port.

For the Rx count, the cell type being counted is determined by the count
configurations set in vesSetRxCntCEg APL It is suggested that the configurations
be set the same for all connections within the port.

Valid States
Side Effects

Prototype

Inputs

Outputs

Return Codes

STANDBY, VCS_ACTIVE
None

INT4 vcsGetStatPortCnts (sVCS PORT ID sPortId,
UINT4 *pu4PortTxCnt, UINT4 *pud4PortRxCnt)

sPortId : Loop or WAN Port ID
pud4PortTxCnt : count of cells transmitted to the port.
pu4PortRxCnt : count of cells received from the port.

VCS_SUCCESS
VCS_ERR_INVALID PORTID (invalid port ID)
VCS_ERR_INVALID STATE

VCS_ERR_CONN_MP ORIGIN
VCS_ERR_PORT NOT READY
VCS_ERR_PORT NOT CFG

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 146
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Cell Counts Per Line/WAN card

vesGetStatCardCnts

This function retrieves counts of cells which are transmitted or received through a
specified Line or WAN card. The count is maintained by the VORTEX or
DUPLEX devices on the chipset card.

Valid States
Side Effects

Prototype

Inputs

Outputs

Return Codes

VCS_S TANDRY, VCS_ACTIVE
None

INT4 vcsGetStatCardCnts (UINT1 ulCardId, UINT4
*pud4CardTxCnt, UINT4 *pu4CardRxCnt)

ulCardID : specifies a remote card by the HSS link,
which connects the remote card to.the core card.
bit 0-2: HSS link number (0 to 7 for VORTEX)
(0 to 1 for DUPLEX)
bit 3-6: device number
bit 7 : 0=VORTEX (Line card),
1 = DUPLEX (WAN card)

pu4CardTxCnt : count of cells transmitted to the card.
pu4CardRxCnt : count of cells received from the card.

VCS_SUCCESS
VCS_ERR_INVALID CARD ID (invalid card ID)

VCS_ERR_INVALID STATE (chipsetis notin a valid state)
VCS_ERR_NO ACTIVE CARD

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 147
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Counts Per Chipset

vesGetStatDiscardCnts

This function is used to retrieve the discard/error counts accumulated by the APEX
device. These counts include number of CLPO and CLP1 cells discarded due to
congestion as well as number cells discarded for reasons other than congestion.

This function can be used to maintain a steady count of the types mentioned by
invoking it periodically.

Valid States VCS STANDBY, VCS ACTIVE
Side Effects None

Prototype INT4 vcsGetStatDiscardCnts (VCS ves, UINT4
*pu4DiscardCnt UINT4 *pu4ClpODiscardCnt,
UINT4 *pu4ClplDiscardCnt)

Inputs ves : chipset handle

Outputs pu4DiscardCnt : general discard count of all cells that have
been discarded due to reasons other than
congestion (i.e., re-assembly timeout,
re-assembly max. length error etc.)

pu4ClpODiscardCnt : count of all CLPO cells discarded due
to congestion.

pu4ClplDiscardCnt : count of all CLP1 cells discarded due
to congestion.

Return Codes VCS SUCCESS
VCS_ERR_INVALID HANDLE (invalid chipset handle)
VCS_ERR_INVALID STATE (chipset is not in a valid state)

vesGetStatEventCnts

This function is used to retrieve the event counts accumulated and maintained by
the underlying device drivers.

Note: for the current version, only DUPLEX and VORTEX device drivers provide
such statistical information. The event counts are reset upon the retrieval.

Valid States VCS_PRESENT, VCS_ STANDBY, VCS_ACTIVE

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 148
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Prototype

Inputs

Outputs

Return Codes

INT4 vcsGetStatEventCnts (VCS vcs, sVCS _DEVICE ID
sDevId, sVCS_STAT CNT *psVcsStatCnt)

ves : chipset handle

sDevID : specifies the device driver, whose statistical
counts are to be retrieved. It can be one of
VCS _DUPLEX or VCS_VORTEX

psVcsStatCnt : contains the statistic event counts. The counts
are valid only if the function returns
VCS_SUCCESS. Also, the only fields in this
structure that are valid are those have been
requested using the input parameter sDevID.

VCS_SUCCESS
VCS_ERR_INVALID HANDLE (invalid chipset handle)

VCS_ERR_INVALID STATE (chipset is not in a valid state)
VCS_ERR _DRIVER NOT SUPPORT

8.21 Congestion counts & Status

The congestion counts are snapshots of the current congestion counts on a specified chipset
card. They need not increase monotonically. The counts can be polled for real-time
performance monitoring or status check of the chipset operation.

vcsGetCongDevCnt

This function returns the total number of cells available for buffering in the chipset
device, i.e. APEX (FreeCnt).

Valid States
Side Effects
Prototype
Inputs
Outputs

Return Codes

VCS STANDBY, VCS ACTIVE

None

INT4 vcsGetCongDevCnt (VCS ves, UINT4 *pu4Cnt)
ves : chipset handle

pu4Cnt : snapshot of FreeCnt.

VCS_SUCCESS
VCS_ERR_INVALID HANDLE (invalid chipset handle)

VCS_ERR_INVALID STATE (chipset is not in a valid state)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 149
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

vcesGetCongDirCnt

This function retrieves the count of all cells queued for all loop/WAN ports in

APEX devie.
Valid States
Side Effects

Prototype

Inputs

Outputs

Return Codes

VCS STANDBY, VCS ACTIVE
None

INT4 vcsGetCongDirCnt (VCS ves, UINT1 ulDir, UINT4
*pu4Cnt)

ves : chipset handle
ulDir : 0 —loop, 1- WAN
pu4Cnt : loop/WAN cells queue count

VCS_SUCCESS

VCS_ERR_INVALID HANDLE (invalid chipset handle)
VCS_ERR_INVALID STATE (chipset is not in a valid state)
vcsGetCongPortCnt
This function retrieves the count of all cells queued for the specified port in APEX
device.
Valid States VCS STANDBY, VCS ACTIVE
Side Effects None
Prototype INT4 vcsGetCongPortCnt (VCS ves, sVCS_PORT ID
sPortId, UINT4 *pu4Cnt)
Inputs vcs : chipset handle
sPortId : port type (loop, WAN, uP) and number
Outputs pu4Cnt : cells queued for this port

Return Codes

VCS_SUCCESS
VCS_ERR_INVALID HANDLE (invalid chipset handle)
VCS_ERR_INVALID STATE (chipset is not in a valid state)
VCS_ERR_INVALID PORT ID (port has not been configured)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 150
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

vcsGetCongClassCnt

This function retrieves the count of all cells queued for the specified class in the
APEX device.

Valid States VCS_STANDBY,VCS_ACTIVE
Side Effects None

Prototype INT4 vcsGetCongClassCnt (VCS ves, sVCS_PORT ID
sPortId, UINT1 ulClassNum, UINT4 *pu4Cnt)

Inputs ves : chipset handle
sPortId : port identifier.
ulClassNum : class Number (0 to 3)
Outputs pu4Cnt : cells queued for this class.

Return Codes VCS SUCCESS
VCS_ERR_INVALID HANDLE (invalid chipset handle)

VCS_ERR_INVALID STATE (chipset is not in a valid state)

VCS_ERR_INVALID PORT ID (invalid port ID)
VCS_ERR_INVALID CLASS ID (class not configured)

vesGetCongConnCnts

This function retrieves the following counts at a VC level

e all CLPO cells in both VC and class queue (VcCLPOCnt)
e all CLPO1 cells in VC queue (VcQCLP01Cnt)

e all CLPO1 cells in class queue (VcClassQCLP01Cnt)

The counts are maintained by the APEX device.
Valid States VCS STANDBY, VCS ACTIVE

Side Effects None

Prototype INT4 vcsGetCongConnCnts (UINT4 u4ICI, UINT4
*pu4VcClpOCnt, UINT4 *pu4VcQClp0lCnt, UINT4
*pudVcClassQClp0lCnt)

Inputs u4ICI : connection ID.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 151

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Outputs pu4veClp0Cnt : snapshot of veCLPOCnt
pu4veQClpolCnt : snapshot of veQCLP01Cnt
pu4vVeClassQClp0iCnt: snapshot of VeClassQCLP0O1Cnt

Return Codes VCS SUCCESS
VCS_ERR_INVALID HANDLE (invalid chipset handle)
VCS_ERR_INVALID STATE (chipsetis not in a valid state)
VCS_ERR_INVALID CONNID (connection not configured)

vesGetLastDiscardICl

This function retrieves the connection Ids of the last time a CLPO or a CLP1 cell
was discarded due to congestion

Valid States = VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsGetLastDiscardICI(VCS ves, UINT4
*pu4Clp0ConnId, UINT4 *pu4ClplConnId)

Inputs ves : chipset handle.

Outputs pu4Clp0Connid : connection ID of last time a CLPO cell

was discarded due to congestion

pu4ClplConnId : connection ID of last time a CLP cell was
discarded due to congestion.

Return Codes VCS SUCCESS
VCS_ERR_INVALID HANDLE (invalid chipset handle)
VCS_ERR_INVALID STATE (chipset is not in a valid state)

8.22 Callback Functions

The chipset driver uses the following indication routines to notify the applications
of events within the chipset devices and chipset driver. These routines need to be
implemented by the user.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 152
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Microprocessor Data Connection callbacks

indRxDataCell

This callback is invoked by the Microprocessor Data Connection Rx task after it
extracts a cell from the microprocessor interface.

Prounype VOID indRxDataCell (UINT4 u4ECI, sVCS_CELL_HDR
*psHdr, UINT1 *pulPyld, INT4 result)

Inputs U4ECI : ID of the connection on which cell was received.
psHdr : header of the transmitted cell.
psPyld : payload of the transmitted cell.
result : result of cell Rx

Outputs None

Return Codes None

IndRxDataFrm

This callback is invoked by the Microprocessor Data Connection Rx task after it
extracts an AALS5 frame from the microprocessor interface. A pointer to the first
byte of the AALS frame buffer chain, the header of the last cell in the payload and
the connection ID is passed to the user.

Prounype VOID indRxDataFrm (UINT4 u4ECI, sVCS_CELL_HDR
*psHdr, UINT1 *pulFrm, UINT4 u4Len, INT4 result)

Inputs U4ECT : ID of the connection on which frame was received.
psHdr : header of the last cell in frame.
pulFrm: payload of the frame (buffer chain)
u4Len : length of the frame in bytes
result : result of frame Rx
Outputs None

Return Codes None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 153
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Inband Control Channel Callbacks

indRxCtriMsg

This callback is invoked by the Inband Control Channel Rx task after it receives a
message from a remote card over an existing control channel. Note this function
should be re-entrant, as both ICC Rx task and APEX SAR Rx task could call the

function at the same time.

Prototype INT4 indRxCtrlMsg (UINT2 ChnlID, INT4 result)
Inputs ChnlID : channel ID

result : result of message Rx
Outputs None

Return Codes None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 154
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

OAM Callbacks

indRxOAM

This callback is invoked by the Rx task of underlying ATLAS device driver after it
receives an OAM cell from its microprocessor port.

Prototype void indRxOAM (VCS USR CTXT vcsUsrCtxt,
sVCS DEV_ID *psDevId, INT4 u4OamType, UINTI1
ulCmdFlag, INT4 argl, INT4 connId, INT4 result)

Inputs vesUsrCtxt : ser context, which is passed in from User
when calling vesAdd APL

psDevId : contains Device ID

u40amType : type of OAM cell received

ulCcmdFlag : flag to indicates a COMMAND or RESPONSE
argl : additional OAM cell info. It contains actual

message ID in the case of OAM cell type
“Activation/Deactivation”

connId : connection ID of the OAM cell received
result : result of OAM processing by ATLAS device
driver
Outputs None

Return Codes None

indCosStatus

This callback is invoked when a valid Change of (alarm) Status extracted from
ATLAS Ingress COS FIFO. The function is called from within a watchdog task
"sysVcsWdgPtrlTaskFn'".

Prototype void indCosStatus (UINT4 u4VcId, UINT2 u2Status)

Inputs uaveld : connection ID, whose ingress VC has a valid
COS status

u2Status : contains COS status bits (bits 0-9)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 155
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Outputs None

Return Codes None

Event Callbacks

indRxBOC

This callback is invoked by the DPR task of underlying VORTEX or DUPLEX
device driver after it receives a BOC signal from a remote card.

Prototype INT4 indRxBOC (VCS USR CTXT usrCtxt, sVCS DEV_ID
*psDevId, UINT1 ulHssLnk, UINT1l ulBOCcode)

Inputs vesUsrCtxt : User Context, which is passed in from User
when celling vesAdd() APL

psDevId : contains Device ID

ulHssLnk : HSS link number

ulBOCcode : contains a BOC code received
Outputs None

Return Codes None

indVcsCritical

This indication callback function is called by apexHiDPR which executes in the
context of the DPR task. The DPR taskis spawned by the underlying device driver.
They provide the user with device ID, event ID and other supplemental arguments.

Prototype VOID indVesCritical (VCS_USR_CTXT usrCtxt,
sVCS DEV_ID *psDeviceID, UINT4 u4EventId, UINT4
argl, UINT4 arg2, UINT4 arg3)

Inputs usrCtxt : user’s context for the chipset.
psDevicelID : contains device type and device number
udEventId :event ID

argl, arg2, arg3 :supplemental information

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 156
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Outputs None

Return Codes None

indVcsError

This indication callback function is called by apexLoDPR, at1asDPR, vortexDPR,
or dpxDPR, which execute in the context of the DPR tasks. The DPR tasks are

spawned by the underlying APEX, ATLAS, VORTEX and DUPLEX device drivers.
They provide the user with an event ID, device identifier ID and other supplemental

arguments.

Prototype VOID indVecsError (VCS_USR_CTXT usrCtxt,
sVCS DEV_ID *psDeviceID, UINT4 u4EventId, UINT4
argl, UINT4 arg2, UINT4 arg3)

Inputs usrCtxt : user’s context for the device.
psDevicelID : contains device type and device number
u4EventId :event ID
argl, arg2, arg3 :supplemental information

Outputs None

Return Codes None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 157
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

9 SYSTEM-SPECIFIC UTILITY FUNCTIONS

These utility functions are normally called by the chipset driver APIs, and therefore
should be considered as internal library functions. However, USER may port them
with a different, system-dependent approach.

9.1 Congestion Control Service

The following routines can be used to calculate congestion threshold levels for
QOS classes defined by TM4.0 (CBR, RT-VBR, non-RT VBR, GFR and UBR).
Please see Appendix A for a detailed description of the implementation. USER may
implement them with a new algorithm for the congestion control.

sysVcsPortThresholds

This routine is invoked when a new port is configured or an existing port is being
deleted. It determines the per-port threshold levels and associated per-class
thresholds for the port which is currently being configured or deleted. Besides this,
it will also recalculate the port thresholds and class thresholds for all the ports,
which are in the same direction as the port being configured or deleted. For
example, all the loop port and associated class thresholds are re-configured if the
routine is invoked for a loop port.

Valid States Not Applicable
Side Effects None
Prototype INT4 sysVcsPortThresholds (sVCS_PORT ID *psPortId,

sVCS_PORT_THRSH_REQUEST *psPortThrshReq, UINTL1
forceFlag, sVCS_ PORT THRSH *psPortClThrsh)

Inputs psPortId : specify a Loop or WAN port.
ForceFlag :when setto 1, the threshold values are set from
the psPortThrshReq structure without any
change.

When set to 0, only the minPortThrsh value is
taken from the psPortThrshReq. The other
threshold values are calculated by the routine.

psPortThrshRegq: this structure contains the minimum port
threshold for the port. If the forceFlag is set, this
structure should also contain the clp0 threshold,
the clp1 threshold and the max threshold for the
port.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 158
Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Outputs

Return Codes

psPortClThrsh: pointer to the array of sVvCS_PORT THRSH data
structure buffer, which contains the per-port
and per-class thresholds for all ports in the
direction of the port being configured or
deleted.

VCS_SUCCESS

VCS _ERR _DIR MAX THRSH_ 0
VCS_ERR_INVALID THRSH
VCS_ERR_PRT BW_GUARANTEE

sysVcsVcThresholds

This routine is invoked when a connection is being configured, or the QOS of an
existing connection is being updated or the connection is being deleted. It
determines the per-VC threshold levels based on the traffic type and QOS requested
for the VC. Besides this the routine will also recalculate the thresholds of all the
connections which are in the same port as the connection being configured, updated
or deleted. The thresholds for all the classes within this port are also recalculated.

Valid States
Side Effects

Prototype

Inputs

Outputs

Return Codes

Not Applicable
None

INT4 sysVcsVcThresholds (sVCS _PORT ID* psPortId,
UINT2 u2ConnId, sVCS VC QOS* psNewVcQOS,

sVCS_ PORT THRSH* psPortThrsh, sVCS VC THRSH*
psVcThrsh)

psPortId : specifies the port on which connection is
to be configured

u2Connld : specifies the connection id if connection
already configured

psVcQos : pointer to the QOS parameters structure for

the connection

psPortThrsh : contains the port thresholds and
updated class thresholds

psVcThrsh : pointer to an array of structures
containing the per-VC threshold levels of
all the connections on the port on which
the connection is being configured,
updated or deleted.

VCS_SUCCESS
VCS_ERR_VC_ BW GUARANTEE

VCS_ERR_OUT OF RESOURCE (out of resources)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 159
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

9.2

Scheduling Service

The following routines can be used to calculate scheduling parameters for Class of
Service defined by TM4.0 (CBR, RT-VBR, non-RT VBR, GFR and UBR). Please
see Appendix A for a detailed description of the implementation. USER may
implement them with a new scheduling algorithm.

sysVcsLoopPortScheduler

Determines the per-port polling weight based on the minimum cell rate or
bandwidth requested for the loop port. This routine is invoked when a loop port is
being configured

Valid States Not Applicable

Side Effects None

Prototype INT4 sysVcsLoopPortScheduler (UINT4u4OutCellRate,
UINT1 *pulWeight)

Inputs u40utCellRate: minimum cell rate for the cells transmitted
out to the Loop port.

Outputs pulWeight : polling weight, between 0 to 7.

Return Codes VCS SUCCESS
VCS_ERR_INVALID CELL RATE

sysVcsWANPortScheduler

Determines the per-port polling weight based on the minimum cell rate or
bandwidth requested for the WAN port. . This routine is invoked when a WAN port
is being configured.

Valid States Not applicable

Side Effects None

Prototype INT4 sysVcsWANPortScheduler (UINT4 u4OutCellRate,
UINT1 *pulWeight)

Inputs u4OutCellRate : minimum cell rate limit for the cells
transmitted out to the WAN port.

Outputs pulWeight : polling weight, between 0 to 3.

Return Codes VCS SUCCESS

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 160
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

9.3

VCS_ERR_INVALID CELL RATE

sysVcsClassVcScheduler

Determines the Class scheduler parameters based on the traffic type and QOS
parameters of the connections in each class. This routine is invoked each time a
new connection is configured or the QOS of the connection is updated. The routine
will also return the connection weight if the connection is not a shaped connection
or a frame connection.

Valid States Not Applicable
Side Effects None

Prototype INT4 sysVcsVcClassScheduler (sVCS_VC_ PORT ID
*psPortId, UINT2 u2ConnlId, sVCS_VC QOS *psVcQos,
sVCS CLASS SCHEDULER *psClassSch, UINT1 *pulWt)

Inputs psPortId : specifies port on which connection is
configured
u2ConnId : Connection ID
psVcQOS : QOS parameters for the connection .
Outputs psClassSch : contains the Class scheduler
parameters.
pulwWt : pointer to weight for the connection

Return Codes VCS SUCCESS

Shaping Service

The following routines can be used to calculate shaping parameters based on ATMF
TM4.1 parameters or QOS request. USER may implement them with a new shaping
algorithm.

sysVcsVCShaping

Determines the shaped single rate parameters based on the QOS parameters and the
shaper configuration. This routine is invoked when a shaped connection is
configured or its QOS parameters are updated.

Valid States Not Applicable

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 161
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Prototype INT4 sysVcsVCShaping (UINT1 ulShprId, sVCS_VC QOS
*psVcQos, sVCS VC SHPR *psVeShpr)

Inputs ulShprid : shaper used by the connection
psVcQos : contains QOS parameters
Outputs psVcShpr : contains the per-VC shaper rate context.

Return Codes VCS SUCCESS
VCS_ERR_SHPR PARAMETER

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 162
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

9.4 Policing Service

The following routines can be used to calculate ATLAS policing parameters based
on QOS request. USER may implement them with a new policing algorithm.

sysVcsVcPolicing

Determines the per VC Policing parameters (Increment field and Limit field) based
on QOS request.

Valid States
Side Effects

Prototype

Not Applicable
None

VOID sysVcsVcPolicing(sVCS _VC _QOS *psVcQos,
sVCS _VC POLICING *pPolicingl, sVCS VC POLICING
*pPolicing2)

Inputs psVcQos : contains QOS parameters
Outputs pPolicingl : containing the Increment and Limit fields for
GCRAI1
pPolicingl2 : containing the Increment and Limit fields for
GCRA2
Return Codes None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 163

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

9.5

Port Mapping

The following routines can be used to map the HSS link numbers of VORTEX
devices to loop port numbers. Note that we have to reserve some port numbers for
use in Control Channels.

sysVcsLoopldToPort

Determines a port number based on Loop IDs (VORTEX device ID, HSS link ID
and xdsl ID). The mapping algorithm is system-specific, and not necessarily limited
to the one implemented here.

Valid States Not Applicable
Side Effects None

Prototype VOID sysVcsLoopIdToPort (UINT1 ulVtxId, UINT1
ullLinkId, UINT1 ulxdslId, UINT2 *pu2PortNum)

Inputs ulvtxId : VORTEX device ID, (from to
(VCS_MAX VORTEXS-1))

ulLinkId : HSS link ID of the VORTEX device (from 0 to 7)

ulxdslId : logical channel ID within the DUPLEX of a
line card which is connected to the VORTEX
device via the HSS link. (from 0 to 32).
However, if ulLinkld == VCS_CHNL_LINK ID,
ulxdslld shall contains the link number
(from 0 to (VCS_CHNL_ XDSL ID - 1)).

Output pu2PortNum : Loop Port number

Return Codes None

sysVcsPortToLoopld

Determines Loop IDs (VORTEX device ID, HSS link ID and xdsl ID) based on a
port number. The mapping algorithm is system-specific, and not necessarily limited
to the one implemented here.

Valid States Not Applicable

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 164
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Prototype VOID sysVcsPortToLoopId (UINT2 u2PortNum, UINT1
*pVtxId, UINT1 *pLinkId, UINT1 *pxdslId)

Inputs pu2PortNum : Loop Port number

Outputs pvtxId : contains VORTEX device ID
(from 0 to (VCS_MAX VORTEXS-1))

pLinkId : HSS link ID of the VORTEX device
(from O to 7)
pxdslId : Logical channel ID within the DUPLEX of a

line card which is connected to the VORTEX
device via the HSS link. (from 0 to 32).

However, if ulLinkld == VCS _CHNL LINK ID,
ulxdslld shall contains the link number

(from 0 to (VCS_CHNL_XDSL ID - 1)).

Return Codes None

sysVcsChnlldToPort

Determines a reserved port number for control channels to a line card which is
connected to a specified HSS link of a VORTEX device. The mapping algorithm is
system-specific, and not necessarily limited to the one implemented here.

Valid States Not Applicable

Side Effects None

Prototype VOID sysVecsChnlIdToPort (UINT1 ulVixId, UINT1
ulLinkId, UINT2 *pu2ChnlPortNum)

Inputs ulvtxId : VORTEX device 1D,
(from 0 to (VCS_MAX VORTEXS-1))
ulLinkId : HSS link ID of the VORTEX device
(from 0 to 7)
Outputs pu2ChnlPortNum : reserved Loop Port number for control
channels

Return Codes None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 165
Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

10 THEORY OF OPERATIONS

10.1

This section provides some of the implementation details of the VORTEX chipset
driver modules. The implementation details include processing flows, data
structures and algorithm descriptions where applicable.

Module Management

The following flow diagram illustrates the typical function call sequences that occur
when initializing or shutting down the VORTEX chipset driver module.

Figure 5: Module Management Flow Diagram

START

!

[vcsModulelnit

|

vcsSetInitProfile

|

!

vcsClrInitProfile

|

[vcsModuleShutDown]

|

END

Performs module level initialization of the chipset driver. It allocates memory for

] the Module Data Block (MDB) and its components and initializes its contents.

OPTIONAL: Register an initialization profile and a diagnostic profile. This allows the
user to store pre-defined parameter vectors that are validated ahead of time. When
the device-initialization function is invoked only a profile number need to be
passed. This method simplifies and expedites the above operations.

Perform all chipset board level functions here (for example, add, delete, initialize
etc.)

De-register an initialization profile and a diagnostic profile previously registered with
the driver.

Performs module level shutdown for the chipset driver. Deletes all chipset devices
registered with the driver and de-allocates the Module Data Block(MDB).

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 166

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

10.2 Chipset Management

Figure 6 illustrates the typical function call sequences that occur when adding,
initializing, re-initializing and deleting chipset (card).

Figure 6: Chipset Management Flow Diagram

START
l Detects the chipset being added in the hardware (using sysVcsBoardDetect),
performs a chipset device check, assigns a chipset handle for storing chipset
[vcsAdd J information and applies a software reset to the chipset.

Initializes the chipset (devices) based on an initialization vector or initialization
4 vesInit] vector profile provided by the user. The initialization vector is validated by the user

and stored by the driver as part of device context information. The chipset registers
are then configured accordingly.

Prepares the chipset for normal operation by installing and enabling interrupts,
vesActivate enabling the tx/rx of cells and frames from the microprocessor ports and enabling
the APEX queue engine’s external interfaces and HSS links of VORTEX and DUPLEX
per VC connection request. The chipset is now operational and all other API can be

v

vcsReset

Block (CDB) contents except for the initialization vector. This function can be

] vcsReset performs a software reset on the device. It also resets the Chipset Data
invoked from any chipset state.

J De-activates the chipset and removes it from normal operation. This function

[vcsDeactivate disables device interrupts, disables tx/rx of cells/frames from microprocessor port

l and disables the queue engine’s external interfaces.
[vcsReset]
l Removes the chipset from the list of chipsets being controlled by the driver. This
[vcsDelete] function clears the Chipset Data Block for the chipset being deleted and frees the
l chipset handle assigned for this chipset.
END
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 167

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

10.3 Port Management

The following flow diagram illustrates the typical function call sequences to setup,

and teardown a port.

Figure 7: Port Management Flow Diagram

START

vcsPortSetup

—

g 2

vcsPortStatus

VcsPortDisable
vcsPortEnable

N /

|

The chipset must be in ACTIVE state when calling the following APIs.

Pre-requirement: the associated remote Line/WAN card should have already been
added to the system by calling vesAddCard().

Setup a new port, and allocates necessary resources for the port.

OPTIONAL: The APIs can be used to retrieve the current port status, as well as the
number of VC connections associated with the port.

OPTIONAL: setup some VC connections through the port, or teardowm any
connections associated with the port. See the next section “Connection
Management”.

OPTIONAL: To temporary disable the port (no cells can pass through the port), or
re-enable the disabled port.

Tear down a port and associated connections, and de-allocate the resource back to
[vesPortTeardown] the system.
END
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 168

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

10.4 Connection Management

The following flow diagram illustrates the typical function call sequences to setup,
update and teardown a VC connection.

Figure 8: Connection Management Flow Diagram

START

!

vcsConnSetup]

!

™\

-

vcsConnQOSRetrieve
vcsConnQOSUpdate

VcsConnStatus
VcsGetStatVcRxCnts
VcsGetStatVcTxCnts
vecsGetStatVeNcCnts

VcsConnDisable
vcsConnEnable

|

l

vcsConnTeardown]

|

END

The chipset must be in ACTIVE state when calling the following APIs.

Pre-requirement: the associated ports should have already been setup.

Setup a new VC connection, and allocates necessary resources for the connections.
A unique connection ID (from 0 to 65535) is returned after the connection is
successfully established.

OPTIONAL: The APIs can be used to retrieve the current QOS settings of the VC
connection, and update the connection with a new set of QOS parameters.

OPTIONAL: The APIs can be used to check the status of the connection, as well as
the accumulated Rx and Tx cell count on the connection.

OPTIONAL: To temporary disable the receive and transmission of cells on a
connection, or re-enable the disabled connection.

Tear down a connection, and de-allocate the resource back to the system.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 169
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

10.5 Loopback Test

The following flow diagram illustrates the typical function call sequences to
conduct the loopback tests of the chipset system.

Figure 9: Loopback Test Flow Diagram

START The chipset must be in ACTIVE state when calling the following APIs.
vesLpbkSetup] Setgp a qupback path or connections, and configure a specified HSS link port into
a Diagnostic Loopback mode.

. If the testing point is set at a Loop/WAN port, the USER can conduct any loopback
Testing tests using some necessary ATM traffic generator (e.g. HP E42829B ATM traffic
generator) equipment.

If the testing point is set at Microprocessor port, calling the function to conduct the
Loopback tests.

vcsUpLpbkTest

Reset the Loopback HSS link to the normal mode, and clears the loopback

vesLpbkClear connections in the APEX and ATLAS VC tables.
END
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 170

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

10.6 Multicast Support

The following flow diagram illustrates the typical function call sequences to setup,
update and teardown a multicast group.

Figure 10: Multicast Support Flow Diagram

START The chipset must be in ACTIVE state when calling the following APIs.
[vcsMcSetup] Setup a new multicast group, and allocates necessary resources for the the
connection group. A unique multicasting connection handle is returned after the
l multicast group is successfully established.
A vesMcAddConn : ;)ZTI;)NAL: The API can be used to add a VC connection to the existing multicast
roup.

OPTIONAL: The API can be used to drop a VC connection from the existing
vcsMcDropConn multicast group.

. Y

|

[vcsConnTeardown

|

END

] Tear down the multicast group, and de-allocate the resource back to the system.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 171
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

10.7 Line/WAN Card Management and Communication

The following flow diagram illustrates the typical function call sequences to add,
remove and/or communicate with a remote Line/WAN card.

Figure 11: Line/WAN Card Management Flow Diagram

The chipset must be in STANDBY or ACTIVE

START state when calling the following APIs.
It adds a Line or WAN card to the chipset
[vesAddCard] system, and activates the HSS link between the
remote card and chipset core card. The driver
marked the availability of the Loop or WAN
ports in its CAC database.
N
(/ \ Inband Communications: To setup a bi-

directional communication channel between

vesChniSetup the chipset core card and remote card.

vcsBOCTx
Inband Communications: Send a message to

BOC signaling: vesChniTx the remote card over the channel.
The APIs can be used to
transmit a BOC signal to the
remote card, or receive a

BOC code from the remote Inband Communications: receive a message
board. vesChniRx from the remote card over the channel.
vcsBOCRx :
H i| Inband Communications: Shutdown the
vesChniShutdown ;| communication channel.
)X =
[vesRemoveCard] It removes the Line or WAN card from the
chipset system, and de-activates the HSS link
between the remote card and chipset core
card. The driver marked the absence of the
END Loop or WAN ports in its CAC database.
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 172

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

10.8 OAM Management

The following flow diagram illustrates the typical function call sequences to setup,
update and clear an OAM configuration over a VC connection.

Figure 12: OAM Management Flow Diagram

START The chipset must be in ACTIVE state when calling the following APIs.
[vcsConnSetup] Pre-requirement: the VC connection should be already setup by calling
: l i vesConnSetup.
vesConnSetu OPTIONAL: Setup another VC connection in a backward direction if a backward VC
P i has not been established yet. OAM backward reporting cells will be routed to the
: # backward path.
l Setup and enables a F4 or F5 OAM Support over the connection. For the connection
[vcsVcOAMSetup] originated from WAN port, a shortcut backward path may be used, which can be
setup directly in the ATLAS Egress VC table without passing through the APEX, as

shown in Figure 21.

é vcsVcOAMRetrieve
OPTIONAL: these three APIs can be used to retrieve the current setting of OAM

vcsVcFMUpdate configuration, and modify the OAM parameters for the VC.
vcsVcPMUpdate

vcsVcOAMGetDefect OPTIONAL: the API can be used to poll the received OAM defect type and locations.

|

[vcsVcOAMClear

|

END

Disable the F4 or F5 OAM support, and clear the OAM configuration. Therefore, all
incoming OAM cells will be passed transparently through the chipset thereafter

|

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 173
Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

10.9 F4 to F5 Processing

The following flow diagram illustrates the typical function call sequences to setup,
update and clear a F4 to F5 Processing.

Figure 13: F4 to F5 Processing Flow Diagram

START

!

[vcsConnSetup]

|

[vcsOAMSetup]
[VcsF4toF5Setup]
\
VcsF4toF5AddVec
VcsF4toF5DropVcec
J

|

[VcsF4toF5Clear

|

END

—

The chipset must be in ACTIVE state when calling the following APIs.

Pre-requirement 1: the F4 (VPC) connection and all constituent F5 (VCC)
i connections should have already been setup by calling vesConnSetup.

Pre-requirement 2: the OAM support over the F4 (VPC) connection(s) should have
 already been setup by calling vesOAMSetup. The OAM support over constituent F5
(VCC) connections might be setup too, if desired.

Setup and enables the F4 to F5 OAM Processing. It adds the constituent F5
connections to the processing list by linking the F4 VPC pointer into the F5
connections.

OPTIONAL: The API allows USER to dynamically add a VCC connection to the F4 to
F5 Processing list.

OPTIONAL: The API allows USER to dynamically drop a VCC connection from the F4
to F5 Processing list.

Disable the F4 to F5 OAM processing over the VPC OAM connection by removing
the F4 VPC pointer from the constituent F5 connections.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 174

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

10.10 Protection Switch and Line Load Transfer

The following flow diagram illustrates the typical function call sequences to
conduct a protection switch between an active core card and a hot-standby core
card, or transfer the connection load of a line card from one serving core card to the

other core card.

Figure 14: Protection Switch and Load Transfer Flow Diagram

Protection Switch
START

!

Setup connections on

one active core card,

while the other core

card is in hot-standby
mode

The chipset must be in
ACTIVE state when calling
the following APIs.

Remove the load from the
active core card

vcsRemovelLoad J

Add the load to the other
core card vcsAddLoad

|

: Now the traffic load
goes through the
second core card

|

END

Line Load Transfer
START

!

Setup connections

to/from a Line card on

one core card

ACTIVE state when calling

'The chipset must be in
‘ the following APIs.

Remove the load
associated with a Line

(vcsRemoveLineLoadJ
card from the core card

Add the removed Line

vesAddLineload J load to the other core

card

{ Now the traffic load !
to/from the line

i card goes through :

i the other core card

l

END

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 175

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

10.11 Chipset Reset and Quick Recovery

Figure 6 illustrates the typical function call sequences that occurs for a quick
recovering of all existing VC connections after reset of chipset (core card).

Figure 15: Chipset Reset and Quick Recovery Flow Diagram

START Pre-reset state: some connections/ports, Control channels, OAM or
F4 to F5 support might have been setup

Reset the chipset card (hardware). All VC connections/ports setup are perserved in
[vcsReset] software. Chipset is in VCS_PRESENT state.
[vesInit] Re-initialize the chipset card (hardware). Chipset is in VCS_STANDBY state.
[vcsActivate] Activate the chipset card (hardware). Chipset is in VCS_ACTIVE state.
. When the chipset is back to VCS_ACTIVE state, rebuilds all VC connections, ports
RebuildvC — ’ ' '
veskebul s channels and OAM, F4 to F5 Processing support into chipset hardware.
l After the quick recovery: the connections/ports, Control channels,
; OAM or F4 to F5 support have now been restored.
END

10.12 Interrupt service module

Figure 16 illustrates the interrupt service model used in the chipset driver design.
Note that the underlying device driver provides the service routines for each chipset
device. This section gives an overview of the interrupt service model.

The interrupt service code includes some system specific code (routines prefixed by
sys) that is typically implemented by the user for their system, as well as some
system independent code (prefixed by chipset device name) provided by the device
drivers that does not change from system to system.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 176
Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

The interrupt handle routines prefixed by sys (e.g. sysApexHiIntHandler and
sysApexLoIntHandler) are system-specific, and shall be implemented by the
user. They are installed in the interrupt vector table of the system processor. These
routines are invoked when one or more chipset devices interrupt the processor.

Interrupt servicing

When an interrupt occurs, sysXXXHandler (where XXX denotes a chipset device
name, e.g. Apex, Atlas, Vortex, Duplex) invokes a device driver provided routine,
XXXISR, for each device that has interrupt processing enabled. XXXISR reads the
Interrupt Status register of the chipset device and returns with the status information
if a valid error/status bit is set. This status information is then sent by
sysXXxXHandler selectively to one of two tasks — the SAR Receive tasks or the
DPR task depending on the nature of the condition(s) detected.

sysXXXSarRxTaskFn are system-specific routines that run as separate tasks (SAR
Rx tasks) within the RTOS. These tasks wait for messages, sent by
sysXXXIntHandler (in APEX case) or sysXXXDPRTask (in VORTEX and
DUPLEX cases), to arrive at their associated message queues. These messages
correspond to arrival of cell(s) in the SAR TX Data register(s)

Once a message has been received by sysXXXSarTaskFn, it invokes the driver-
provided routine, xxxSarRxTaskFn. The xxxSarRxTaskFn routine takes the
appropriate actions based on the status information received in the message.
Actions include extracting cells/frames from the SAR TX registers and reporting
frame re-assembly timeouts or length errors to the application via indication
callback functions. In the case of APEX Rx task, it multicasts the cell/frame to a list
of destination VCs if the incoming cell/frame belongs to a multicasting connection.
In the case of ATLAS Rx task, it processes the cell and may send out a backward
reporting OAM cell if the received cell is of certain OAM types.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 177
Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Figure 16: Interrupt Service Model

DUPLEX Device Driver

sysDuplexIntHandler

sysDpxDPRtask

—L L[

dpxDPR

Chipset
Driver

indDuplexNotify

Application

p-indVcsError

interrupt context

I

dpxISR information m_
indDuplexRxCell
vesRxSarTaskFn| | sysVesSarRxTaskFn
VORTEX Device Driver
sysVortexIntHandler
interrupt context sysVtxDPRtask
information
VEXISR . .
indVortexNotif
EI:I:I—» VOXDPR Y p indVcsError
APEX Device Driver
. sysApexDPRtask
sysApexHilntHandler
indApexcCritical . .
apexHiDPR p-indVcsCritical
. 1
apexHiISR interrupt context
information indApexError .
E apexLoDPR p-indVcsError
Multicasting
sysApexLoIntHandler sysApexSarRxTaskFn
indRxCell,)
interrupt context indRxFri !ndeDataCeII,
LoISR information apexSarRxTaskFn =|ndeDataFrm
ATLAS Device Driver sysAtlasDPRtask p-indRxChnl
Trmmmmm——— interrupt context
information e .
atlasHi . -
atlasHiISR e indAtlasCritical indVesCritical
ST
atlasLoDPR - >
atlasLoISR indAtlasError indVcsError
< .
Microprocessor >
atlasSarRxTaskFn AM ;
sysAtlasSarRxTaskFn QA STzt indRXOAM
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 178

Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

sysXXXDPRtask is another system-specific routine that runs as a separate task
(DPR task) within the RTOS. This task also waits for messages, sent by
sysXXXIntHandler, to arrive at an associated message queue. These messages
correspond to interrupt conditions that are not SAR-related.

When a message is received, the driver-supplied function xxxDPR is invoked. This
function updates the interrupt counters for the interrupt events causing the interrupt.
If at least one event crosses its threshold, an indication callback is invoked. The
input arguments passed to this indication function include the user’s context for the
device and an indication vector that consists of threshold crossing events. After
processing all interrupt events, the DPR reads the interrupt registers again and
performs the same operations if more bits are found to be set. Finally, when no
more valid bits are set in the interrupt register, the DPR routine exits after enabling
the low-priority error interrupt processing.

Note that the driver-provided routines, xxxISR, , xxxSarRxTaskFn, and xxxDPR
routines themselves do not specify a communication mechanism between the ISRs
and tasks. Therefore the user is given full flexibility in choosing a communication
mechanism between the two. The most common way to implement this
communication mechanism is to use a message queue, a service that is provided by
most RTOSes.

Installation and removal of interrupt handlers

The system specific routines, sysXxxXIntHandler, and sysXXXDPRtask, are
implemented by the user. sysxxXIntHandler is installed in the interrupt vector
table of the processor using user-implemented routines,
sysXXXIntInstallHandler. The sysXXXDPRtask is spawned as a task during
the first time invocation of sysXXXIntInstallHandler. In addition,
sysXXXIntInstallHandler also creates the communication channels between
sysXXXIntHandler and sysXxXDPRtask. This communication channel is
usually implemented as a message queue.

Similarly, during removal of interrupts, the sysXXXIntHandler and
sysXXXIntHandler routines are removed from the microprocessor’s interrupt
vector table and the sysXXXDPRtask task is deleted. This code is implemented by
the user in system specific functions sysXxXIntRemoveHandler.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 179
Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

11

PORTING GUIDE

This section outlines how to port the VORTEX chipset driver to your hardware and
OS platform. However, this manual can offer only guidelines for porting the chipset
driver because each platform and application is unique.

11.1 Driver Source Files

The C source files listed in Table 49 and Table 50 contain the code for the chipset
driver. You may need to modify the code or develop additional code. The code is in
the form of constants, macros, and functions. For ease of porting, the code is
grouped into source files (src) and include files (inc). The Src files contain the
functions and the inc files contain the constants and macros. A makefile is also
included. For all the underlying device driver (APEX, ATLAS, VORTEX and
DUPLEX), please refer to their Device Driver User Manual for porting instructions.
Table 49: Chipset Driver Source Files

File Description

ves apil.c Chipset management API functions

ves api2.c Connection/port management API functions

ves api3.c Control Channel/Multicasting/OAM API functions

ves_hw.c Hardware interface functions

ves rtos.c RTOS interface functions

Ves_Sys.c System-dependent utility functions

ves_ind.c Internal indication callback functions for underlying

device drivers

ves buf.c Buffer management for cell/frame Rx from uP

ves_queu.c Generic queue functions

ves util.c Internal utility functions

ves_test.c Example implementation of callback and Chipset

Initialization Vector functions
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 180

Document ID: PMC-1991216, Issue 3

P“ A c PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Table 50 : Chipset Driver Include Files

File Description

ves api.h API function prototypes, data structures, constants, and
definitions

ves_type.h Variable type definitions

vcs hw.h

Hardware interface constants and macro definitions

vcs rtos.h

RTOS interface constants and macro definitions

ves_sys.h System-dependent constant and function prototype
ves_err.h Error codes returned by the chipset driver
ves_buf.h Prototypes of driver’s internal functions
ves_ind.h Prototypes of driver’s internal callback functions
vcs.h

Driver’s internal data structures

vcs_queu.h

Data structures, prototypes of generic queue functions

vecs_test.h

Data structures, constants, and definitions used by sample
code in ves_test.c

11.2 Porting Procedure

The following procedures summarize how to port the chipset driver to your
platform. The subsequent sections describe these procedures in more detail.

To port the chipset driver to your platform:

Step 1: Port the driver’s hardware interface (page 182):

Step 2: Port the driver’s OS extensions (page 183):

Step 3: Port the driver’s system-dependent utility functions (page 185);

Step 4: Port the driver’s application-specific elements (page 185):

Step 5: Build the driver (page 186).

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 181
Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Step 1: Porting the Hardware Interface

This section describes how to modify the chipset driver for your hardware platform.
To port the driver to your hardware platform:

1. Modify the variable type definitions in vcs_type.h.

2. Modify the low-level device read/write macros in the ves_hw.h
file. You may need to modify the raw read/write access macros
(sysvVcsRawRead and sysvcsRawWrite) to reflect the application’s
addressing logic.

3. Define the hardware system-configuration constants in the vcs _hw.h
file. Modify the following constants to reflect the application’s
hardware configuration:

Device Constant Description Default

VCS_MAX DEVS The maximum number of chipset 2
core cards to be controlled by the
driver

VCS_MAX VORTEXS The number of VORTEX chips ona | 2
chipset core card

VCS_MRX VCS The maximum number of vc’s to be | 16K
supported by the chipset driver
depends on the APEX SDRAM size

VCS_MAX LOOP_PORTS The maximum number of Loop 2K
ports supported by the system

VCS_MAX WAN PORTS The maximum number of WAN 4
ports supported by the system

VCS_MAX CELL RATE The maximum traffic throughput in | 420K
half duplex: in cells/second

VCS_MAX_CELL RATE PER TOOP The maximum traffic throughput 230K
per loop port: in cells/second

VCS_SYSCLK FREQ APEX System clock frequency in 80000000
Hz

VCS_SYSCLK FREQ ATLAS ATLAS System clock frequency in | 20000000
Hz

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 182

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Device Constant Description Default
VCS_MAX NUM CELL BUFFS The maximum cell buffer size in 64K
cells, determined by APEX SRAM
size.
VCS_APEX MEM OFFSET Memory offset of APEX device 020000

VCS ATLAS MEM OFFSET

Memory offset of ATLAS device 0x8000

VCS DUPLEX MEM OFFSET

Memory offset of DUPLEX device | 9*14000

VCS VORTEX MEM OFFSET

Memory offset of first VORTEX 0xC000

device
VCS_VORTEX MEM RANGE memory range per VORTEX device 0x4000
4. Modify the sysVcsCardDetect function in ves_hw.c as per your hardware

environment. This function should output the base addresses of the chipset
devices. This function also outputs a pointer to system-specific
configuration information (for example, IRQ associated with the chipset
device interrupt). This output parameter is simply stored by the driver in the
CDB can be returned as NULL if not required by other system-specific

functions.

Step 2: Porting the RTOS interface

The RTOS interface functions and macros consist of code that is RTOS dependent
and needs to be modified as per your RTOS’s characteristics.

To port the driver’s RTOS interface:

1. Redefine the following macros in vcs_rtos.h to the corresponding

system calls that your target system supports.

Service Type Macro Name Description
Memory sysvVesMemhlloc Allocates a memory block
sysvesMentree Frees a memory block
sysvestemSet Fills a memory block with a specified value
sysvesMemCpy Copies the contents of one memory block to
another
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 183

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Service Type Macro Name Description
Buffer SysVesGetVeORMBut £ Get a memory block to store VC OAM
Management
SysVesFreeVeOAMBut £ Frees the VC OAM memory block
SysVesGetFatol5Ch Get a memory block to store F4 to F5
Control Block
SysVesFreeF4toFsCo Frees the F4 to F5 CB memory block
Semaphores sysVesSemCreate Creates a mutual-exclusion semaphore
sysVcsSembDelete Destroys the specified semaphore
sysVcsSemlake Acquires the specified semaphore
sysVosSenGive Relinquishes the specified semaphore

2. Modify other OS-specific Constant definition in vcs_rtos.h, such as
stack size and task priority for the ICC Rx and Watchdog tasks.

3. Modify the system-specific interrupt handler, SAR processing and delay
routines in ves_rtos.c:

Service Type

Function Name

Description

ICC Rx task

sysVcsIccInstall

message queucs

sysVcsIccRemove

Spawns the ICC Rx task and associated

Deletes the ICC Rx task and associated
message queues

sysVcsIccRxTaskFn

This function is executed in the context
of the ICC Rx task. It extracts cells and
frames from the underlying DUPLEX
device uP interface and sends them to
the application task using the
indRxCell/indRxFrm callback
functions

sysVesIccRxMsg

This routine is invoked by
vesIndDuplexRxCell() to inform the
ICC Rx task of the incoming
cells/frames.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 184
Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Service Type Function Name Description
Watchdog Polling task | SYsVesWdgInstall Spawns the Watchdog task
SysVcsWdgRemove Deletes the Watchdog task.
SysVcsWdgPtrlTaskFn This function is executed in the context
of the Watchdog task. It activate
watchdog patrol for APEX devices, and
poll the Ingress COS Status FIFO of
ATLAS devices
Timer sysvesbelayTask Puts the currently executing task to
sleep for a specified number of
milliseconds

Step 3: Porting the System-Specific utility functions

Porting the system-specific utility function includes modifying the utility functions
invcs_sys.c file. You may tailor them to your own network system requirements.

To port the driver’s system-specific utility functions:

1. Modify the routines for calculating congestion thresholds,
sysVecsPortThresholds and sysVesVeThresholds.

2. Modify the routines for calculating scheduling and shaping parameters, which
include sysvVcsLoopPortScheduler, sysVcsWANPortScheduler,
sysVcsVeClassScheduler and sysVesVeShaping.

3. Modify the Tables for the default policing actions vs. traffic type.

4. Modify the port mapping routines, if you wish to use a different mapping

algorithm.

Step 4: Porting the Application-Specific Elements

Porting the application-specific elements includes coding the indication callback
functions and defining the initialization vector for chipset devices.

To port the driver’s application-specific elements:

1. Modify the default device initialization vectors in vcs_test . c to meet your
application needs, reflect the chipset core card architecture, and provide bus

interface consistence between the chipset devices.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 185

Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

2.

Code the callback functions according to the application. Example
implementations of these callback functions are provided in vcs_test.c. The
callback functions are the following:

void indRxDataCell (UINT4 u4ECI, sVCS CELL HDR *psHdr,
UINT1 *pulPyld, INT4 result);

void indRxDataFrm (UINT4 u4ECI, sVCS CELL HDR *psHdr, UINT1
*pulFrm, UINT4 u4Length, INT4 result);

void indRxCtrlMsg (UINT2 u2ChnlId, INT4 result);

void indRxBOC (VCS USR_CTXT vcsUsrCtxt, sVCS DEV_ID
*psDevId, UINT1 ulHssLnk, UINT1 ulBOCcode) ;

void indRxOAM(VCS USR_CTXT vcsUsrCtxt, sVCS DEV_ID
*psDevId, INT4 u4OamType, UINT1l ulCmdFlag, INT4 argl, INT4
connId, INT4 result);

void indCosStatus (UINT4 u4ICI, UINT2 u2Status) ;

void indCritical (VCS_USR CTXT vcsUsrCtxt, sVCS DEV_ID
*psDevId, UINT4 u4EventId, UINT4 argl, UINT4 arg2, UINT4
arg3l) ;

void indError (VCS_USR CTXT vecsUsrCtxt, sVCS DEV_ID
*psDevId, UINT4 u4EventId, UINT4 argl, UINT4 arg2, UINT4
arg3l) ;

Step 5: Building the Driver

This section describes how to build the chipset driver.

To build the driver:

1. Modify the Makefile to reflect the absolute path of your code, your compiler
and compiler options

2. Choose from among the different compile options supported by the driver as
per your requirements.

3. Compile the source files and build the chipset API driver library using your
make utility.

4. Link the chipset API driver library to your application code.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 186

Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

12 CODING CONVENTIONS

This section describes the coding conventions used in the implementation of all

PMC driver software.

12.1 Variable Type Definitions

Table 51: Variable Type Definitions

Type Description

UINT1 unsigned integer — 1 byte
UINT2 unsigned integer — 2 bytes
UINT4 unsigned integer — 4 bytes
INT1 signed integer — 1 byte
INT2 signed integer — 2 bytes
INT4 signed integer — 4 bytes
VOID void

12.2 Naming Conventions

Table 52 presents a summary of the naming conventions followed by all PMC
driver software. A detailed description is then given in the following sub-sections.

The names used in the drivers are verbose enough to make their purpose fairly
clear. This makes the code more readable. Generally, the device’s name or

abbreviation appears in prefix.

Table 52: Naming Conventions

Type Case

Naming convention

Examples

Macros Uppercase

prefix with “m” and
device abbreviation

mVCS WRITE

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use

Document ID: PMC-1991216, Issue 3

187

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Type Case Naming convention | Examples

Constants Uppercase prefix with device VCS_ REG
abbreviation

Structures Hungarian Notation | prefix with “s” and sVCS_DDB
device abbreviation

API Functions Hungarian Notation | prefix with device name | vesAdd ()

Porting Functions | Hungarian Notation | prefix with “sys” and sysVCSReadReg ()
device name

Other Functions Hungarian Notation myOwnFunction ()

Variables Hungarian Notation maxDevs

Pointers to Hungarian Notation | prefix variable name pmaxDevs

variables with “p”

Global variables | Hungarian Notation | prefix with device name | vesGDD

Macros

e Macro names must be all uppercase.

e Words shall be separated by an underscore.

e The letter *m’ in lowercase is used as a prefix to specify that it is a macro, then
the device abbreviation must appear.

e Example: mVCS_WRITE is a valid name for a macro.

Constants

e Constant names must be all uppercase.

e Words shall be separated by an underscore.

e The device abbreviation must appear as a prefix.

e Example: VCS_REG is a valid name for a constant.

Structures

e Structure names must be all uppercase.

e Words shall be separated by an underscore.

e The letter ‘s’ in lowercase must be used as a prefix to specify that it is a
structure, then the device abbreviation must appear.

e Example: sVCS_DDB is a valid name for a structure.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991216, Issue 3

188

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Functions

API Functions

e Naming of the API functions must follow the hungarian notation.
e The device’s full name in all lowercase shall be used as a prefix.

e Example: vesadd () is a valid name for an API function.

Porting Functions

Porting functions correspond to all function that are HW and/or RTOS dependent.

e Naming of the porting functions must follow the hungarian notation.
e The ‘sys’ prefix shall be used to indicate a porting function.
e The device’s name starting with an uppercase must follow the prefix.

e Example: sysVCSReadReg() is a hardware / RTOS specific.
Other Functions

e Other Functions are all the remaining functions that are part of the driver and
have no special naming convention. However, they must follow the hungarian
notation.

e Example: myOwnFunction () is a valid name for such a function.

Variables

e Naming of variables must follow the hungarian notation.

e A pointer to a variable shall use ‘p’ as a prefix followed by the variable name
unchanged. If the variable name already starts with a ‘p’, the first letter of the
variable name may be capitalized, but this is not a requirement. Double pointers
might be prefixed with ‘pp’, but this is not required.

e (Global variables must be identified with the device’s name in all lowercase as a
prefix.

e Examples: maxDevs is a valid name for a variable, pmaxDevs is a valid name
for a pointer to maxDevs, and vesBaseAddress is a valid name for a global
variable. Note that both pprevBuf and pprevBuf are accepted names for a
pointer to the prevBuf variable, and that both pmatrix and ppmatrix are
accepted names for a double pointer to the variable matrix.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 189
Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

12.3 File Organization

Table 53 presents a summary of the file naming conventions. All file names must
start with the device abbreviation, followed by an underscore and the actual file
name. File names should convey their purpose with a minimum amount of
characters. If a file size is getting too big one might separate it into two or more
files, providing that a number is added at the end of the file name (e.g.

vcs apil.corvcs_api2.c).

There are 4 different types of files:
e The API file containing all the API functions

e The hardware file containing the hardware dependent functions
e The RTOS file containing the RTOS dependent functions

e The other files containing all the remaining functions of the driver

Table 53: File Naming Conventions

File Type File Name

API ves_apil.c, ves api.h

Hardware Dependent ves_hw.c, ves_hw.h

RTOS Dependent ves_rtos.c, ves_rtos.h

Other ves_init.c, ves_init.h
API Files

e The name of the API files must start with the device abbreviation followed by
an underscore and ‘api’. Eventually a number might be added at the end of the
name.

e Examples: ves_apil.c is the only valid name for the file that contains the
first part of the API functions, vcs_api . h is the only valid name for the file
that contains all of the API functions headers.

Hardware Dependent Files

e The name of the hardware dependent files must start with the device
abbreviation followed by an underscore and ‘hw’. Eventually a number might
be added at the end of the file name.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 190
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

e Examples: vcs_hw.c is the only valid name for the file that contains all of the
hardware dependent functions, ves_hw.h is the only valid name for the file
that contains all of the hardware dependent functions headers.

RTOS Dependent Files

e The name of the RTOS dependent files must start with the device abbreviation
followed by an underscore and ‘rtos’. Eventually a number might be added at
the end of the file name.

e Examples: ves_rtos.c is the only valid name for the file that contains all of
the RTOS dependent functions, ves_rtos. h is the only valid name for the file
that contains all of the RTOS dependent functions headers.

Other Driver Files

e The name of the remaining driver files must start with the device abbreviation
followed by an underscore and the file name itself, which should convey the
purpose of the functions within that file with a minimum amount of characters.

e Examples: vcs_init.c is a valid name for a file that would deal with
initialization of the device, vcs_init.h is a valid name for the corresponding
header file.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 191
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

13

13.1

13.2

APPENDIX A: CALCULATION OF
CONGESTION THRESHOLD AND SCHEDULING
PARAMETERS

Introduction

The queue engine of the APEX has a fixed amount of resources to buffer the cells
of the active connections. To allocate these resources fairly and effectively, the
application has to set congestion thresholds at the port, class and connection level,
which guarantee certain amount of resources to the connection during conditions of
congestion. The minimum VC level congestion parameters are determined by the
traffic type and QOS parameters for the connection. The actual port/class/VC
congestion thresholds are calculated and dynamically updated based on the
minimum thresholds of the existing connections in the port/class.

The queue engine of the APEX provides scheduling at three levels, port, class and
connection level. The scheduling parameters are determined by the type of traffic
and the QOS parameters. The scheduling parameters have to be set in a way that
ensures fair scheduling within the same class.

The chipset driver has utility functions to calculate the port, class and connection
thresholds for congestion management. It also has utility functions to calculate port,
class and connection scheduling parameters to ensure fair scheduling. The
algorithm for calculating the congestion thresholds and the scheduling parameters is
network specific and thus the utility functions in the chipset driver should only be
considered as a sample implementation. The user may modify these routines to
tailor them to their own network requirements.

Calculation of congestion thresholds

The issues to be considered when calculating the congestion parameters for the
port, class and connection are as follows:

(1) Based on the QOS parameters the driver has to guarantee a certain amount of
resources to the connection. These resources should be available to the connection
during conditions of congestion. Therefore once the driver guarantees the resources
to a connection, these resources are reserved for the connection and cannot be
shared with any other connection.

(2) There are conditions, where all the system resources are not reserved for the
existing connections. In this case we have spare resources, which would be wasted.
So in order to utilize this spare resources the utility functions should distribute the
spare resources fairly among the existing connections based on class types. This
would increase the throughput of the existing connections.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 192
Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

The congestion algorithm has to strictly follow the first condition and maintain the
QOS resource guarantee under all conditions. As far as sharing the spare resource
the driver can use different algorithms to fairly distribute the additional resources.
One option is to distribute the spare resource equally amongst all connection. In this
scenario, every time a new connection is added, due to a reduction in spare
resources, the driver will have to re-calculate the congestion thresholds for all
existing connections. This could be computationally intensive since the chip set can
have a maximum of 64K connections. Therefore the algorithm has to strike a
balance between distributing spare resource fairly and not be too computationally
intensive.

In the algorithm implemented by the driver, the application will specify the
direction thresholds for the Loop and WAN directions at the time of initialization.
The minimum port threshold is specified by the application at the time of the port
setup configuration. The driver will calculate the port thresholds to guarantee the
requested resources and also to distribute the spare resources available, among all
the ports in the direction of the port being configured. The spare resources allocated
to the port are then distributed among the classes in these ports. This means that
each time a port is added or deleted, the spare resources will change Thus, we will
have to recalculate the thresholds for all the configured ports in that direction and
also the thresholds for all the classes within these ports.

On the other hand, when a connection is configured, the connection thresholds are
calculated such that the minimum resources required for the connection are
allocated, based on the QOS parameters, and the spare resources available in each
class is shared among all the connections within the class. Each time a connection is
added or deleted or the QOS of the connection is updated, the spare resources
available in the class changes. Therefore the thresholds of all the classes and all the
connections, in the port on which the connection is modified, are recalculated.

The following sections will explain in greater detail as to how the different
thresholds are calculated.

Direction threshold

The direction thresholds for the Loop direction and the WAN direction are provided
by the application in the initialization vector for the APEX chip. The direction
thresholds specified by the user should conform to the following conditions:

e dirClp1Thresh < dirClpOThresh < dirMaxThresh
e (dirMaxThresh for Loop) + (dirMaxThresh for WAN) = (maxCellBuf)*(z)

where maxCellBuf is provided by the application in the initialization vector for
APEX reflects the total number of cell buffers available to the APEX chip.
Maximum value of maxCel1Buf is 256K cells.

z — statistical multiplexing factor determined by user

z > | means statistical multiplexing is assumed

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 193
Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

z = | means no statistical multiplexing

The number of maximum cell buffers is dependent on the amount of SDRAM
connected to the APEX. In the reference design implementation the maximum
number of cell buffers is 64K.

Port threshold

The application will request a minimum port threshold (portMinThresh) at the
time of port configuration. The value of the minimum port threshold would depend
on the port profile e.g. in case of a DSLAM implementation it would depend on the
bandwidth of the DSL modem, which sends traffic on this port. It should be noted
that the portMinThresh is a guarantee that this resource is reserved for the
connections configured on this port. Since the driver is guaranteeing this resource,
it should first check whether enough resources are available. To do this it will use
the following criteria:

(Sum of portMinThresh for all existing ports for the port direction) +
(portMinThresh for new port) <= (dirMaxThresh for the port direction)

If this condition is not met, the port configuration request will be rejected. If the
condition is met the port configuration request is honored.

Even though the port is guaranteed portMinThresh cell buffers, the available
resource could be larger than this number. To share the spare resources fairly
amongst all the active ports in a particular direction (Loop or WAN)), the driver will
calculate the portMaxThresh using the following criteria:

e portMaxThresh = (portMinThresh) * (dirMaxThresh for the direction) /
(sum of portMinThresh for all active ports in the direction)

The driver will calculate the portC1p0Thresh and portClplThresh as follows:

e portClplThresh = (portMaxThresh) * (dirClplThresh) /
(maxDirThresh)

® portClp0Thresh = (portMaxThresh) * (dirClp0Thresh) /
(dirMaxThresh)

Note: each time the application adds a new port, the spare resources will be reduced
by a certain amount and the driver will have to recalculate and update the
congestion threshold for all the ports in a particular direction (2048 for loop and 4
for WAN). Similarly when a port is deleted, the spare resources will be increased by
a certain amount and all the port thresholds have to be recalculated.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 194
Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

If the application does not wish to use this algorithm, the API for configuring the
port can be invoked with the forceFlag set to 1. In this case, the application
specified values of portMaxThresh, portClplThresh and
portClp0Thresh are used without any change. No spare resources are allocated

to the port and the threshold values for the port are unchanged until the port is
deleted.

The port threshold parameters are written to the APEX chip as 4 bit log and 4 bit
fractional format. The tables for encoding the values are shown in Table 60. When

setting the port thresholds the application should also consider the rounding off
error, while converting an integer value to a 4 bit log 4 bit fractional value.

Class threshold

The class thresholds will depend on the following:

(1) It will depend on the connections configured under each class. The class
thresholds should be large enough to be able to maintain the ‘resource guarantee’

given to each connection in the class.

(2) It will also depend on how the spare resources within the port are to be
distributed between the 4 classes.

The spare resources within the port is calculated as follows:

Spare resources = portMaxThresh —

(sum of (veMinThresh*(1 - CLR)) for connections in class 0) —

(sum of (veMinThresh*(1 - CLR)) for connections in class 1) —

(sum of veMinThresh for connections in class 2) —

(sum of veMinThresh for connections in class 3)
where CLR is the cell loss ratio for the connection.
The spare resources are distributed between the 4 classes based on the value of the
constants VCS_SPARE_RESOURCES_CLASSO,
VCS_ SPARE RESOURCES CLASS1, VCS SPARE RESOURCES CLASS2,
VCS_SPARE RESOURCES CLASS3. The constants determine the percentage
of the spare resources allocated to a particular class and the sum of these 4
constants should be less than or equal to 100.

The class thresholds for the 4 classes are determined as follows:

Class 0:

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 195
Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

classMaxThresh = (sumof (vcMinThresh* (1 - CLR))
for connections in class 0) + (VCS_SPARE RESOURCES CLASSO0 *
spare resources)

classClp0Thresh =(sum of vcClpOThresh for connections in
class 0) + (VCS_SPARE_RESOURCES CLASSO*spare resources)

classClplThresh =(sum of vcClplThresh for connections in
class 0) + (VCS_SPARE_RESOURCES CLASSO*spare resources)

Class 1:
classMaxThresh = (sumof (vcMinThresh* (1 - CLR)) for
connections in class 1) +(VCS_SPARE_RESOURCES_CLASSl *

spare resources)

classClp0Thresh = (sumof vcClp0Thresh for connections in
class 1) + (VCS_SPARE_RESOURCES_CLASSl*spare resources)

classClplThresh = (sumof vcClplThresh for connections in
class 1)+ (VCS_SPARE_RESOURCES CLASSl*spare resources)

Class 2:

classMaxThresh = (sumof vcMinThresh for connections in class
2) + (VCS_SPARE RESOURCES CLASS2*spare resources)

classClp0Thresh = (sumof veClp0Thresh for connections in
class 2)+ (VCS_SPARE RESOURCES CLASS2*spare resources)

classClplThresh = (sumof vcClplThresh for connections in
class 2)+ (VCS_SPARE_RESOURCES CLASS2*spare resources)

Class 3:

ClassMaxThresh = (sumof vcMinThresh for connections in class
3) + (VCS_SPARE RESOURCES CLASS3 * spare resources)

classClp0Thresh = (sumof vcClp0Thresh for connections in
class 3)+ (VCS_SPARE RESOURCES CLASS3*spare resources)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 196
Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

classClplThresh = (sumof vceClplThresh for connections in
class 3)+ (VCS_SPARE RESOURCES CLASS3*spare resources)

As explained in the next section, the connections in class 0 and 1 are connections of
traffic type CBR and RT-VBR. These connections by their nature are latency-
senstive type connections and their traffic normally has small latency. They usually
do not need spare resources allocated to them. On the other hand the connections in
class 2 and 3 are of traffic type NRT-VBR, GFR, UBR and ABR, which are less
sensitive in latency and their traffic could have large latency.. Allocating spare
resources to these classes will increase the buffering space and therefore reduces
congestion of these connections. Therefore, majority of the spare resources should
be allocated to classes 2 and 3.

Note: each time a port is added or deleted, the value of the spare resources for each
port in the same direction will change. This in turn will affect the class thresholds.
On the other hand, each time a connection is added or deleted, the thresholds of the
class containing the connection will change. Thus, each time a port is added or
deleted, or a connection is added, updated or deleted, the class thresholds will have
to be recalculated.

The class thresholds are written to the APEX chip in 4 bit log and 4 bit fractional
format. This is the same format as used for the port thresholds. The tables for
encoding the values are shown in Table 60.

Connection threshold

When configuring a connection, the application will provide the QOS parameters
for the connection. The driver will utilize the QOS parameters to assign the
connection to a particular class and calculate the thresholds depending on traffic
type. The QOS parameters provided by the application are as follows:

Table 54: QOS parameters provided by the application

QOS parameter Description of QOS parameter
Traffic type Whether connection is CBR, rt-VBR, nrt-VBR, GFR, ABR, UBR
PCR Peak cell rate
SCR Sustained cell rate
MBS Maximum burst size at peak cell rate
CDVT Cell delay variance tolerance
MaxCTD Maximum cell transfer delay
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 197

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

QOS parameter Description of QOS parameter
CLR Cell Loss Ratio
MFS Maximum frame size

The driver will assign the connection to a certain class based on the traffic type. The
table below shows the mapping between class and traffic type.

Table 55: Class assignment for different traffic types

CBR rt-VBR nrt-VBR | GFR UBR ABR

Class 0 1 2 2 3 3

Table 56: Calculation of connection congestion thresholds

Traffic | VcMinThrsh VcCLP1Thrsh VcCLPOThrsh | VeMaxThrsh | Comment
(EPD/PPD
only)

CBR maxCTD MaxCTD maxCTD maxCTD No value
storing more
than the
maxCTD.
Tagging not
applied to
this traffic,
hence CLPO
& CLP1
Thrsh values
are identical.

rt-VBR | maxCTD MaxCTD maxCTD maxCTD From
congestion
perspective,
rt-VBR and
CBR are
identical.
Difference
lies in CDV
tolerance
reflected in
class
scheduling.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 198
Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Traffic

VcMinThrsh

VcCLP1Thrsh

VcCLPOThrsh

VcMaxThrsh
(EPD/PPD
only)

Comment

nrt-
VBR

MBS

MBS * (PCR —
SCR) / PCR

MBS *n, n>
1

VcCLPOThrs
h + est. MFS

Minimum
CLR is the
focus.
Always want
sufficient
resources to
capture a
burst.
VcCLP1Thrs
hsettoa
level where
the VC is
within traffic
contract.
VcCLPOThrs
hsettoa
level where
the VC has
some
burstiness
caused by the
network.
VcMaxThrsh
set to accept
the last frame
permitted
under
VcCLPOThrs
h.

GFR

MBS

MBS * (PCR-
MCR) / PCR

MBS *n,n>
1

VcCLPOThrs
h + MFS

Very similar
to nrt-VBR,
except packet
centric.

UBR

est. MFS

VcCLPOThrs
h + est. MFS

No minimum
resource
guarantees.

ABR

est. MFS + 1

The CLPO &
1 thresholds
are kept to
very small
values,
relying on the
connection

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use

Document ID: PMC-1991216, Issue 3

199

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Traffic | VcMinThrsh VcCLP1Thrsh VcCLPOThrsh | VeMaxThrsh | Comment

(EPD/PPD

only)
s/w to
regulate
traffic rates
and avoid
congestion.

Once the driver determines the class to which a connection is assigned and the
thresholds are calculated (according to the above table), it distributes the spare
resources available in the class equally among the connections configured in the
class. The equations for calculating the spare resources in the class are the same as
shown in the section of class thresholds. Thus the connection thresholds are
calculated by the following equations:

vcMaxThrsh = vcMaxThrsh (as calculated from above table) +
(spare resources available in class / number of connections in class)

veClplThrsh = veClplThrsh (as calculated from above table) +
(spare resources available in class / number of connections in class)

veClp0Thrsh = veClpO0Thrsh (as calculated from above table) +
(spare resources available in class / number of connections in class)

Note that each time a connection is added, deleted or the QOS parameters are
updated, the spare resources allocated to each class in the port will change. Thus,
the spare resources allocated to each connection within the port will change.
Therefore, the driver will recalculate the congestion thresholds for all the
connections in the port.

The connection thresholds veClp0Thresh, veClplThrsh and veMaxThrsh
are written to the APEX chip in 4 bit log and 2 bit fractional format. The tables for
encoding the values are shown in Table 61.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 200
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

13.3 Calculation of scheduling parameters

Assigning port weights

During configuration of a loop port or WAN port, a weight has to be assigned to the
port, which determines the relative polling frequency for that port. Lower polling
weight means higher polling frequency and therefore higher throughput. For the
loop port the weights range from 0-7, whereas for the WAN port the weights range
from 0-3. The maximum polling frequency of the scheduler is dependent on the
system clock (e.g. for sysClk of 80MHz the maximum polling frequency is
1.25MHz). Given the maximum polling frequency of the scheduler, the maximum
polling frequency for a port with a particular weight is given by

max polling freq. for weight n = (max polling freq. for the system) / (2 ")

Assuming that the maximum port rate is 400 Kcells we will use the following
lookup table to assign the port weights for the loop port

Table 57: Loop port lookup table

Loop port weight Port Rate (Kcells/sec)
0 350-400

1 300-349

2 150-299

3 75-150

4 40-74

5 20-39

6 10-19

7 0-9

The following lookup table will be used to assign the port weights for the WAN
port

Table 58: WAN port lookup table

WAN port weight Port Rate (Kcells/sec)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 201
Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

0 300-400
1 75-299
2 20-74

3 0-19

Calculating class scheduler parameters

The APEX chip provides us with a mechanism to fix the scheduling priority
between the different classes within a port. Each class (except class 0) has a
parameter classXCellLmt, which determines the amount of time assigned to the
class by the scheduler. To determine the classXCellLmt parameter, the driver
needs to determine the bandwidth required by the connections under each class. The
bandwidth can be determined by:

class bandwidth = (Sum of bandwidth guaranteed for each connection in the class)
The bandwidth for each connection will depend on the type of traffic i.e. for CBR
traffic use the PCR(Peak cell rate), for rt-VBR and nrt-VBR traffic use SCR
(sustained cell rate), for ABR and GFR use MCR (minimum cell rate), for UBR the
bandwidth guaranteed is zero.

The percentage of time that should be allocated to each class by the scheduler is

given by

Percentage for class x = (class bandwidth for class x) / (sum of all
class bandwidth),

where Class Number x ranges from 0 to 3.

Based on the percentage of utilization, the driver calculates the Limit field
classXCellLmt parameter by using the following table:

Table 59: Class Limit field (ClassXCellLmt) setting

Limit Field Percentage of Usage
0 100.00%
1 50.00%
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 202

Document ID: PMC-1991216, Issue 3

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Limit Field Percentage of Usage
2 33.33%
3 25.00%
4 20.00%
5 16.67%
6 14.28%
7 12.50%
8 11.11%
9 9.09%
10 7.69%
11 6.66%
12 5.88%
13 4.76%
14 4.00%
15 3.44%

Calculating the weight for a WFQ connection
The weight for a WFQ connection determines the number of transmit opportunities

the WFQ connections is given relative to the other connections in the same class.
The driver will calculate the weight using the following equation:

queue weight = (126 * vc-pcr) / (Port Rate),

where VC-PCR is the peak cell rate of the connection.

The actual value to be programmed into the APEX chip is encoded, which should
be given by

If (queue weight = 1)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 203
Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

actual value =0
else

actual value = (queue weight/2)

Calculating the shaping parameters for a SFQ connection
Before a shaping connection is configured, the application has to configure the
shaper. While configuring the shaper the application will specify the parameter
QOShpNRTRate, which represents the maximum shaped data rate calculated in the

number of clock cycles per timeslot. The other shaping parameters for the SFQ
connection are calculated as follows:

ShpIncr = f(SYSCLK)/(QShpNRTRate * SCR)
Shpcdvt = ShpIncr - f(SYSCLK)/(QShpNRTRate * PCR)
ShpLateBits = log (MBS * shpcdvt)/log2

where f(SYSCLK) is the clock frequency for the system, SCR is sustained cell rate,
PCR is peak cell rate and MBS is maximum burst size at peak cell rate.

13.4 Conversion tables

Encoding a value to 4 bit log 4 bit fractional value: Used for port and class threshold
parameters.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 204
Document ID: PMC-1991216, Issue 3

P“ A C PMC-Sierra, Inc.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Table 60: 4 Bit Logarithmic, 4 Bit Fractional encoding

4 bits fractional
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0o |o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 |16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62
3 o4 68 72 76 80 84 88 92 96 100|104 |18 |12 Jite [120 124
4 128 136 [144 [1s2 o Jies [176 |14 |19z f200 [208 |216 |24 [232 |40 |48
5 |2s6 [272 [288 |04 320 [336 [352 368 [384 [400 [416 432|448 [464 |480 |496
g o |s12 [s#4 |ST6 fe0s 640|672 [704 736|768 [s00 [832 [s64 |896 [928 960 [092
]
@ |7 |o2a Joss |i1s2 1216 1280|1344 1408 1472 1536|1600 1664 1728 1792 [1856 1920 [1984
=
<t |8 [2048 [2176 2304 |2432 [2560 |2688 2816 [2044 [3072 [3200 [3328 [3456 3584 3712 [3840 [3968
9 4096 4352|4608 [4864 5120 [5376 [s5632 5888 [6144 |6400 [6656 6912|7168 [7424 [7680 |7936
10 8192 8704 [o216 [9728 [10240 [10752 [11264 |[11776 12288 [12800 (13312 (13824 [14336 [14848 (15360 [15872
11 [16384 [17408 [18432 [19456 [20480 [21504 [22528 [23552 |24576 [25600 [26624 [27648 28672 [29696 (30720 31744
12 [32768 |34816 [36864 [38912 [40960 43008 [45056 [47104 49152 [51200 |[53248 55296 [57344 [59392 (61440 [63488
13 (65536 69632 [73728 (77824 (81920 [86016 [00112 [94208 (98304 [102400 [106496 [110592 [114688 |118784 (122880 [126976
14 (131072 |139264 147456 (155648 [163840 [172032 (180224 [188416 (196608 |204800 [212992 (221184 |229376 [237568 [245760 (253952
15 [262143
Encoding a value to 4 bit log 2 bit fractional: Used for veC1lp0Thresh,
vcClplThresh and veMaxThresh parameters.
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 205

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Table 61: 4 Bit Logarithmic, 2 Bit Fractional encoding

2 bits fractional
0 1 2 3

0 0 1 2 3

1 4 5 6 7

2 8 10 12 14

3 16 20 24 28

4 32 40 48 56
§’ 5 64 80 96 112
é 6 128 160 192 224

7 256 320 384 448

8 512 640 768 896

9 1024 1280 1536 1792

10 2048 2560 3072 3584

11 4096 5120 6144 7168

12 8191

Encoding veMinThresh parameter:

Table 62: 3 bit encoding for veMinThresh

Encoded value Actual value
000 0
001 24
010 32
011 48
100 64
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 206

Document ID: PMC-1991216, Issue 3

PI‘ /I 7 PMC-Sierra, Inc. VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Encoded value Actual value
101 96
110 128
111 256
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 207

Document ID: PMC-1991216, Issue 3

80¢

€ 8nss| ‘'91Z1661-0Nd Al Juswnooq
as(|eulaju| s1owoIsny s)i 1o} pue “ou| ‘elsIS-ONd O} [enuapiuo) pue Aiejeudoid

weaJlisdn
I
) aIq8} O/ Jeyng (|80 IX8)U0D-
o - NVHSS WY¥As NVHSS
I
- eido A
pies m ! 1aoin h V' N
Pl v v na9t A A
NVM % Jpsen 0 onels mes_ ER
¢ X
g X A ssaib3g u| ssaib3 AHd-AUY NVM AHd-Auy dooT YO
A-m-A-.-M-- EEsssdEEEEEEEEEEEEEEEEEEE NJS-----------"
! m M SV11lV-INN/S X3dV-INN/S :
b :
m ! m e T Y A S B C LTI T LT T I T R a
! :
! . ane|S ‘IO X XL
m ' . ssalbu] ssaibu| AHd-Auy Ny AHd-Auy dooq
1y H 1N
m _) nq ol uq 91
' .
!

ejeq paAleosy ‘g erdoin

i
UX3LHON | g
A.“,V pied
. | eur
L4 |
. |
r |
|
z xavson [P X
sEmEmEEEE --m- 3
| 1
i d
“ n
L X3LHON < @=Pp| a
I
|
eleq !
palIWsUeL]
AHd Auy

Mol vin(wvaqpsdy) /[24n31y

“pIed 0109 1osdIyd pue SpIEd NVA\ /U]
9)OWAI Ud9MIdq Ssyjed [ouueyd [013U0D Sk [[dM SE S[[3d NV ‘S[[99 1SN JO MO} BIEp 9} SUIMOYS SWeISeIp [BIdAIS surejuod xipuadde oy

g XIaN3ddY V1

NOILVOIdI03dS NOISIA JIARIA 13SdIHO X3LAUOA

U ‘BBIS-ON U <=ph

€ 8nss| ‘'91Z1661-0Nd Al Juswnooq
60¢ as(|eulaju| s1owoIsny s)i 1o} pue “ou| ‘elsIS-ONd O} [enuapiuo) pue Aiejeudoid

weaJljsumoq

TIRTTEERSTEERPPEERYEETRRYEERREERTPELRITY =

8|qe} DN 18}jnq ||89 1X81U00-
z1 NVYSS NYdas NVYSS U XILHOA H
||
eidoin * + AJV pieo
[}
v v Q9] v v . ! aulq

Jeysey INO 191SEN SABIS . “

9ABIS X1 X - |

X ssa163 u| sseib3 AHd-AUY NVM AHd-Auy dooq o '
I - cin Z X3LHOA Al__v x
M__ H SVI1LV-INN/S X3dV-INN/S -mv 5
: . 1 1
M s | seysep ul 1o18B I\ SESEEI .m ! d

= EEEEEEEEEEEEEEEEEEEE|(EREEH EEEEEEEEEEEEEEEEEEEER anjmmm |
aAB|S ‘INO besh pah H n
ssalbu ssaubu AHd-Auy NyA AHd-Auy dooT L X3L4OA |@=Pp| a

LN !

a9 nq 91 19 91 !

ejeq
pepiwsuer|
eleQ paAleday ‘g7 erdoin AHd Auy

MOLT DID(WDILISUMO(T Q] 2NSL]

| N
ou| ‘elislS-
NOILVOIdI03dS NOISIA JIARIA 13SdIHO X3LAUOA \ 1S-oNd (4 ph

€ 8nss| ‘'91Z1661-0Nd Al Juswnooq
Ole as(|eulaju| s1owoIsny s)i 1o} pue “ou| ‘elsIS-ONd O} [enuapiuo) pue Aiejeudoid

9|qe} O/ Jaynq |19 1xeju00-
) ANVHSS NVdHds NVHSS i
| ¢l U X3LHOA | gl
piey | ewdoin 4 4 T PI€D
EessmmmmnyEn
" + + Nq 91 * + < " aul
NYm Ipisepy INO Jo)seN oABIS M !
AL' ane|s XL Xd |g . |
! X ssaib3 uj ssaib3g AHd-AUY NVM AHd-Auy dooT [(ve “
| 3 cin Z X3LHOA A.__v N
|
| SVILV-INN/S X3dV-INN/S | 3
! 1 1
m m JsIse\ ‘uj Jsise| Jsise m d
| “I L IIIIIIIIIIIIIM\I/M-WI&&@II IIIXMIIIIIIIIIIIIIIIIIIIIIXHI H D
m m ssaibu| ssaibu| n AHd-Auy Nyay AHd-Auy doo I X3L1HO0A Al._n_v a
| - L] EsEEEEEEEfEEEREn
_ s 191 - !
! “I II_ m«mo
papiwsuer|
eleq panieosy ‘z1 eidoin AHd Auy

mop.] mn dooT-03-dooT :61 24n31]

| N
ou| ‘elislS-
NOILVOIdI03dS NOISIA JIARIA 13SdIHO X3LAUOA \ 1S-oNd (4 ph

€ 8nss| ‘'91Z1661-0Nd Al Juswnooq
e as(|eulaju| s1owoIsny s)i 1o} pue “ou| ‘elsIS-ONd O} [enuapiuo) pue Aiejeudoid

1 dN-0F-NVM
NVM-0}-dn 2
a|qe) O/ J8ynq |82 JX3JU0d-
_ - WVYSS NVYas NVYSS U XALNON i
- [} '
pieo m adon 4 4 _ e
[}
m vV naol v v . ! auI
z<>>A. ' Lisey 1IN0 Joise ane|g e !
J_-lll-ll- LR LLEEEERERERE -7 < 1] s s s e m X |4 [] “
| X ssalbg u] ssaibg AHd-AUY NV >m1n_->c< doo | wvo !
n -m mn 21N " ¢ X3LHOA _ 1 — X
i SVILV-INN/S X3dv-INf/S] 3
: 1
n . |
ad !@q_)_KETlll-ll-lll-ll-lLvaH_wnwL\y_-ll-l.l " ._wum“_m/__- “ m
aABIS IND - = |
ssaibu| ssaibu| IJ AHd-Auy NVMa >m._n_->c< doo? L X3LHON [P a
1N * . |
nq 9T 1991 F 1991 e “
g papiwsuer]
ejeq paAlvday ‘g eidoin * m AHd Auy

Mod
Jossaosoidoioipy

MO]] DI dN-03-NVM PUD NV M-03-d" 07 24nS1]

| N
ou| ‘elislS-
NOILVOIdI03dS NOISIA JIARIA 13SdIHO X3LAUOA \ 1S-oNd (4 ph

€ 8nss| ‘'91Z1661-0Nd Al Juswnooq
cle as(|eulaju| s1owoIsny s)i 1o} pue “ou| ‘elsIS-ONd O} [enuapiuo) pue Aiejeudoid

EEEEEEEEEESEEE N SN EEEEEEEEEEEEEEE) 00 000O0OOOOOOOEOEOOEONOONONONONONEONONDO v
= 1 e
dn-o}-doo] = i doo7-0}-dn

a|qe) O/ Jayng |99 1X81U0o-
' NVYSS Wvdas NVYSS
_ A U X31HOA
| eido)n A A pie)d
_ - " EEEEEEEEDR
! v v nq9[- v . . aun
_ Jpise\ INO I8)se\ ane|S " u
! 9NB|S X1 X N .
! X ssalbg u| ssalbg AHd-AUY NV AHd-Auy doo _>_<Om
! 3 cin : Z X3ALHOA %
m M SV1LV-INN/S X3dV-INN/S : 3
| : 1
| n o
“ D MLl hwrwW§"F_lllllllllhlll u lnhwﬂwlmm/—lllll' IIIIII.HmlﬁWNEI m EEEEEEEEBN M
_ : RIS NG P 3 \ P!
_ : ssalbu] ssalbu| AHd-Auy NeA sAHd-AUY dOOT L X3LHOA ! a
I - 1N =R !
! = fuaor nq91 - nq 91 |
: I'I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII“IIWIIIIIIIIIIIIIIIII mHmD

paplwsueH.
ejed paA@oay ‘g1 eldoin ‘ . AHd Auy
Mod
Jossasoidooip

Moy mn gn-o3-doo puv doo-03-gn : [z 24ns1y

| N
ou| ‘elislS-
NOILVOIdI03dS NOISIA JIARIA 13SdIHO X3LAUOA \ 1S-oNd (4 ph

€ 8nss| ‘'91Z1661-0Nd Al Juswnooq
Ele as(|eulaju| s1owoIsny s)i 1o} pue “ou| ‘elsIS-ONd O} [enuapiuo) pue Aiejeudoid

@_llllllllllllll_

1
opIS NV M Je _ + dN-NVM-dn

yoeqdoo I
: w op1s JOOT e
u-----------------l *cooooconooo.aoccuo.coooo-" MUNDQOO\H
n
dn-doo-dgn
8|ge} D/ d94nq |92 JX9JU0-
\ NVYSS Nvdas NVHSS *]
! 21 A uxaLson |
1e | eidoin A A A ' p1ed
|
pieg | v NG90 i eun
NVM | ¥ : _
! 1pisely N0 o) ‘_vw.u_.”m_\/_ oAe|S . !
- e g o . e e . — —-— e . - XY Py [}
m % A ssalbg u| ssaibg AHd-AuY NV >I*c< door | o m
> =g | n) z xaLyon [P X
| || SVLVINNS Xadv-INn/é < P | 3
i | 1
1 n - o o - - — — — |
“ a L lsen L, 15Re l— 18)se F T --.-""""ﬁw d
! = eSS LY .vé.....m | anaps . e LLLL] ! n
! H ssaibu| ssaibu| >In_.>c<.z<>>_ >In__.> gioo] . ' L xaLdon | < T > a
| " PI_D " [l L] u !
| H Ll 1991 H r = 99 u |
_ : , N PO A eea !
[TTTITIITITITTIIITSn..._.. pomuSUEA
ejeq paaeoay ‘1 eidon ‘ * . : AHd Auy

Mod
Jossadsoidoioiy

110d 1055220.4d040101 D14 MO} VIDF YOVqdOOT 77 24NSL]

| N
ou| ‘elislS-
NOILVOIdI03dS NOISIA JIARIA 13SdIHO X3LAUOA \ 1S-oNd (4 ph

€ anss| ‘91.Z1661-0lNd -dl JuswnaoqQ

vLe asM |eusdlu| S1owoisny S}l Joj pue ‘-ou| ‘edsiS-ONd 01 [enuapyuo) pue Asejalidold
9|qe} O/ 184nq |82 JX9)U0-
- WvHSS WvHas NvHSS S o 5
U X31H0A

m eldoin * * * f— p1eg

! v v nq 91 - v . aun

i 1pIseN IO 1eise anels .

! < OABIS X1 XY |4 o
X m X ssalb3 u) sse:63 | € AHd-Auy Nvm AHd-Auy dooT | vo .v
3 | 3 Zn
2 : I'] Z X3LHOA o
n ! 1
a | m J9ISBN ‘U] J9ise\ BE STV ' d

I

llll_l-lll oAe J__ XN— - L) Xn_ul, EERE] [o-
" _1 ” *lwlmw.ﬂ Cl_l-llllllw_mlmumm-;llh—u_m_uh—._ﬁ—ﬂ_lﬁ “ﬂlﬂﬂﬂuﬂﬂ(%d-._ I* WWAMII_nMﬂO> D"
" “ " " _‘l_D u] “ fE----- " "
O : ol 1991 i naor s
. _ . . - : eleq —
" " " ‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII“IIWIIIIIIIIIIIIIII U@«W_Emcmt—-l—l " "
: ' : ele@ paARosy ‘7 eidoy) = AHd Auy -
yod wod A 4
Jossaoo.idouoi Jossasoidosoip Hod 1og
J0ss8204dOIIN 10558001d0IOIN

pies 2109 pue aul] usamjeg

MOLJ DID([2UUDY)) [043UO)) pUDQU] €7 2INSL]

| N
ou| ‘elislS-
NOILVOIdI03dS NOISIA JIARIA 13SdIHO X3LAUOA \ 1S-oNd (4 ph

124

€ 8nss| ‘'91Z1661-0Nd Al Juswnooq
as(|eulaju| s1owoIsny s)i 1o} pue “ou| ‘elsIS-ONd O} [enuapiuo) pue Aiejeudoid

ODa ukXx

3l9e} O/ HauNq |92 }X9jU03-
NVYSS NVdas NVYSS \
21 WIS SR
eidoin 4 A . <—p» PIED
I
v v IC) v v - < ! aul
iPiselNy INO I91Se\ aAe|S 4 . I
L m>m_wrl X1 N . m ——
ssalbg u| ssaibg IWHd-Auy NV AHd-Auy aop..d VO |
2o alh R EREEE N-Xm_u..m_d\/-‘-‘-l;..w «
| SVILV-INN/S X3dVINNIS 2 | 3
Q)se ‘Ul W%oq,_. : n..v.A.._.. TPPEERPPE I 2 M
oABIS IO | . I
ssaibu| ssaibu| I' AHd-AuyiNya AHd-AURRdooT I X31LH40A - | a
LN o = |
naol nq 91 . = 99 m
. - eleqg —
m g papiwsuer
ejeq penioosy ‘z eidoyn : AHd Auy
4 X1 Hod
Xy Hod 10ssasosdosoiy
LomeOOLQOLO_S_
. peo[Atd * ¢IPIOM
‘t . O
¢00¢ O v
00.' O v
; peorAeq
tH/CH|TH/0H
9)| 0 OPIoM
0 I¢

MOLT DIDQ SUPSPIYINY H7 2N

NOILVOIdI03dS NOISIA JIARIA 13SdIHO X3LAUOA

U ‘BBIS-ON U <=ph

€ anss| ‘91.Z1661-0lNd -dl JuswnaoqQ

912 as() |eulalu| S18wolsn SH 10J pue ““ou| ‘elsIS-J\d 01 [enuspliuo) pue Agjsidold
weasnsdn
<«
wealjsumog v
m a|qe)} DN HayNqg |92 JXOJU0D-
! NYNSS WYSAS NYYSS -
| z1 L X3 LHOA
o |) e
PJeY | FEEEETEITS T ST I TTTTTTTS TETTTTTITTr S s
NVM ! =i31se INO oIS anels | 1 .
i P "ejsesssssssssy ONBIS X1 CRLEL ¢ 0l -
(NS) e x | sseib3 ul sso163 [€RHa-Auy NVM Apa-huv doot [$v0 >
] []
ccccopoleo] of ecchoscccey 0 -
oeqdoo rel--3 : £n : £ X3LHOA
2 SV1iv-INN/S X3dV-INN/S: <
| . = m
Mom@mmvéowww m m oisey Ul 19)sB N 2 Jsen l.v
I L cooo! MR coee o &/N_WJDO Xy LRREED CRL EEEEN B SEEEEEEEEN
m *mmm._ Ul .. Jp° ssaibul m:v AHd-Auy Ny AHd-Auy dooT) v } X3LOA |
m Ra91 nq 91 naor eq
I L] []
“ Sy g I S NN NN NN NN NS I NN NSNS SN EEE S SN NN NS NN NS NN NEENEEEEEEEEED Uwuu_EWCm.Tn_n
_ eleq panieosy ‘g1 eldoin AHd Auy

ML VIDT WVO ST 24nS1]

| N
ou| ‘elislS-
NOILVOIdI03dS NOISIA JIARIA 13SdIHO X3LAUOA \ 1S-oNd (4 ph

€ anss| ‘91.Z1661-0lNd -dl JuswnaoqQ

V4 8s(|eulaju] slowoisny s}l 1o} pue “ou| ‘BlBIS-DNd O} [enuspiuo) pue Aieyeldoid
wealsdn
<
wessumoq >
m a|ge) O/ Haynq |82 1X8JU0D- ,
! || wass WvHas WVASS > PR
“ eido [X3LH0A 71 pied
e “ 1aoin * * * f— “
v o “ “-l-l-l-+-+l--IIILE-W—III-l-l+l-l--l-l-+-l-- ° “ 0—‘—_I—
NVM ! = agisep INO Je1seiN ane|s M !
| - SapsnnnnnnnnnnnnnNES X1 CRRLL ¢ 0 . i
(NS) - x | SGE! u) gs0:63 | —AHdAUY NVM AHd-Ruy doo] > !
v_omﬁ_QooJ A......“.....m_.t..v............ m Al . Nxm_._.w_O>A|m.V
| SVILV-INNIS X3dV-INN/SE < m (NS)
! = 5 = |
MZWV ' m ._mw.m._\,_ wul 0 J81se|\ = Joysepy ! MO@QQCOA
VMQAND, OO\H -o-ocoovcocoo- oo ohe . N ®>®- .”_.Do X ll--xpl snnmafingnn '- ssmsnnnmajenbhonn
| P2 ssabuls. . . m_mma:_ > AHd-Auy Ny AHd-Auy dooT v | X3LHOA A.m.v
“ - ° m m LN m --l-l--l-“-- Azmv
" AR : 1991 naor g _ oeqdooT
I L ® . »
“ Spmussngenesnnn oSN N NN NN NN NN N NN NN NN NN NN NN EEEEEEEEEEEEEEE Umt_C‘_WCN.Tn_n
. v: ejeq panieoay ‘z1 eldoin AHd Auy

110d
105$0001d0IOT A

ptoddns Wy 10ssa204doso1py :97 24nSL]

NOILVOIdI03dS NOISIA JIARIA 13SdIHO X3LAUOA

U ‘BBIS-ON U <=ph

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

14.1 List of Terms

AIS: Alarm Indication Signal.

API (Application Programming Interface): Describes the connection between this MODULE and
the USER’s Application.

CAC: Connection Admission Control.
CC: Continuity Check.
CDB (Chipset Data Block): Structure that holds the Configuration Data for each Chipset.

DEVICE: One VORTEX chipset Integrated Circuit, which can be APEX, ATLAS, VORTEX, or
DUPLEX.

DEVICE DRIVER: A device level software module to control and service an individual type of
VORTEX chipset devices.

CHIPSET: A VORTEX chipset consists of APEX, ATLAS , DUPLEX and VORTEX chips.

CHIPSET DRIVER: A board-level software module, which integrates the underlying device
drivers, and provides a synchronized access and control over all VORTEX chipset devices on
CORE CARD:s to achieve one or more system-level functionality.

CHIPSET CARD: A circuit card containing VORTEX chipset devices for traffic management. It
at least consists of one APEX and one ATLAS chip, but may contain several VORTEX and

DUPLEX chips as well. There can be more than one card, all served by this one Chipset Driver
MODULE.

CIV (Chipset Initialization Vector): Structure passed from the API to the Chipset driver during
initialization; it contains parameters that identify the specific modes and arrangements of the
physical CORE CARD being initialized.

CORE CARD: same as CHIPSET CARD.

None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency,
fitness or suitability for a particular purpose of any such information or the fitness, or suitability for a particular purpose, merchantability,
performance, compatibility with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this
document. PMC-Sierra, Inc. expressly disclaims all representations and warranties of any kind regarding the contents or use of the
information, including, but not limited to, express and implied warranties of accuracy, completeness, merchantability, fithess for a particular
use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to,
lost profits, lost business or lost data resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has been
advised of the possibility of such damage.

© 1999 PMC-Sierra, Inc.

Issue date: September 1999

PMC-Sierra, Inc. 218 105 - 8555 Baxter Place Burnaby, BC Canada V5A 4V7
1604 .415.6000

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

DPR (Deferred Processing Routine): This function is installed as a task by each device driver, at a
USER configurable priority, that serves as the next logical step in Interrupt processing. Data that
was collected by the ISR is analyzed and then calls are made into the Application that inform it of
the events that caused the ISR in the first place. Because this function is operating at the task
level, the USER can decide on its importance in the system, relative to other functions.

DSLAMs: Digital Subscriber Line Access Multiplexer.
FM: Fault management, one of OAM cell types. It includes AIS, RDI, CC.

HSS: High Speed Serial links.

ISR (Interrupt Service Routine): A common function in each Device Driver for intercepting and
servicing DEVICE events. This function is kept as short as possible because an Interrupt
preempts every other function starting the moment it occurs and gives the service function the
highest priority while running. Data is collected, Interrupt indicators are cleared and the function
ended.

LB: LoopBack

LINE CARD: A circuit card containing S/UNI-DUPLEX device and other Loop-side interface
devices. The line card is usually connected to the core card via a HSS link.

GDD (Global Driver Database): Structure that holds the Configuration Data for this MODULE.

MIV (MODULE Initialization Vector): Structure passed from the API to the MODULE during
initialization, it contains parameters that identify the specific characteristics of the Chipset driver
MODULE being initialized.

MODULE: All of the code that is part of this chipset driver, there is only ONE instance of this
MODULE connected to ONE OR MORE VORTEX chipset cards.

OAM: Operation And Maintenance.

OAM flow: Information flow transferred through the network by the means of a dedicated
channel supported by specific octets of the transmission systems for the physical layer and by
specific ATM cells referred to as OAM cells for the ATM layer.

PM: Performance Management, one of OAM cell types.

None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency,
fitness or suitability for a particular purpose of any such information or the fitness, or suitability for a particular purpose, merchantability,
performance, compatibility with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this
document. PMC-Sierra, Inc. expressly disclaims all representations and warranties of any kind regarding the contents or use of the
information, including, but not limited to, express and implied warranties of accuracy, completeness, merchantability, fithess for a particular
use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to,
lost profits, lost business or lost data resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has been
advised of the possibility of such damage.

© 1999 PMC-Sierra, Inc.

Issue date: September 1999

PMC-Sierra, Inc. 219 105 - 8555 Baxter Place Burnaby, BC Canada V5A 4V7
1604 .415.6000

PI‘ A 7 PMC-Sierra, Inc VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

RDI: Remote Defect Indication.

RTOS (Real Time Operating System): The host for this Chipset driver.
VC: Virtual Circuit connection, including VCC and VPC.

VCC: Virtual Channel or F5 Connection.

VPC: Virtual Path or F4 Connection.

WAN: Wide Area Network.

WAN CARD: A circuit card containing S/UNI-DUPLEX device and other WAN-side interface
devices. The WAN card is usually connected to the core card via a HSS link.

None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency,
fitness or suitability for a particular purpose of any such information or the fitness, or suitability for a particular purpose, merchantability,
performance, compatibility with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this
document. PMC-Sierra, Inc. expressly disclaims all representations and warranties of any kind regarding the contents or use of the
information, including, but not limited to, express and implied warranties of accuracy, completeness, merchantability, fithess for a particular
use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to,
lost profits, lost business or lost data resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has been
advised of the possibility of such damage.

© 1999 PMC-Sierra, Inc.

Issue date: September 1999

PMC-Sierra, Inc. 220 105 - 8555 Baxter Place Burnaby, BC Canada V5A 4V7
1604 .415.6000

