
VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991216, Issue 3

PM7326, PM7324, PM7350, PM7351

VORTEX CHIPSET DRIVER

DESIGN SPECIFICATION

PROPRIETARY AND CONFIDENTIAL
ADVANCE

ISSUE 3: MARCH 2001

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

 2001
PMC-Sierra, Inc.
105-8555 Baxter Place
Burnaby BC Canada V5A 4V7
Phone 604.415.6000, Fax 604.415.6200
The information is proprietary and confidential to PMC-Sierra, Inc., and for its customers’ internal use. In any event,
no part of this document may be reproduced in any form without the express written consent of PMC-Sierra, Inc.
Document ID: PMC-1991216 Issue 3

REVISION HISTORY

Issue No. Issue Date Originator Details of Change

Issue 1 Dec. 13, 1999 Keming Chen Initial version

Issue 2 June 15, 2000 Keming Chen

Shiraz Bhalwani

Updated data structure
definitions and API descriptions
to reflect the actual
implementations.

Added Porting Guide and
Appendix A

Issue 3 March, 2001 Keming Chen (1) Fixed an error in equation
for calculating the shaping
parameter, ShpCdvt, in Section
13.3.
(2) Added a hardware-specific
constant definition
VCS_SYSCLK_FREQ_ATLAS
to Porting Guide

.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 2
Document ID: PMC-1991216, Issue 3

TABLE OF CONTENTS

Revision History..2

Table of Contents..2

List of Figures ...10

List of Tables...12

1 Introduction ..15

1.1 Scope ...15

1.2 Objectives ..15

1.3 Audience ..15

1.4 References...16

2 Vortex Chipset Overview..18

3 Driver Features and Functionality..20

3.1 Module ...20
Initialization and Shutdown...20

3.2 Chipset ...20
Chipset Control (Add and Delete)...20
Chipset Initialization..21
Chipset Reset ...21
De-Activate / Activate Chipset ..21
Interrupt Servicing...21
Alarms, Status and Statistics ..22
Chipset self-test and Device Diagnostics ...22
Microprocessor OAM support...22
Scheduling and Congestion Control Service..23

3.3 Application Programming Interface..24
WAN-port to Loop-port connection (Upstream/downstream)24
Loop to Loop-port connection...24
Microprocessor-port to WAN/Loop port connection....................................25
Multi-casting support...25
Inband Control Channel..26
BOC signaling...26
Retrieving Current VC Connections and Resources26
FM function (RDI, AIS, CC) Setup ..26
Performance Monitoring Setup...26
Protection switching..27
Addition/deletion of Line cards, WAN card ...27

4 Architecture Overview..28

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 3
Document ID: PMC-1991216, Issue 3

4.1 External Interfaces ...28
VORTEX chipset Hardware Interface...29
RTOS Interface...29
Application Programming Interface ..29

4.2 Main Components..30
Global Driver Database (GDD)...31
CAC Control Module...31
Status & Statistics Module ..31
VC Management Module..31
VC QOS & Policing Module..31
VC OAM & PM Module ...32
Remote-card Manager Module...32
Self-test & Diagnostics Module...32
Load-sharing & Protection Switching..32
Event Handling Module...32
Microprocessor VC & Multicast Module..32
Microprocessor OAM Support Module ...32
Inband Control Channel (ICC) Module ...32
BOC Signaling Module ...33
Driver API..33
Hardware Interface ...33
RTOS Interface...33

4.3 Software State Description...34
VORTEX chipset Module States...34
VORTEX chipset States..35

5 Constants, and Data Structures ...37

5.1 Constants ...37

5.2 General Structure Definition...38

5.3 Structures Passed by the Application ..46
Module Initialization Vector (MIV) ...46
Chipset Initialization Vector...47
VC Connection Request ...48
Port-level Threshold Request ...48
VC Multicast Request ...49
Inband Control Channel Request ...49
VC OAM (FM and PM) Setup Request...51
Device ID ..51
Port ID...51
Structure for OAM Configuration Block ..52
VC F4 to F5 OAM Processing Request..53
Connection Status and Information ..55
Remote Card Information ...56
Statistic Counts ...58

5.4 Structures in the Driver’s Allocated Memory..59
Global Driver Database (GDD)...59
Structure for a VC Queue Entry..60
Structure for a VC Queue ...61
Structures for Connection Admission Control...62
Structure for a VC Table Record...63

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 4
Document ID: PMC-1991216, Issue 3

Structure for Port Status..65
Structure for Loopback Control Block ...66
Structure for multicast support..68
Structure for OAM and F4 to F5 Processing (per VC)................................69
Structure for Inband Control Channel ...70
Chipset Data Block (CDB) ..72
Chipset Information Vector ...73
Event Counts ..73

6 VORTEX chipset Hardware Interface ..74

6.1 Chipset I/O ...74
sysVcsRawRead32...74
sysVcsRawWrite32...74
sysVcsRawRead16...75
sysVcsRawWrite16...75
sysVcsRawRead8...75
sysVcsRawWrite8...76

6.2 Chipset Detection...77
sysVcsCardDetect ..77

6.3 Interrupt Servicing..77

7 RTOS Interface ..79

7.1 Memory Allocation / De-Allocation ...79
sysVcsMemAlloc...79
sysVcsMemFree...79

7.2 Timers ..80
sysVcsDelayTask..80

7.3 Semaphores...81
sysmVcsSemCreate ...81
sysmVcsSemDelete..81
sysmVcsSemTake ..81
sysVcsSemGive..82

7.4 System-specific Inband Control Channel (ICC) module functions.................83
sysVcsIccInstall ..83
sysVcsIccRemove ..83
sysVcsIccRxTaskFn..83

8 Application Programming Interface..85

8.1 Module Initialization ...85
vcsModuleInit ..85
vcsModuleShutdown...85

8.2 Initialization Profile Management...87
vcsSetInitProfile ..87
vcsGetInitProfile..87
vcsClrInitProfile...88

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 5
Document ID: PMC-1991216, Issue 3

8.3 Chipset Add and Delete ...89
vcsAdd ..89
vcsDelete ..89

8.4 Chipset Initialization and Reset..91
vcsInit..91
vcsReset ...92

8.5 Chipset Activate and De-Activate...92
vcsActivate..92
vcsDeActivate ...93

8.6 Chipset Device Read and Write...94
vcsReadReg ...94
vcsWriteReg..94

8.7 Chipset Diagnostics and Loopback Self-test ...96
vcsRegisterTest ..96
vcsMemTest..96
vcsLpbkSetup ...97
vcsLpbkClear ..98
vcsMpLpbkTest ...98

8.8 Connection Management...100
Connection Management at VC level ...100
vcsConnSetup ..100
vcsConnTeardown ..101
vcsConnQOSRetrieve ..102
vcsConnQOSUpdate ..102
vcsConnDisable..103
vcsConnEnable...103
vcsConnStatus..104
Connection Management at Port Level ..105
vcsPortSetup ..105
vcsPortTeardown ..106
vcsPortDisable..106
vcsPortEnable...107
vcsPortStatus..108
Connection Management at Chipset or Module Level109
vcsClearVCs ...109
vcsRebuildVCs ...109
vcsConnInfo.. 110

8.9 Shaper support .. 111
vcsShprSetup ... 111
vcsShprTeardown ... 111

8.10 Data Tx via Microprocessor port... 113
vcsConnTxCell.. 113
vcsConnTxFrame ... 113

8.11 Multicast support .. 115
vcsMcSetup .. 115
vcsMcTeardown .. 115
vcsMcAddConn... 116
vcsMcDropConn ... 116

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 6
Document ID: PMC-1991216, Issue 3

vcsMulticastCell .. 117
vcsMulticastFrame.. 117

8.12 Inband Control Channels.. 119
vcsCtrlChnlSetup .. 119
vcsCtrlChnlTeardown.. 119
vcsCtrlChnlTx ...120
vcsCtrlChnlRx ...120

8.13 BOC Signaling ..122
vcsBOCTx...122
vcsBOCRx ..122

8.14 Addition/Deletion of Line/WAN Cards...124
vcsAddCard ..124
vcsRemoveCard ...124
vcsRemoteCardInfo ..125

8.15 VC OAM (FM and PM) Setup..126
OAM At Connection Level...126
vcsVcOAMSetup...126
vcsVcOAMClear ...127
vcsVcOAMRetrieve...127
vcsVcFMUpdate ...128
vcsVcPMUpdate ...128
vcsVcOAMGetDefect..129
OAM At Chipset Level...130
vcsOAMSetConfig ..130
vcsOAMGetConfig ..130

8.16 F4 to F5 OAM Processing ..132
vcsF4toF5Setup..132
vcsF4toF5Clear ..132
vcsF4toF5AddVcc...133
vcsF4toF5DropVcc ...134

8.17 PM Session Configuration/Status ..135
vcsPMSetConfig ...135
vcsPMGetConfig...135
vcsPMReadRecord...136

8.18 Protection Switching ...137
vcsRemoveLoad ...137
vcsAddLoad ..137
vcsRemoveLineLoad ..138
vcsAddLineLoad ...138

8.19 Counter Configuration ..140
vcsSetRxCntCfg ...140
vcsGetRxCntCfg ...141
vcsSetNcCntCfgs..141

8.20 Statistical Counts ..143
Cell Counts Per VC...143
vcsGetStatVcTxCnts...143

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 7
Document ID: PMC-1991216, Issue 3

vcsGetStatVcRxCnts ..143
vcsGetStatVcNcCnts ..144
vcsResetVcRxNcCnts...145
Cell Counts Per Port ...146
vcsGetStatPortCnts ..146
Cell Counts Per Line/WAN card ...147
vcsGetStatCardCnts ...147
Counts Per Chipset...148
vcsGetStatDiscardCnts...148
vcsGetStatEventCnts..148

8.21 Congestion counts & Status ...149
vcsGetCongDevCnt ..149
vcsGetCongDirCnt..150
vcsGetCongPortCnt..150
vcsGetCongClassCnt ...151
vcsGetCongConnCnts ..151
vcsGetLastDiscardICI ...152

8.22 Callback Functions ...152
Microprocessor Data Connection callbacks ...153
indRxDataCell ...153
IndRxDataFrm ..153
Inband Control Channel Callbacks ...154
indRxCtrlMsg ..154
OAM Callbacks ...155
indRxOAM ..155
indCosStatus...155
Event Callbacks ..156
indRxBOC...156
indVcsCritical ..156
indVcsError ...157

9 System-Specific Utility Functions...158

9.1 Congestion Control Service ...158
sysVcsPortThresholds ..158
sysVcsVcThresholds ..159

9.2 Scheduling Service ..160
sysVcsLoopPortScheduler ...160
sysVcsWANPortScheduler ...160
sysVcsClassVcScheduler ...161

9.3 Shaping Service...161
sysVcsVCShaping ..161

9.4 Policing Service ...163
sysVcsVcPolicing..163

9.5 Port Mapping..164
sysVcsLoopIdToPort ...164
sysVcsPortToLoopId ...164
sysVcsChnlIdToPort..165

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 8
Document ID: PMC-1991216, Issue 3

10 Theory of Operations ...166

10.1 Module Management..166

10.2 Chipset Management ...167

10.3 Port Management ...168

10.4 Connection Management ...169

10.5 Loopback Test ..170

10.6 Multicast Support..171

10.7 Line/WAN Card Management and Communication172

10.8 OAM Management ...173

10.9 F4 to F5 Processing ...174

10.10 Protection Switch and Line Load Transfer..175

10.11 Chipset Reset and Quick Recovery..176

10.12 Interrupt service module ...176
Interrupt servicing ...177
Installation and removal of interrupt handlers...179

11 Porting Guide ...180

11.1 Driver Source Files ...180

11.2 Porting Procedure...181
Step 1: Porting the Hardware Interface ..182
Step 2: Porting the RTOS interface ..183
Step 3: Porting the System-Specific utility functions.................................185
Step 4: Porting the Application-Specific Elements....................................185
Step 5: Building the Driver ..186

12 Coding Conventions...187

12.1 Variable Type Definitions ..187

12.2 Naming Conventions ..187
Macros ..188
Constants..188
Structures..188
Functions ..189
Variables ...189

12.3 File Organization ..190
API Files ...190
Hardware Dependent Files ...190
RTOS Dependent Files...191
Other Driver Files..191

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 9
Document ID: PMC-1991216, Issue 3

13 Appendix A: Calculation of congestion threshold and scheduling parameters192

13.1 Introduction ...192

13.2 Calculation of congestion thresholds..192
Direction threshold..193
Port threshold ...194
Class threshold ...195
Connection threshold..197

13.3 Calculation of scheduling parameters ..201
Assigning port weights..201
Calculating class scheduler parameters...202
Calculating the weight for a WFQ connection ..203
Calculating the shaping parameters for a SFQ connection......................204

13.4 Conversion tables ...204

14 Appendix B...208

14.1 List of Terms ...218

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 10
Document ID: PMC-1991216, Issue 3

LIST OF FIGURES

Figure 1: Reference DSLAM Application..18

Figure 2: External and Internal interfaces ..28

Figure 3: Main Components...30

Figure 4: State Diagram ..34

Figure 5: Module Management Flow Diagram..166

Figure 6: Chipset Management Flow Diagram ..167

Figure 7: Port Management Flow Diagram..168

Figure 8: Connection Management Flow Diagram..169

Figure 9: Loopback Test Flow Diagram...170

Figure 10: Multicast Support Flow Diagram ...171

Figure 11: Line/WAN Card Management Flow Diagram ..172

Figure 12: OAM Management Flow Diagram...173

Figure 13: F4 to F5 Processing Flow Diagram ..174

Figure 14: Protection Switch and Load Transfer Flow Diagram ...175

Figure 15: Chipset Reset and Quick Recovery Flow Diagram ..176

Figure 16: Interrupt Service Model ..178

Figure 17: Upstream Data Flow...208

Figure 18: Downstream Data Flow ..209

Figure 19: Loop-to-Loop Data Flow..210

Figure 20: uP-to-WAN and WAN-to-uP Data Flow...211

Figure 21: uP-to-Loop and Loop-to-uP Data Flow ..212

Figure 22: Loopback Data Flow via microprocessor port..213

Figure 23: Inband Control Channel Data Flow..214

Figure 24: Multicasting Data Flow ..215

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 11
Document ID: PMC-1991216, Issue 3

Figure 25: OAM Data Flow ...216

Figure 26: Microprocessor OAM support ..217

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 12
Document ID: PMC-1991216, Issue 3

LIST OF TABLES

Table 1: References ..16

Table 2: VORTEX chipset VPI and VCI (sVCS_VPI_VCI)..38

Table 3: VORTEX chipset VC and Port Descriptor (sVCS_VC_PORT_DES)38

Table 4: VC QOS Structure (sVCS_VC_QOS) ...38

Table 5: VC FM Structure (sVCS_VC_OAM_FM)...39

Table 6: VC PM Structure (sVCS_VC_OAM_PM)...41

Table 7: VC Policing Structure (sVCS_VC_POLICING)..41

Table 8: Congestion Threshold Level Structure (sVCS_THRSH_LEVEL)41

Table 9: Port Threshold Structure (sVCS_PORT_THRSH)...42

Table 10: VC Threshold Structure (sVCS_VC_THRSH) ..42

Table 11: Shaped VC Parameters (sVCS_VC_SHPR)..42

Table 12: Shaper Control VECTOR (sVCS_ SHPR_VECTOR) ...43

Table 13: VC OAM Defect Structure (sVCS_VC_OAM_DEFECT) ..43

Table 14: VC Connection Status Structure (sVCS_CONN_STATUS) ..44

Table 15: VC Cell Header Structure (sVCS_CELL_HDR) ...45

Table 16: VORTEX chipset Module Initialization Vector (sVCS_MIV).......................................46

Table 17: VORTEX chipset Initialization Vector (sVCS_INIT_VECTOR)47

Table 18: VORTEX chipset VC Request (sVCS_CONN_REQUEST) ..48

Table 19: Port-level Threshold Request (sVCS_PORT_THRSH_REQUEST)48

Table 20: VORTEX chipset Multicast Request (sVCS_MULTICAST_REQUEST)49

Table 21: VORTEX chipset Channel Request (sVCS_CHNL_REQUEST)..................................49

Table 22: VC OAM Structure (sVCS_VC_OAM_REQUEST)..51

Table 23: Device Identification Structure (sVCS_DEV_ID) ...51

Table 24: Port Identification Structure (sVCS_PORT_ID) ..51

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 13
Document ID: PMC-1991216, Issue 3

Table 25: VORTEX chipset OAM Configuration Block (sVCS_OAM_CFG)..............................52

Table 26: VORTEX chipset F4 to F5 OAM Request (sVCS_F4TOF5_ REQUEST)...................53

Table 27: VORTEX chipset F4 to F5 VCC (sVCS_F4TOF5_ VCC) ...54

Table 28: Connection Status (sVCS_CONN_STATUS) ..55

Table 29: Connection Information (sVCS_CONN_INFO) ..56

Table 30: Remote Card Information (sVCS_RCARD_INFO)...57

Table 31: VC Statistic Counts (sVCS_VC_STAT_CNT)...58

Table 32: VORTEX chipset Global Driver Database (sVCS_GDD) ...59

Table 33: VORTEX chipset VC QUEUE ENTRY (sVCS_VC_INDEX)......................................60

Table 34: VORTEX chipset VC QUEUE TABLE (sVCS_VC_LIST) ..61

Table 35: VORTEX chipset Connection Admission Control (sVCS_CAC)..................................62

Table 36: VORTEX chipset VC TABLE (sVCS_VC_RECORD) ...63

Table 37: Loop/WAN Port Status Structure (sVCS_PORT_STATUS) ..65

Table 38: VORTEX chipset Loopback Control Block (sVCS_LPBK_CB)..................................66

Table 39: VORTEX chipset Loopback Data Block (sVCS_LPBK_DATA)67

Table 40: VORTEX chipset Multicast Record (sVCS_MULTICAST_RECORD)......................68

Table 41: VORTEX chipset Multicast Record Table (sVCS_MULTICAST_TABLE)................68

Table 42: VC OAM Structure (sVCS_VC_OAM)...69

Table 43: F4 to F5 OAM Processing Control Block (sVCS_F4TOF5_CB)69

Table 44: VORTEX chipset Channel Record (sVCS_CHNL_RECORD).....................................70

Table 45: VORTEX chipset Channel Record Table (sVCS_CHNL_TABLE)...............................71

Table 46: VORTEX chipset Data Block (sVCS_CDB) ...72

Table 47: VORTEX chipset Information Block (sVCS_CIB)..73

Table 48: VORTEX chipset Driver Statistic Counts (sVCS_STAT_CNT)73

Table 49: Chipset Driver Source Files ...180

Table 50 : Chipset Driver Include Files..181

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 14
Document ID: PMC-1991216, Issue 3

Table 51: Variable Type Definitions...187

Table 52: Naming Conventions..187

Table 53: File Naming Conventions...190

Table 54: QOS parameters provided by the application...197

Table 55: Class assignment for different traffic types..198

Table 56: Calculation of connection congestion thresholds ...198

Table 57: Loop port lookup table ...201

Table 58: WAN port lookup table...201

Table 59: Class Limit field (ClassXCellLmt) setting...202

Table 60: 4 Bit Logarithmic, 4 Bit Fractional encoding...205

Table 61: 4 Bit Logarithmic, 2 Bit Fractional encoding...206

Table 62 : 3 bit encoding for vcMinThresh..206

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 15
Document ID: PMC-1991216, Issue 3

1 INTRODUCTION

1.1 Scope

This document is the design specification for the VORTEX chipset (PM7326,
PM7324, PM7350 and PM7351) driver software. It describes the features and
functionality provided by the chipset driver, the software architecture, and the
external interfaces of the chipset driver software. The document also describes how
the chipset driver can be ported to a different platform.

1.2 Objectives

The main objectives of this document are as follows:

• Provide a detailed list of the functions supported by the chipset driver.

• Describe the software architecture of the chipset driver (data structures,
algorithms, flow diagrams, component descriptions, etc…).

• Describe the external interfaces of the chipset driver. The external interfaces
illustrate how the chipset driver interacts with the underlying devices and RTOS
as well as external application/validation software.

1.3 Audience

This document has been created to ensure consistency across all of the software
written by PMC and is intended for the following audience:

• Applications (when applicable): Applications should review the functions
provided by the chipset driver and make sure that the driver’s features meet
their requirements for use on Applications hardware.

• Marketing: Marketing should review the driver’s features and make sure it
meets customers’ requirements.

• Software Group: The Software group should use this document as a reference
for implementing the VORTEX chipset driver.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 16
Document ID: PMC-1991216, Issue 3

1.4 References

Table 1: References

S/UNI-ATLAS Driver Manual PMC-2000949 Issue 1 PMC-Sierra Inc.

S/UNI-ATLAS Long Form
Data Sheet.

PMC-1971154 Issue 5 PMC-Sierra Inc.

S/UNI-ATLAS Long Form
Data Sheet Errata.

PMC-1981505 Issue 1 PMC-Sierra Inc.

S/UNI-APEX Device Driver
Manual

PMC-1991727 Issue 2 PMC-Sierra Inc.

S/UNI-APEX Engineering
Document

PMC-1980448 Issue 3 PMC-Sierra Inc.

S/UNI-APEX Hardware
Programmer’s Guide

PMC-1991454 Issue 2 PMC-Sierra Inc.

S/UNI-DUPLEX Driver
Manual

PMC-1990799 Issue 1 PMC-Sierra Inc.

S/UNI-DUPLEX Engineering
Document

PMC-1980169 Issue 3 PMC-Sierra Inc.

S/UNI-VORTEX Driver
Manual

PMC-1990786 Issue 1 PMC-Sierra Inc.

S/UNI- VORTEX Engineering
Document

PMC-1980170 Issue 3 PMC-Sierra Inc.

DSLAM Reference Design:
System Design

PMC-1990832 Issue 1 PMC-Sierra Inc.

DSLAM Reference Design:
Core Card

PMC-1990815 Issue 1 PMC-Sierra Inc.

DSLAM Reference Design:
Line Card

PMC-1990354 Issue 2 PMC-Sierra Inc.

DSLAM Reference Design:
WAN Card

PMC-1990474 Issue 1 PMC-Sierra Inc.

B-ISDN OAM Principles and
Function Abstract

I.610 Feb.
1999

ITU-T

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 17
Document ID: PMC-1991216, Issue 3

Traffic Management
Specification

Af-tm-0056.000 Version
4.0

The ATM Forum

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 18
Document ID: PMC-1991216, Issue 3

2 VORTEX CHIPSET OVERVIEW

This section briefly describes each VORTEX chipset device, and provides an
overview of VORTEX chipset architecture in DSLAM application or other similar
architecture system. This shall help understanding the chipset driver and its design
architecture.

The VORTEX chipset is ideally suited for Digital Subscriber Line Access
Multiplexers (DSLAMs) where the cell processing requirements are centralized on
a single core card. Figure 1 depicts a scalable, cost effective DSLAM based on the
PMC-Sierra S/UNI-VORTEX chip set.

Figure 1: Reference DSLAM Application

LIU

LIU

...

≤ 32 devices

Line cards

...
S/UNI-
APEX

S/UNI-
ATLAS

RAM

S/UNI-
DUPLEX

S/UNI-
VORTEX

S/UNI
VORTEX

.

.

.

.

.

.

Up to 8 line cards per
S/UNI-VORTEX

RAM

Core Card 1

 Host CPU

...
S/UNI-
APEX

S/UNI-
ATLAS

RAM

S/UNI-
VORTEX

S/UNI
VORTEX

.

.

.

RAM

Core Card 2

.

.

.

PCI

PCI

WAN card
 S/UNI-
DUPLEX S/UNI-

DUPLEX

 S/UNI-
DUPLEX

S/UNI-PHYup to 8 VORTEX per core card

Up to 64 line cards

up to 8 VORTEX per core card

WAN Uplinks

LOOP
Ports

WAN card
 S/UNI-
DUPLEX

S/UNI-PHY

The DUPLEX (PM7351) and VORTEX (PM7350) provide non-statistical, flow
controlled multiplexing of ATM cells over point to point high speed serial
interconnect between a single centralized core card and up to 64 line cards. Each
DUPLEX is capable of supporting up to 32 xDSL PHY devices via a UTOPIA L2
bus or providing termination of the ATM TC layer for up to 16 xDSL PHY devices
with clock and data interfaces. The DUPLEX/VORTEX devices are capable of
aggregating ATM traffic from 2048 xDSL PHY devices or Loop ports onto a single
core card.

The ATLAS (PM7324) performs ATM layer functions including full space address
resolution for both up and downstream traffic flows, cell rate policing for both up
and downstream traffic flows and full ITU I.610 OAM cell processing for OAM
flows on both the loop side and the WAN side.

The S/UNI APEX performs advanced ATM layer traffic management functions
including cell switching, per VC queuing, and hierarchical (per VC, per Class of
Service, and per port) scheduling and congestion management to up to 2048 loop
ports and up to 4 WAN ports.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 19
Document ID: PMC-1991216, Issue 3

In a typical DSLAM application, the DSLAM system includes two redundant core
cards, and multiple line cards and (up to 2) WAN cards, as shown in Figure 1. The
two core cards are operating in either load-sharing or protection mode. In load-
sharing mode, a core card acts as the working card for some line cards (typically
half of them) and as the spare card for the remaining line cards. In the (1:1)
protection mode, one core card is active, while the other one is left in a hot standby
mode. If one of two core cards has a failure, the service for the existing connection
ports or line cards can be switched and provided by the other core card with a
minimum cell loss or corruption. See Ref. 11-14 (document # PMC-1990832,
990815, 990354, 990474) for a more detailed description of the reference design.

The chipset driver is built around the typical DSLAM architecture described in the
reference design. A chipset card or core card consists of one APEX , one ATLAS
device, multiple VORTEX chips, and one DUPLEX chip. However, the chipset
driver is designed to be modular so that it can be easily ported for other different
designs with fewer VORTEX or DUPLEX chips on a core card.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 20
Document ID: PMC-1991216, Issue 3

3 DRIVER FEATURES AND FUNCTIONALITY

The VORTEX Chipset Driver integrates the four underlying device drivers for the PMC
VORTEX chipset devices (consisting of PM7324 S/UNI-ATLAS, PM7326 S/UNI-APEX,
PM7350 S/UNI-DUPLEX and PM7351 S/UNI-VORTEX), and provides a synchronized
access and control over the devices for DSLAM or other similar applications. The chipset
driver directly monitors and controls chipset core cards, not the remote Line/WAN cards.
However, it provides communication channels between the core cards and Line/WAN cards
for remote control of the Line/WAN card. The definition of communication message
content, or how the remote cards are controlled, is beyond the scope of this chipset driver.
The following describes the functionality supported by the VORTEX chipset driver.

3.1 Module

Initialization and Shutdown

Allocates all memory needed by the chipset driver and initializes Module level data
structures. It also initializes all underlying device driver modules.

Shuts down the chipset driver module gracefully after deleting all chipset (core
cards) that are currently registered with the chipset driver.

3.2 Chipset

Chipset Control (Add and Delete)

Adding a chipset involves verifying that the chipset (core card) exists, allocating a
memory buffer to store chipset context information, and associating a chipset
handle to the user context passed by the Application. The chipset context buffer
stores the device handles to each chipset device on the core card. The Application
uses this chipset handle as a parameter in most of the API calls to refer to this
particular chipset (core card). Reciprocally, the Chipset Driver uses this user
context as a parameter when doing a callback to the Application code regarding that
particular chipset (core card).

Deleting a chipset involves applying a reset to the chipset (core card) and releasing
the chipset handle, as well as device handles within the chipset context.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 21
Document ID: PMC-1991216, Issue 3

Chipset Initialization

Initialization of a chipset involves initializing enough memory to store context
information about the chipset card. The Chipset driver uses this context information
to control and monitor the chipset card or underlying devices. Once the context
memory is setup, the chipset driver invokes device initialization routine provided
by each underlying device driver, and configures each device interface properly.
This involves using the profile number passed by the Application to set the chipset
card configuration.

A profile simply serves as a “canned configuration” that is used to initialize a
chipset (card) without having to pass all the initialization parameters every time a
chipset (card) is configured. Instead, the user passes a profile number, which is an
index to an array of profiles that the USER is required to create. The chipset driver
indexes this array, obtains the initialization vector corresponding to the profile
number and configures the chipset (card) or chipset devices accordingly.

Chipset Reset

It supports two levels of reset:

• Reset the chipset hardware only, but all software context information and
connection table are preserved. The card can be recovered to the pre-reset state
and all connections can be quickly restored.

• Reset both hardware and software. It applies an internal (soft) reset to each
VORTEX chipset device on the card, (or resets whole chipset card at once if the
chipset card supports the feature). Also clears the context and statistics
information for the devices and the chipset system. All connections will be
destructed. The system has to be re-initialized from scratch.

De-Activate / Activate Chipset

The USER can de-activate and activate the operation of a chipset (card) at any time.
After activation, the chipset (card) will start to handle cell traffic. The chipset
driver still maintains the connection table after the de-activation.

Interrupt Servicing

Interrupt servicing of individual chipset device is implemented and provided by
each underlying device driver. Typically, each driver provides an Interrupt
Servicing Routine (ISR) and a deferred processing routine (DPR) for handling
interrupts of the device.

The ISRs clear the interrupts raised by the devices and store the interrupt status for
later processing by the deferred processing routine (DPR). The DPR runs in the
context of a separate task within the RTOS and takes appropriate actions based on
the interrupt status retrieved by the ISRs.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 22
Document ID: PMC-1991216, Issue 3

Interrupt servicing is an optional feature. The user can disable device interrupts and
instead poll the device periodically to monitor status and check for alarm/error
conditions.

Both polling and interrupt driven approaches detect a change in device status and
report this status to a DPR. The DPR then invokes some callback functions based
on the status information retrieved. The chipset driver implements the device-level
callback functions of each device driver. The chipset driver may handle certain
alarms internally, or relay some event conditions to the applications. In the latter
case, the chipset driver provides chipset-level callback functions for passing the
event information to the application.

Alarms, Status and Statistics

Routines are provided that read the various counts accumulated by the VORTEX
chipset devices. These routines are generally called on a periodic basis by the
application. It is also possible to set the chipset driver such that some counts are
periodically read by the chipset driver watchdog task and presented to the
application via a callback function, or stored in context memory for retrieval by the
application. The application should ensure that the counters are polled at frequent
intervals to prevent counters from rolling over. The various counts include Cell
Counts for Tx and Rx, Discarded/Errored Cell Counts. The statistics are available
per-VC, per-Port, and per-Chipset. The chipset driver provides an API to determine
the VC connection ID of the last cell discarded.

In addition to system level statistics, individual driver statistical numbers, such as
count of interrupts for a particular device, are maintained by each device driver.
They can be retrieved by application through a chipset API.

Chipset self-test and Device Diagnostics

• Verifies each chipset device with simple read and write checks (register test)
and validates the associate SRAM/SDRAM memory access. The chipset driver
reports any error condition to the application.

• Conducts loopback tests for integrity check of the chipset card:
° Set the chipset into a variety of loopback modes, and then insert test cells

from an APEX microprocessor port, or Loop, or WAN port, and check to
see if the same test cells are looped back to the same testing port. See
Figure 22 of Appendix B which shows the loopback data flow via the
microprocessor port.

Microprocessor OAM support

Certain types of OAM cells (such as Loopback, System Management and
Activation/Deactivation) are not directly supported by the VORTEX chipset
devices. However, such support can be provided by the chipset driver through
Microprocessor OAM Interface Functions.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 23
Document ID: PMC-1991216, Issue 3

Microprocessor OAM Interface Functions configures, controls and monitors the
Microprocessor interface of ATLAS device. Ingress OAM cells that are terminating
at this VC/VP endpoint and that are NOT handled by the ATLAS device will
automatically be passed to the Microprocessor Ingress Cell interface. The chipset
driver is responsible for ensuring that cells are extracted from this interface in a
timely manner. The chipset driver processes the Ingress OAM requests for OAM
functions from a remote system. It may generate some response OAM cells, which
are presented to the Microprocessor Egress Cell Interface for transmission, as
shown in Appendix B, Figure 26.

Scheduling and Congestion Control Service

Utility routines are provided to calculate appropriate congestion threshold levels,
scheduling and cell rate policing parameters for service classes defined by TM 4.0
(CBR, VBR, VBR-RT, GFR, UBR). These functions are normally called by the
chipset driver APIs, and therefore should be considered as internal library functions.
However, USER may implement them using a different algorithm for the
scheduling and congestion control.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 24
Document ID: PMC-1991216, Issue 3

3.3 Application Programming Interface

The chipset driver provides some system level API routines to support VC/VP
Connection setup/maintenance/ teardown, QOS service, multicasting support, OAM
setup and processing, Performance Monitoring (PM) setup and maintenance, Cell
rate policing.

WAN-port to Loop-port connection (Upstream/downstream)

• Connection Setup: The connection request contains traffic parameters such as
bandwidth and QOS service parameters. The chipset driver’s Resource
Management determines whether the request should be honored or rejected.
The chipset driver is responsible for configuring the appropriate devices for the
connection establishment. . Figure 17 and Figure 18 of Appendix B show the
data flow paths for the upstream and downstream connections, respectively.

• Connection Teardown: Tears down a connection by re-configuring the
appropriate devices, and de-allocate the related resource back to the Resource
Management.

• Port Setup and Teardown: Setup port or teardown a port, which clears all the
VCs associated with the port.

• Connection Traffic Parameter Retrieval/Modification: Retrieves the traffic
descriptor parameters for a specified connection, and/or changes the traffic
parameters without tearing down the connection.

• Connection Activation/ Deactivation(or Standby): suspends a VC connection,
or activates the connection to a normal operation.

• Connection Status Monitoring: reports connection status.

Loop to Loop-port connection

• Connection Setup: The connection request contains traffic parameters such as
bandwidth and QOS service parameters. The chipset driver’s Resource
Management determines whether the request should be honored or rejected.
The chipset driver is responsible for configuring the appropriate devices for the
connection establishment. Figure 19 of Appendix shows its data flow path
within the chipset.

• Connection Teardown: Tears down a connection by re-configuring the
appropriate devices, and de-allocates the related resource back to the Resource
Management.

• Port Setup and Teardown: Setup port or teardown a port, which clears all the
VCs associated with the port.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 25
Document ID: PMC-1991216, Issue 3

• Connection Traffic Parameter Retrieval/Modification - It retrieves the traffic
descriptor parameters for a specified connection, and/or changes the traffic
parameters without tearing down the connection.

• Connection Activation/ Deactivation(or Standby): suspends a VC connection,
or activates the connection to a normal operation.

• Connection Status Monitoring: reports connection status.

Microprocessor-port to WAN/Loop port connection

• Connection Setup: The connection request contains traffic parameters such as
bandwidth and QOS service parameters. The chipset driver’s Resource
Management determines whether the request should be honored or rejected.
The chipset driver is responsible for configuring the appropriate devices for the
connection establishment. Figure 20 of Appendix B shows the data flow path
between Microprocessor port and a WAN port, and Figure 21 shows the data
flow path between Microprocessor port and a Loop port

• Connection Teardown: Tears down a connection by re-configuring the
appropriate devices, and de-allocates the related resource back to the Resource
Management.

• Port Setup and Teardown: Setup port or teardown a port, which clears all the
VCs associated with the port.

• Connection Traffic Parameter Retrieval/Modification: Retrieves the traffic
descriptor parameters for a specified connection, and/or changes the traffic
parameters without tearing down the connection.

• Receive/Transmit Data (via Microprocessor port of APEX device).

Multi-casting support

With software or driver assistance, cells come in from WAN or loop port, are
replicated across a list of destination VCs via the APEX microprocessor port, as
shown in Figure 24 of Appendix B. Even after a multicasting group is setup,
connections can be dynamically added to or dropped from the group.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 26
Document ID: PMC-1991216, Issue 3

Inband Control Channel

• Channel Setup: The channel request specifies a destination line/WAN card,
VPI/VCI as well as AAL type (AAL0, raw cell or AAL5). The chipset driver
allocates resources such as memory buffer for the connection channel, and
establishes the channel communication via a HSS link between a VORTEX or
DUPLEX device on core card and the DUPLEX device on the line/WAN card.
For the channels between a line card and cord card, the chipset driver passes the
message through the microprocessor port of the APEX on the core card. For the
channels between a WAN card and core card, the messages are routed through
microprocessor port of DUPLEX on the core card. Their data flow paths are
shown in Figure 23 of Appendix B.

• Channel Teardown: Tears down the channel connection and de-allocates the
related resource back to the Resource Management.

• Receive/Transmit Message: Sends a message out over a specified channel, or
receives messages from the line/WAN cards.

BOC signaling

BOC signaling over the HSS links between the core card and Line/WAN cards
provides a simple communication channel between the core card and a remote card.
The BOC code, including Reset and user-defined code, can be sent to or received
from the VORTEX or DUPLEX device which is directly connected to the
line/WAN card via a HSS link cable.

Retrieving Current VC Connections and Resources

The chipset driver provides API functions to reports the current VC connection
status, as well as available resources, such as available VCs, logical channels and
ports.

FM function (RDI, AIS, CC) Setup

Setup OAM service through ATLAS device driver. The APEX is configured in a
way that all OAM cells can pass through transparently. The OAM data path is
shown in Figure 25.

The F4 and F5 OAM cell sourcing/termination can be setup per VC. F4 to F5
processing is also supported.

 Performance Monitoring Setup

Individual VC can be configured and associated to one or two of 256 PM sessions
for full performance monitoring.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 27
Document ID: PMC-1991216, Issue 3

The Application shall be responsible to read the performance information gathered
through the chipset driver.

Protection switching

The chipset driver supports the hot switching of the operating modes of two
redundant core cards by bringing a spare core card to an active mode, while
switching the active core card into a standby mode. The switching procedures are
optimized to minimize the cell corruption or cell loss.

It also supports the hot switching of line card connections between two active core
cards which operates in a load-sharing mode. A line card and its associated VC
connections which were originally serviced by one of two redundant core cards, can
be serviced by the other core card after a load switch or transfer.

Addition/deletion of Line cards, WAN card

It manages the addition or removal of line or WAN card. The resource manager
updates its resource database to reflect the change in the loop/WAN port
availability. The port or connection setup is prevented when the associated
line/WAN card is absent from the system.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 28
Document ID: PMC-1991216, Issue 3

4 ARCHITECTURE OVERVIEW

This section provides an overview of the VORTEX chipset driver’s architecture.
The chipset driver’s external interfaces and its main components are briefly
described here.

4.1 External Interfaces

Figure 2 illustrates the external interfaces defined for the VORTEX chipset driver.

Figure 2: External and Internal interfaces

APEX
Drive

ATLAS
Driver

VORTEX
Driver

DUPLEX
Driver

VORTEX Chipset Board

RTOS

Application

VORTEX
Chipset Driver

 Function Calls Indication Callbacks

Register Access Interrupt

Service Calls

APEX
Device

ATLAS
Device

VORTEX
Device

DUPLEX
Device

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 29
Document ID: PMC-1991216, Issue 3

VORTEX chipset Hardware Interface

The hardware interface consists of routines that allow the VORTEX chipset driver
to interact with the underlying VORTEX chipset devices. These routines provide
read/write access and interrupt handling services. The implementation of these
routines is system-dependent. Therefore, the USER typically implements these
routines when porting the chipset driver to a specific platform. A reference
implementation as well as detailed documentation is provided to help facilitate the
implementation of these routines. The reader is referred to Section 6 for further
details on the hardware interface routines.

RTOS Interface

The RTOS interface consists of the RTOS services required by the VORTEX
chipset driver. The chipset driver requires the following RTOS services:

• Memory: allocate, free

• Timers: sleep

• Semaphores: create, set, clear, delete

The RTOS service calls vary from one RTOS to another. In order to minimize the
porting effort (from one RTOS to another), the chipset driver abstracts these service
calls using a set of “wrapper” routines. The USER only has to modify these routines
while porting the chipset driver to a specific RTOS. For more details on the RTOS
interface, the reader is referred to Section 7.

Application Programming Interface

The term “Application” in this document refers to protocol software used in a real
system as well as validation software written to validate the VORTEX chipset
driver on a validation platform. The Application interfaces with the VORTEX
chipset driver via the Application Programming Interface (API). The API consists
of functions and indication callback routines.

The application software calls the API functions to perform specific operations on
the VORTEX chipset. The API functions typically are not executed in the context of
a separate task within the RTOS. Instead, they are executed in the context of the
calling software’s task. It is important to note that the API functions are not to be
modified by the USER. These functions are not platform or RTOS dependent and
therefore should remain unchanged during the porting process.

The callback routines are used by the chipset driver to notify the application of
events within the device(s) (such as alarms). The callback routines, unlike API
functions, are system-dependent and are implemented by the USER.

For more detailed information on the API functions and callback routines, please
see Section 8.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 30
Document ID: PMC-1991216, Issue 3

4.2 Main Components

Figure 3 illustrates the main components of the VORTEX chipset driver.

Figure 3: Main Components

VORTEX APEX ATLAS DUPLEX

 VORTEX
Device Driver

 APEX
Device Driver

 ATLAS
Device Driver

 DUPLEX
Device Driver

Connection
Admission
Control (CAC)

R
TO

S

Driver API Interface

Load-sharing &
Protection
Switching

Status &
Statistics

uP VC &
multi-cast
support

BOC
signaling

uP OAM
support

Inband
Control
Channel

WAN cardsLine cards

VC
Management
Module

QOS &
Policing

Core cards

OAM & PM
Module

Callback

Internal interface

 Hardware Interface

Application

Event
Handling
Module

Self-test &
Diagnostics

Chipset Data Block

Global Driver
 Database

CAC Control Block

R
TO

S
 In

te
rf

ac
e

Remote-
Card
Manager

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 31
Document ID: PMC-1991216, Issue 3

Global Driver Database (GDD)

The Global Driver Database (GDD) is the top layer data structures, created by the
VORTEX chipset driver to keep track of its initialization and operating parameters,
modes and dynamic data. The GDD is allocated via an RTOS call, when the chipset
driver is first initialized and contains all the Chipset Structures.

The Chipset Data Block (CDB) is contained in the GDD and initialized by the
VORTEX chipset Module for each Chipset card that is registered, to keep track of
that Chipset’s initialization and operating parameters, modes and dynamic data.
There is a limit on the number of Chipset Blocks (Devices) and that limit is set by
the USER when the Module is initialized.

The GDD also contains the Connection Admission Control (CAC) data block. It
consists of VC connection table, multicast groups, and inband control channel
information. The structure is mostly used by CAC control Module, and Inband
Control Channel Module.

CAC Control Module

The Connection Admission Control Module manages and maintains the system
resources such as VC connections and traffic bandwidth. The module determines
whether a User request for a connection or channel establishment should be
honored or rejected, based on the availability of resources. All the resource
information is stored in the CAC data block.

Status & Statistics Module

The Status and Statistics Section is responsible for tracking chipset status
information and accumulating statistical counts for each chipset registered with
(added to) the chipset driver. This information is stored for retrieval by the
application software.

VC Management Module

The VC Management Module provides routines to configure each chipset device
for VC connection setup, modification, and teardown. The VC Management module
configures the devices of the chipset in different ways depending on the type of
connection being set up. In addition, the CAC data block or the VC table is updated
each time the service routines are called.

VC QOS & Policing Module

The module calculates the scheduling parameters and congestion threshold levels
for VC, Classes and Ports, as well as the cell rate policing parameters based on
QOS contract. It is also responsible for manipulating the Queue Engine Schedulers
in APEX and configuring the rate policing parameters in ATLAS.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 32
Document ID: PMC-1991216, Issue 3

VC OAM & PM Module

The VC OAM & PM module is responsible for configuring individual VCs for
OAM support by ATLAS, and full performance monitoring.

Remote-card Manager Module

The module manages the addition or deletion of remote Line/WAN cards, and keeps
track of the port availability.

Self-test & Diagnostics Module

The module performs the self-test, such as register and memory port test. It also
provides routines to prepare the chipset into a loopback mode for the integrity
check purpose.

Load-sharing & Protection Switching

The module manages the load-sharing of the connections or traffics between two
redundant chipset card. It provides service for the hot switching of active and spare
cards.

Event Handling Module

The Event Handling Module is responsible for handling the event raised by the
underlying devices or device drivers. Depending on the type of events, the module
may pass the event information directly to the Application.

Microprocessor VC & Multicast Module

The module performs the data transmission/receiving of cells or frame to/from the
Microprocessor VC connections. It supports multicasting of VC cells, in which cells
coming in from a WAN or Loop port are replicated across a list of destination VCs
in a multicast group. The module uses the SAR Assist features of the APEX device
to perform the insertion/extraction of cells through its microprocessor interface.

Microprocessor OAM Support Module

The module performs the support for certain type of OAM cells (Loopback,
Activation/Deactivation), which are not supported by the ATLAS device.

Inband Control Channel (ICC) Module

The module provides services for the inband control channel messaging between a
remote Line/WAN card and a chipset core card. The module is transparent to the
message content. Therefore it’s up to User to compose and interpret the messages.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 33
Document ID: PMC-1991216, Issue 3

BOC Signaling Module

The module provides a simple communication path between a remote Line/WAN
card and a chipset core card. The module is transparent to the user BOC code.
Therefore it’s up to User to define and interpret the BOC code.

Driver API

The Driver Application Programming Interface (API) is a list of high-level
functions that can be invoked by application programmers to configure, control and
monitor the VORTEX chipset devices. The API functions perform operations that
are more meaningful from a system’s perspective. The API includes functions that
initialize the devices, perform diagnostic tests, validate configuration information to
prevent incorrect configuration of the devices, retrieve status and statistics
information, and setup/modify/teardown VC connections. The chipset driver API
functions use the services of the other driver modules to provide this system-level
functionality to the application programmer.

The Chipset driver API also consists of callback routines that are used to notify the
application of significant events that take place within the device(s) and chipset
driver module.

Hardware Interface

The Hardware Interface is a list of low-level functions that are invoked by the
device drivers to access the VORTEX chipset registers. The Hardware Interface
functions are architecture-dependent and are to be implemented by the USER when
porting the chipset driver code to a specific platform.

RTOS Interface

The RTOS Interface is a list of low-level functions that are invoked by the device
driver itself to allocate or free RTOS resources. The RTOS Interface functions are
RTOS-dependent and are to be implemented by the USER when porting the chipset
driver code to a specific platform.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 34
Document ID: PMC-1991216, Issue 3

4.3 Software State Description

Figure 4 shows the software state diagrams for the VORTEX chipset module and
device(s) as maintained by the chipset driver.

Figure 4: State Diagram

READY

vcsModuleInit

START

MODULE STATES

vcsModuleShutdown

vcsDeActivate

vcsActivate

VCS_START

vcsAdd vcsDelete

vcsReset
vcsReset

vcsInit

VCS_
PRESENT

VCS_
STANDBY

VCS_
ACTIVE

PER-Chipset STATES

State transitions are made on the successful execution of the corresponding
transition routines shown. State information helps maintain the integrity of the
GDD and CDB(s) by controlling the set of operations that are allowed in each state.

VORTEX chipset Module States

The following is a description of the VORTEX chipset module states.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 35
Document ID: PMC-1991216, Issue 3

START

The VORTEX chipset driver Module has not been initialized. The only API
function that will be accepted in this state is vcsModuleInit. In this state the
chipset driver does not hold any RTOS resources (memory, timers, etc…), has no
running tasks, and performs no actions.

READY

This is the normal operating state for the chipset driver Module. The VORTEX
chipset driver Module has been initialized successfully via the API function
vcsModuleInit. The Module Initialization Vector (MIV) has been validated, the
Global Driver Database (GDD) has been allocated and loaded with current data, the
per-chipset data structures have been allocated, and the RTOS has responded
without error to all the requests sent to it by the chipset driver.

The chipset driver is ready for chipsets to be added. The chipset driver Module
remains in this state while chipsets are in operation. Chipsets can be added via
vcsAdd. The API function accepted here for Module control is
vcsModuleShutdown.

VORTEX chipset States

The following is a description of the per-chipset states.

VCS_START

The VORTEX chipset (card) has not been initialized. The only API function that
will be accepted in this state is vcsAdd. In this state the chipset (card) is unknown
by the chipset driver and performs no actions.

VCS_PRESENT

The VORTEX chipset card has been successfully added via the API function
vcsAdd. A Chipset Data Block (CDB) has been associated to the card and updated
with the user context, and a card handle has been given to the USER. In this state,
the card performs no actions. The only API functions that will be accepted in this
state are vcsInit and vcsDelete.

VCS_STANDBY

This state is entered via the vcsInit and vcsDeActivate function calls. In this
state the Chipset Card remains configured but all data functions are de-activated
including interrupts and Alarms, Status and Statistics functions. vcsActivate
will return the chipset to the VCS_ACTIVE state, while vcsReset will de-
configure the Chipset.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 36
Document ID: PMC-1991216, Issue 3

VCS_ACTIVE

This is the normal operating state for the Chipset Card(s). State changes can be
initiated from the VCS_ACTIVE state via vcsDeActivate, and vcsReset.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 37
Document ID: PMC-1991216, Issue 3

5 CONSTANTS, AND DATA STRUCTURES

This section describes the elements of the chipset driver that configure or control its
behavior and therefore should be of interest to the application programmer. For more
information on our naming convention, the reader is referred to Section 12.

5.1 Constants

The following Constants are used throughout the chipset driver code:

• <VCS_ERR_CODES>: a list of error codes used throughout the chipset driver
code, returned by the API.

• VCS_MAX_CARDS: defines the maximum number of chipset core cards that can
be supported by this chipset driver. This constant must not be changed without
a thorough analysis of the consequences to the chipset driver code. It should be
either 1 or 2. The default value is 2.

• VCS_MAX_VC: define the maximum number of VCs the system supports. It
depends on the card’s context memory capacity such as APEX SSRAM size. It
should be either 16K or 64K. The default value is 16K.

• VCS_MAX_LOOP_PORTS: define the maximum number of Loop ports the
chipset driver supports. The default value is 2048 (2K).

• VCS_MAX_WAN_PORTS: define the maximum number of WAN ports the chipset
driver supports. The default value is 4.

• VCS_MAX_CELL_RATE: define the maximum traffic throughput in half duplex
in cells per second. The default value is (1420*1024).

• VCS_MAX_CELL_RATE_PER_LOOP: define the maximum traffic throughput for
a loop port in cells per second. The default value is (230*1024).

• VCS_MAX_VORTEX: define the maximum number of VORTEX devices on a
core card (from 1 to 8). The default value is 2.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 38
Document ID: PMC-1991216, Issue 3

5.2 General Structure Definition

These structures are defined for general use by the application and the chipset
driver.

Table 2: VORTEX chipset VPI and VCI (sVCS_VPI_VCI)

Field Type Field Name Field Description

UINT2 vpi VPI of ATM cells

UINT2 vci VCI of ATM cells

Table 3: VORTEX chipset VC and Port Descriptor (sVCS_VC_PORT_DES)

Field Type Field Name Field Description

eVCS_PORT_TYPE ePortType specifies a port type: VCS_LOOP_PORT,
VCS_WAN_PORT, VCS_UP_PORT.

UINT2 u2PortNum Specify a Loop or WAN port number

UINT2 vpi VPI value

UINT2 vci VCI value

Table 4: VC QOS Structure (sVCS_VC_QOS)

Field Type Field Name Field Description

eVCS_TRAFFIC_TYPE eTrfcType Indicates the VC type: CBR, rtVBR,
nrtVBR, GFR, UBR, ABR

UINT4 Pcr Peak cell rate in cells/second

UINT4 Scr Sustained Cell Rate in cells/second

UINT4 Mcr Minimum Cell Rate in cells/second, used
for ABR type VC

UINT2 Mbs Maximum Burst Size at the Peak Cell
Rate in cells

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 39
Document ID: PMC-1991216, Issue 3

Field Type Field Name Field Description

UINT2 Mfs Maximum Frame Size in bytes , used in
GFR

UINT2 Cdvt Cell Delay Variation Tolerance (CDVT)
in microsecond

UINT2 Clr Cell Loss Ratio in percentage

UINT2 maxCTD Maximum Cell Transfer Delay in cells

UINT1 u1NcAction Specifies an action for non-compliant
cells at ATLAS level, can be one of

VCS_PLC_COUNT_ONLY (increment NC
cell count)

VCS_PLC_TAG_ONLY (tag CLP0 cell)

VCS_PLC_TAG_DISCARD (tag CLP0,
discard CLP1)

VCS_PLC_DISCARD (discard both CLP0
and CLP1)

VCS_PLC_DEFAULT (using default
policing actions defined by the chipset
driver)

Table 5: VC FM Structure (sVCS_VC_OAM_FM)

Field Type Field Name Field Description

UINT1 u1EndPoint Bit 1: 1= terminating segment OAM cells, 0 =
pass through

Bit 0: 1= terminating end-to-end OAM cells, 0 =
pass through

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 40
Document ID: PMC-1991216, Issue 3

Field Type Field Name Field Description

UINT1 u1Config OAM configuration

Bit 7: reserved

Bit 6: Send_AIS_segment

Bit 5: send_AIS_end-to-end

Bit 4: send_RDI_segment

Bit 3: send_RDI_end-to-end

Bit 2: CC_RDI

Bit 1: CC_ACTIVATE_Segemnt

Bit 0: CC_ACTIVATE_end-to-end

UINT1 u1DtSelect Bit 0-3: select one of 16 defect types to be
inserted in OAM (AIS, RDI) cells generated by
the chipset.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 41
Document ID: PMC-1991216, Issue 3

Table 6: VC PM Structure (sVCS_VC_OAM_PM)

Field Type Field Name Field Description

UINT1 u1PMId1 Bits [6:0]: the PM session address in bank 1.

Bit 7: active flag. If 1, it indicates the PM
session is active.

UINT1 u1PMId2 Bits [6:0]: the PM session address in bank 2

Bit 7: active flag. If 1, it indicates the PM
session is active.

Table 7: VC Policing Structure (sVCS_VC_POLICING)

Field Type Field Name Field Description

UINT2 u2Limit Limit field for Generic Cell Rate Algorithm
parameters.

UINT2 u2Incr Increment field for Generic Cell Rate Algorithm
parameters.

Table 8: Congestion Threshold Level Structure (sVCS_THRSH_LEVEL)

Field Type Field Name Field Description

UINT1 u1CLP0Thrsh Maximum threshold for CLP0 cells.

UINT1 u1CLP1Thrsh Maximum threshold for CLP1 cells.

UINT1 u1MaxThrsh Maximum threshold for all cells.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 42
Document ID: PMC-1991216, Issue 3

Table 9: Port Threshold Structure (sVCS_PORT_THRSH)

Field Type Field Name Field Description

sVCS_THRSH_LEVEL sPortThrsh Maximum threshold levels per port.
The port threshold levels are coded as
4 bit logarithmic and 4 bit fractional
values

sVCS_THRSH_LEVEL sClassThrsh[4] (array of) Maximum threshold levels
per Class. The class threshold levels
are coded as 4 bit logarithmic and 4 bit
fractional values.

Table 10: VC Threshold Structure (sVCS_VC_THRSH)

Field Type Field Name Field Description

sVCS_THRSH_LEVEL sVcThrsh Maximum threshold levels per VC
The threshold levels are coded as 4
bit logarithmic and 2 bit fractional
values.

UINT1 u1VcCLP0MinThrsh Minimum number of CLP0 cells
guaranteed to be allowed on a per-
VC basis. This threshold value is
coded as a 3 bit code value

Table 11: Shaped VC Parameters (sVCS_VC_SHPR)

Field Type Member Name Description

UINT1 u1ShpPrescale Resolution of the Incr field

UINT2 u2ShpLateBits Number of bits used to
represent ShpTxSlotsLate

UINT2 u2ShpCdvt CDVT for the connection

UINT2 u2ShpIncr Increment field for SCR-
GCRA

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 43
Document ID: PMC-1991216, Issue 3

Table 12: Shaper Control VECTOR (sVCS_ SHPR_VECTOR)

Field Type Member Name Description

UINT1 state State for the shaper:
UNUSED or USED
(ENABLED).

UINT1 u1PortClass the port/class to which the
shaper is applied.

Bit 0-1: port number

bit 2-3: Class number

UINT1 u1ShpSlowDownEn Enable the slow down of the
time reference clock used by
the shaper.

UINT1 u1ShpThrshEn Defines the method of
speeding up/slowing down the
shaper rate.

UINT1 u1ShpMeasInt Define absolute number of
clock cycles over which to
measure congestion levels for
the shaper.

UINT1 u1ShpThrshVal Class queue length threshold

UINT1 u1ShpRedFact Shaper slow down factor

UINT1 u1ShpRTRate The maximum shaped data
rate in clocks/timeslot

Table 13: VC OAM Defect Structure (sVCS_VC_OAM_DEFECT)

Field Type Member Name Description

UINT1 u1SegDefType Received Segment Defect Type

UINT1 u1E2EDefType Received End-to-end Defect
Type

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 44
Document ID: PMC-1991216, Issue 3

Field Type Member Name Description

UINT4 u1E2EdefLocation[4] Received End-to-end AIS
Defect Location. Total 128
bits.

UINT4 u1SegDefLocation[4] Received Segment AIS Defect
Location. Total 128 bits.

Table 14: VC Connection Status Structure (sVCS_CONN_STATUS)

Field Type Member Name Description

eVCS_VC_STATE state VC state; can be one of the
following: VC_UNUSED,
VC_STANDBY or
VC_ACTIVE

eVCS_VC_CLASS eVcClass Bit 0-1: VC class; 00 = Class
0, 01 = Class 1, 10 = Class 2
11= Class 3.

eVCS_VC_TYPE eVcType VC connection type; 00 =
VCC Cells, 01 = VCC Frame,
10 = VPC Cell, 11=VPC
Frame

sVCS_VC_VECTOR VcIn specifies incoming cell ID,
(VcPortID/vpi/vci)

sVCS_VC_VECTOR VcOut specifies outgoing cell ID,
(VcPortID/vpi/vci)

UINT1 CardID specifies an active chipset
card, through which the VC
cells pass.

sVCS_VC_THRSH sVcThrsh Contains threshold values for
the VC connection

sVCS_VC_QOS sQos specifies QOS parameters for
the VC, including peak cell
rate, VC type (CBR, VBR etc)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 45
Document ID: PMC-1991216, Issue 3

Field Type Member Name Description

UINT1 u1VcWeight VC WFQ weight (linear
encoding - 6 bits)

sVCS_VC_OAM sVcOAM Contains OAM configuration
for the VC.

UINT1 mcFlag 1=the connection belongs to a
multicasting group

0=the connection doesn't
belong to a multicasting group

UINT2 mcId multicasting group ID, if the
above flag is 1

Table 15: VC Cell Header Structure (sVCS_CELL_HDR)

Field Type Member Name Description

UINT1 u1Hdr[4] 4 Cell Header bytes

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 46
Document ID: PMC-1991216, Issue 3

5.3 Structures Passed by the Application

These structures are defined for use by the application and are passed by reference
to functions within the chipset driver.

Module Initialization Vector (MIV)

Passed via the vcsModuleInit call, this structure contains all the information
needed by the chipset driver to initialize and connect to the RTOS.

• maxVCs specifies the maximum number of VCs the chipset driver needs to
support.

• maxChnls specifies the maximum number of inband control channels the
chipset driver shall support.

Since the control channel requires two VC connections for each channel, the VC
Record Context resource of APEX and ATLAS are shared between the User’s VC
connections and Control Channels. Therefore, the values of maxVCs and maxChnls
are limited by the following relationship: maxVCs + 2 * maxChnls ≤
VCS_MAX_VC

Table 16: VORTEX chipset Module Initialization Vector (sVCS_MIV)

Field Type Field Name Field Description

UINT2 maxVCs Maximum number of user VCs
supported by the chipset driver

UINT2 maxChnls Maximum number of inband control
channels

UINT2 maxInitProfs Maximum number of initialization
profiles

VCS_IND_RX_CELL indRxDataCell Callback function pointer for cell Rx
on user connections

VCS_IND_RX_FRM indRxDataFrm Callback function pointer for frame
Rx on user connections

VCS_IND_RX_CTRL_
MSG

indRxCtrlMsg Callback function pointer for
message Rx on control channels

VCS_IND_RX_BOC indRxBOC Callback function pointer for BOC
code Rx

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 47
Document ID: PMC-1991216, Issue 3

Field Type Field Name Field Description

VCS_IND_RX_OAM indRxOAM Callback function pointer for OAM
(CC and Activation/Deactivation)
cell Rx

VCS_IND_COS_STAT
US

indCosStatus Callback function pointer for
Change of Status on OAM operation

VCS_IND_INTR indCritical Callback function pointer for critical
interrupt events

VCS_IND_INTR indError Callback function pointer for non-
critical interrupt events

Chipset Initialization Vector

Passed via the vcsInit call, this structure contains all the information needed by
the chipset driver to initialize (eventually activate) a VORTEX chipset card.

• valid indicates if this is a validated Initialization Vector or not.

• sDevInitVector (where Dev denotes Apx, Atls, Dpx, Vtx)
contains the initialization vector for each VORTEX chipset device on the
chipset card.

Table 17: VORTEX chipset Initialization Vector (sVCS_INIT_VECTOR)

Field Type Field Name Field Description

UINT4 valid VCS_VALID – indicates that the contents
of this vector are validated
(VCS_INVALID otherwise)

sAPX_INIT_VECT sApxInitVect an Initialization vector for APEX chip

sATLS_INIT_VECT sAtlsInitVect an Initialization vector for ATLAS chip

sVTX_INIT_VECTOR sVtxInitVect an Initialization vector for VORTEX chip

sDPX_INIT_VECTOR sDpxInitVect an Initialization vector for DUPLEX chip

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 48
Document ID: PMC-1991216, Issue 3

VC Connection Request

Passed via the vcsConnSetup call. It contains the necessary information to set
up a VC connection.

Table 18: VORTEX chipset VC Request (sVCS_CONN_REQUEST)

Field Type Field Name Field Description

sVCS_VC_PORT_DES InVC specifies incoming port and VPI/VCI

sVCS_VC_PORT_DES OutVC specifies output port and VPI/VCI

sVCS_VC_QOS sQos specifies QOS parameters for the VC,
including peak cell rate, VC type (CBR,
VBR etc)

eVCS_VC_TYPE eVcType bit 0: cell type, Frame or Cell; 1 =
Frame, 0 = Cells

bit 1: VC type, VPC or VCC; 1 = VPC,
0 = VCC

Port-level Threshold Request

Passed via the vcsPortSetup call. It contains port-level threshold request.

Table 19: Port-level Threshold Request (sVCS_PORT_THRSH_REQUEST)

Field Type Field Name Field Description

UINT4 u4CLP0Thrsh CLP0 per-port threshold level in cells

UINT4 u4CLP1Thrsh CLP1 per-port threshold level in cells

UINT4 u4MaxThrsh maximum per-port threshold level in cells

UINT4 u4MinThrsh minimum guaranteed port threshold level in
cells. The value is used by driver software
to maintain cell buffer "guarantee" for the
port.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 49
Document ID: PMC-1991216, Issue 3

VC Multicast Request

Passed via the vcsMcSetup call. It contains the necessary information to set up a
multicasting group.

Table 20: VORTEX chipset Multicast Request (sVCS_MULTICAST_REQUEST)

Field Type Field Name Field Description

sVCS_VC_PORT_DES InVC specifies incoming port and VC

sVCS_VC_PORT_DES * pOutVC Pointer to a list of output ports and VCs

UINT2 numOutVC Number of output VCs in the list for
multicasting

sVCS_VC_QOS sQos specifies QOS parameters for the VC,
including peak cell rate, VC type
(CBR, VBR etc)

UINT1 flagFCQ Data type: Frame or Cell. 1 = Frame, 0
= Cells

Inband Control Channel Request

Passed via the vcsChnlSetup call. It contains the information to set up a control
channel between a core card and a WAN/Line card.

Table 21: VORTEX chipset Channel Request (sVCS_CHNL_REQUEST)

Field Type Field Name Field Description

UINT1 cardId specifies which HSS line, and which VORTEX
or DUPLEX device is connected to the Line or
WAN card

bit 0-2: HSS link number (0 to 7)

bit 3-6: device number

bit7 : 0=VORTEX, 1 = DUPLEX

UINT2 VpiOut VPI for output message cells towards remote
cards

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 50
Document ID: PMC-1991216, Issue 3

Field Type Field Name Field Description

UINT2 VciOut VCI for output message cells towards remote
cards

UINT2 VpiIn VPI for incoming message cells from remote
cards

UINT2 VciIn VCI for incoming message cells from remote
cards

UINT4 maxMsgSz maximum message size (number of bytes)

UINT1 flagFCQ Data type: Frame or Cell. 1 = Frame, 0 = Cells

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 51
Document ID: PMC-1991216, Issue 3

VC OAM (FM and PM) Setup Request

Passed via the vcsVcOAMSetup call. It contains the information to setup OAM and
PM configuration on a VC connection.

Table 22: VC OAM Structure (sVCS_VC_OAM_REQUEST)

Field Type Field Name Field Description

sVCS_VC_OAM_FM sFMcfg Contains the FM configuration for the VC

sVCS_VC_OAM_PM sPMcfg Contains the PM configuration for the VC

Device ID

Used to specify a particular device on the chipset core card.

Table 23: Device Identification Structure (sVCS_DEV_ID)

Field Type Field Name Field Description

eVCS_DEV_TYPE eDevType Device Type, can be VCS_APEX,
VCS_ATLAS, VCS_VORTEX,
VCS_DUPLEX.

UINT1 u1DevNum Specify one of multiple VORTEX devices
on the core card. It ranges from 0 to
(VCS_MAX_VORTEXS -1)

Port ID

Used to specify a particular port.

Table 24: Port Identification Structure (sVCS_PORT_ID)

Field Type Field
Name

Field Description

eVCS_PORT_TYPE ePortType Port Type, can be VCS_LOOP_PORT,
VCS_WAN_PORT, VCS_UP_PORT.

UINT2 u2PortNum port number of a Loop/WAN port.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 52
Document ID: PMC-1991216, Issue 3

Structure for OAM Configuration Block

The structure contains the configuration information for OAM control of the chipset
ATLAS device. It effects all OAM connections associated with the chipset. In
contrast, the structure sVCS_VC_OAM contains the configuration data on per-
connection basis

Table 25: VORTEX chipset OAM Configuration Block (sVCS_OAM_CFG)

Field Type Field Name Field Description

UINT1 u1Ctl Control Flag for OAM cell generation and
configuration

Bit 0: AutoRDI; 1 = automatically
generate RDI upon termination of an AIS
cell. 0 = otherwise.

Bit 1: ForceCC; 1 = CC cells to be inserted
regardless of user bandwidth. 0 = no CC
cells when high user bandwidth.

Bit 2: AISCopy; 1 = copies the Defect
Location and Type fields of all received
AIS cells to the VC Table. The associated
SRAM should be populated in the VC
table. 0 = no copying of the fields. The
associated SRAM should not be
populated in the VC table.

UINT2 u2AisCcCp AIS and CC cell pacing limit.

UINT4 u4AisPhy If bit x is set, AIS cells are generated
automatically on all associated
connections when a PHYx failure occurs.

UINT4 u4RdiPhy If bit x is set, RDI cells are generated
automatically on all associated
connections when a PHYx failure occurs.

UINT1 u1DT[VCS_OAM_D
EFECT_TYPES]

16 defect types used for non-automatic
OAM cell generation.

UINT2 u2DL[8] The 128 bits of defect location to be
inserted into non-automatic OAM cell
generation.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 53
Document ID: PMC-1991216, Issue 3

Field Type Field Name Field Description

UINT2 u2MaxIndex Maximum VC Table index, reflecting
ATLAS SRAM depth

UINT4 u4Aps Automatic Protection Switching bits for
controlling the automatic propagation of a
segment AIS flow into an end-to-end AIS
flow at a segment end point on per-PHY
basis. If PHY x doesn’t exist, the bit x
should be 1, i.e. no end-to-end AIS
generated.

UINT2 u2Bcp ATLAS Egress OAM cell interface pacing:
the number of cell intervals between the
transfer of backward OAM cells. Not used
for Ingress.

UINT2 u2Bto The timeout limit before a cell at the head
of the ATLAS Egress Backward Cell
Interface FIFO is discarded. To prevent a
malfunctioning PHY holding a Backward
FIFO, consequently blocking all other
cells that follow. Unit: cell periods. Not
used for Ingress.

VC F4 to F5 OAM Processing Request

Passed via the vcsF4toF5Setup call. It contains a list of F5 (VCC) connections
which are associated with one or two terminated F4 (VPC) connections for the F4
to F5 OAM processing.

Table 26: VORTEX chipset F4 to F5 OAM Request (sVCS_F4TOF5_
REQUEST)

Field Type Field Name Field Description

UINT2 F4EtoEConnId specifies an End-to-End OAM VPC
connection (VCI = 4)

UINT2 F4SegConnId specifies an Segment OAM VPC
connection (VCI = 3). If the field is set
to be the same value as
“F4EtoEConnId”, it indicates the
Segment OAM VPC connection does
not participate in the processing.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 54
Document ID: PMC-1991216, Issue 3

Field Type Field Name Field Description

UINT2 u2NumVcc specifies number of VCC in the list of
sVCS_F4TOF5_VCC data buffer array
pointed to by pVcc

sVCS_F4TOF5_VCC* pVcc Pointer to the first
sVCS_F4TOF5_VCC data buffer in the
list

Table 27: VORTEX chipset F4 to F5 VCC (sVCS_F4TOF5_ VCC)

Field Type Field Name Field Description

UINT2 u2ConnId VCC connection ID

UINT1 u1F4ToF5Cfg F4 to F5 processing Configuration for the
VCC.

Bit 0: F4toF5AIS,

 1= F5 FM cells will be generated at F4
OAM termination;

 0= F5 FM cells will not be generated at
F4 OAM termination; only CC cells will be
generated.

Bit 1: SegmentFlow,

 1 = An F5 Segment AIS cell will be
generated while the F4 connection is in AIS
alarm.

 0 = an F5 end-to-end AIS will be
generated instead. The bit should be set when
the VCC connection is within a defined
segment or not a VC end-point, i.e. the VCC
extends beyond the end-point of the VPC.

 Note: the bit should not be set to 1 at Segment
end-point

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 55
Document ID: PMC-1991216, Issue 3

Connection Status and Information

Passed out via the vcsConnStatus call. It contains status of a VC connection
which is maintained in the VC Record table.

Table 28: Connection Status (sVCS_CONN_STATUS)

Field Type Field Name Field Description

eVCS_VC_STATE state VC state; can be one of the following:
VC_UNUSED, VC_STANDBY or
VC_ACTIVE

eVCS_VC_CLASS eVcClass VC class; 00=Class 0, 01=Class 1, 10=Class 2
11=Class 3

eVCS_VC_TYPE eVcType VC connection type; 00=VCC Cells, 01=VCC
Frame, 10=VPC Cell, 11=VPC Frame

sVCS_VC_PORT_
DES

VcIn specifies incoming cell ID, (VcPortID/vpi/vci)

sVCS_VC_PORT_
DES

VcOut specifies outgoing cell ID, (VcPortID/vpi/vci)

UINT1 CardID specifies an active chipset card, through which
the VC cells pass.

UINT1 u1VcWeight VC queuing weight (linear encoding - 6 bits)

sVCS_VC_THRSH sVcThrsh Threshold values for the connection

sVCS_VC_QOS sQos current QOS parameters for the VC

UINT1 mcFlag 1=the connection belongs to a multicasting
group

0=the connection doesn't belong to a
multicasting group

UINT4 mcId multicasting group ID if the above flag is 1

Passed out via the vcsConnInfo call. It reports current active VCs, and loads on
each chipset (core card). It also lists available resources, such as number of empty
VCs, logical channels and ports.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 56
Document ID: PMC-1991216, Issue 3

Table 29: Connection Information (sVCS_CONN_INFO)

Field Type Field Name Field Description

UINT2 activeVCs number of active VCs

UINT2 inactiveVCs number of inactive or disabled
VCs

UINT2 availableVCs number of unused VCs

UINT2 activeLoopPorts number of active loop ports

UINT2 inactiveLoopPorts number of inactive loop ports

UINT2 availableLoopPorts number of unused loop ports

UINT2 activeWanPorts number of active loop ports

UINT2 inactiveWanPorts number of inactive loop ports

UINT2 availableWanPorts number of unused loop ports

UINT2 activeChnls number of Inband Control
Channels

UINT2 availableChnls number of unused Channels

UINT2 loadVCs[VCS_MAX_CARDS] load or number of active VCs
per card

UINT2 loadPorts[VCS_MAX_CARDS] number of active ports per card

Remote Card Information

Passed out via the vcsRemoteCardInfo call. It reports the availability of remote
Line/WAN cards at each HSS link and the HSS link status of a specified core card,
as well as the total number of remote cards being added.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 57
Document ID: PMC-1991216, Issue 3

Table 30: Remote Card Information (sVCS_RCARD_INFO)

Field Type Field Name Field Description

UINT1 lineInfo
[VCS_MAX_VORTEXS]
[VTX_NUM_HSS_LINKS]

contains the remote Line card info at
each HSS links

 Bit 0: 0 = Line card not added

 1 = Line card connected or
added

 Bit 1: 0 = inactive HSS link
between the Line card and Core Card

 1 = active HSS link between
the Line card and Core Card

UINT1 wanInfo
[VCS_DPX_HSS_LINKS]

contains the remote WAN card info at
each HSS links

 Bit 0: 0 = WAN card not added

 1 = WAN card connected or
added

 Bit 1: 0 = inactive HSS link
between the WAN card and Core Card

 1 = active HSS link between
the WAN card and Core Card

UINT2 u2RemoteCardCount number of remote Line/WAN cards
added to the core card

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 58
Document ID: PMC-1991216, Issue 3

Statistic Counts

Passed out via the vcsGetStatVcRxCnts and vcsGetStatVcNcCnts calls. It
reports the statistic counts as well as the counter configurations on per-VC basis.

Table 31: VC Statistic Counts (sVCS_VC_STAT_CNT)

Field Type Field Name Field Description

UINT1 u1CntType] programmable count type: A logical 1 in any
of bits indicates that counting on that
particular stream is enabled.

Bit 0 – CLP0 Cells with PTI=111 (F5) or
VCI=7 to 15 (F4)

Bit 1 – CLP1 Cells with PTI=111 (F5) or
VCI=7 to 15 (F4)

Bit 2 – CLP0 RM Cells

Bit 3 – CLP1 RM Cells

Bit 4 – CLP0 OAM Cells

Bit 5 – CLP1 OAM Cells

Bit 6 – CLP0 User Cells

Bit 7 – CLP1 User Cells

UINT4 u4Count per-VC Cell Counts

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 59
Document ID: PMC-1991216, Issue 3

5.4 Structures in the Driver’s Allocated Memory

These structures are defined and used by the chipset driver and some are part of the
context memory allocated when the chipset driver is opened.

Global Driver Database (GDD)

The GDD is the top-level structure for the Module. It contains configuration data
about the Module level code and pointers to card level configuration data structure
(CDB) and Connection Admission Control (CAC) block.

Table 32: VORTEX chipset Global Driver Database (sVCS_GDD)

Field Type Field Name Field Description

UINT2 u2NumCards Number of Chipset cards
currently registered

sVCS_CDB sCdb[VCS_MAX_CA
RDS]

array of Chipset Data Blocks
(CDB) in context memory

sVCS_DEV_CTXT sDevCtxt[VCS_MA
X_CARDS][VCS_MA
X_DEVS]

Contains device contexts for
each underlying device driver

sVCS_CAC sCAC Connection Admission Control
block.

sVCS_CHNL_TABLE sChnlTable control channel table

sVCS_VC_LIST * pFreeVcList Pointer to a pre-allocated
memory buffer for storing free
VC queue table and queue entry
pool. This is used to minimize
memory fragmentation.

UINT2 maxInitProfs Maximum number of
initialization profiles

sVCS_INIT_VECT * psInitProfs (array of) Pointers to different
initialization profiles

VCS_IND_RX_CELL indRxDataCell Callback function pointer for
cell Rx on user connections

VCS_IND_RX_FRM indRxDataFrm Callback function pointer for
frame Rx on user connections

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 60
Document ID: PMC-1991216, Issue 3

Field Type Field Name Field Description

UINT2 u2NumCards Number of Chipset cards
currently registered

VCS_IND_RX_CTRL_MSG indRxCtrlMsg Callback function pointer for
message Rx on control channels

VCS_IND_RX_BOC indRxBOC Callback function pointer for
BOC code Rx

VCS_IND_RX_OAM indRxOAM Callback function pointer for
OAM (CC and
Activation/Deactivation) cell Rx

VCS_IND_COS_STATUS indCosStatus Callback function pointer for
Change of Status on OAM
operation

VCS_IND_INTR indCritical Callback function pointer for
critical interrupt events

VCS_IND_INTR indError Callback function pointer for
non-critical interrupt events

Structure for a VC Queue Entry

Table 33: VORTEX chipset VC QUEUE ENTRY (sVCS_VC_INDEX)

Field Type Field Name Field Description

sVCS_VC_INDEX * prev a pointer to the previous element in the
queue table

sVCS_VC_INDEX * next a pointer to the next element in the queue
table

UINT2 Ici Index of a VC in the VC Table

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 61
Document ID: PMC-1991216, Issue 3

Structure for a VC Queue

Table 34: VORTEX chipset VC QUEUE TABLE (sVCS_VC_LIST)

Field Type Field Name Field Description

sVCS_VC_INDEX * head a pointer to the head of queue table

sVCS_VC_INDEX * tail a pointer to the tail of queue table

UINT2 numVCs number of VCs associated with the queue (list)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 62
Document ID: PMC-1991216, Issue 3

Structures for Connection Admission Control

This is a high level, system-independent data structure, used to maintain the VC
resources, and control the connection admission.

Table 35: VORTEX chipset Connection Admission Control (sVCS_CAC)

Field Type Field Name Field Description

VCS_SEM_ID semVC Semaphore object

UINT2 maxVCs maximum VCs for the system

UINT2 numVCs number of VCs being setup

sVCS_VC_RECORD * psVcRecord pointer to a VC Table with
maxVCs number of VC
Connection Records.

sVCS_VC_LIST VcPerLoopPort[VCS
_MAX_LOOP_PORTS]

A queue table for the VCs
associated with a particular Loop
port.

sVCS_VC_LIST VcPerWANPort[VCS_
MAX_WAN_PORTS]

A queue table for the VCs
associated with a particular WAN
port.

sVCS_VC_LIST VcPerUpPort A queue table for the VCs
associated with the
microprocessor port.

sVCS_MULTICAST_TA
BLE

sMcTable A queue table for multicast group
record

UINT4 u4TotalCellRate Total bandwidth (in cell rate) has
been used.

UINT4 u4UpCellRate Total Cell rate in Upstream
direction has been used

UINT4 u4DownCellRate Total Cell rate in Downstream
direction has been used.

sVCS_PORT_STATUS sLoopPortState[VC
S_MAX_LOOP_PORTS]

(array of) loop port status
information.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 63
Document ID: PMC-1991216, Issue 3

Field Type Field Name Field Description

sVCS_PORT_STATUS sWanPortState[VCS
_MAX_WAN_PORTS]

(array of) WAN port status
information

sVCS_PORT_STATUS sMpPortState Microprocessor port status
information

sVCS_SHPR_VECTOR psShaper[4] Control Vectors for the four
APEX shapers

Structure for a VC Table Record

Table 36: VORTEX chipset VC TABLE (sVCS_VC_RECORD)

Field Type Field Name Field Description

eVCS_VC_STATE state VC state; can be one of the following:
VC_UNUSED, VC_STANDBY or
VC_ACTIVE

eVCS_VC_CLASS eVcClass VC class; 00 = Class 0, 01 = Class 1, 10
= Class 2 11= Class 3.

eVCS_VC_TYPE eVcType VC connection type; 00 = VCC Cells, 01
= VCC Frame, 10 = VPC Cell, 11=VPC
Frame

sVCS_VC_VECTOR VcIn specify incoming cell ID,
(VcPortID/vpi/vci)

sVCS_VC_VECTOR VcOut specify outgoing cell ID,
(VcPortID/vpi/vci)

UINT1 CardID specify active chipset card, through
which the VC cells pass.

sVCS_VC_QOS sQos specifies QOS parameters for the VC,
including peak cell rate, VC type (CBR,
VBR etc)

UINT1 u1VcWeight VC queuing weight (linear encoding – 6
bits)

sVCS_VC_THRSH sVcThrsh Contains per-VC Congestion Control
Thresholds

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 64
Document ID: PMC-1991216, Issue 3

Field Type Field Name Field Description

sVCS_VC_OAM * psVcOAM Contains OAM configuration for the
VC. If Null, OAM is not enabled.

sVCS_F4TOF5_CB * psF4toF5OAM Pointer to F4 to F5 OAM processing
control block. If NULL, the F4 to F5
processing is not enabled, or the VC is
not a member of any F4 to F5
processing list.

UINT1 u1F4ToF5Cfg F4 to F5 processing Configuration for
the VCC.

 Bit 0: F4toF5AIS,
 1= F5 FM cells will be generated at F4
OAM termination;
 0= F5 FM cells will not be generated
at F4 OAM termination; only CC cells
will be generated.

 Bit 1: SegmentFlow,
 1 = An F5 Segment AIS cell will be
generated while the F4 connection is in
AIS alarm.
 0 = an F5 end-to-end AIS will be
generated instead.
The bit should be set when the VCC
connection is within a defined segment
or not a VC end-point, i.e. the VCC
extends beyond the end-point of the
VPC.

sVCS_MULTICAST_REC
ORD *

psMulticast A pointer to a multicast record which the
VC belongs. If null, it means the ICI
doesn’t belong to any Multicast group.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 65
Document ID: PMC-1991216, Issue 3

Structure for Port Status

Table 37: Loop/WAN Port Status Structure (sVCS_PORT_STATUS)

Field Type Field Name Field Description

UINT1 state Indicate the current port
state.
Bit 0-1: 00 = not available,
(Line/WAN card not present)
 01 = inactive,
(remote card available, but
associated HSS links are
inactive)
 11 = active (remote
card available and an
associated HSS link is active)
Bit 2-3: specifies an active
core card ID

Bit 4: 1= the port is
configured (in APEX), 0 =
Otherwise

Bit 5: 1= the port is enabled
(in APEX), 0 = Otherwise

Bit 6: 1= its associated HSS
link is in Loopback mode,
 0 = otherwise.
 Not used for uP port.

 Bit 7:For Loop port: it
indicates whether this port is
reserved for control channel
to the remote line card. 1=
yes. For WAN port: indicates
an Active DUPLEX HSS link
to a WAN card. 1 = Link 1, 0
= Link 0. For uP port, not
used.

UINT4 maxInCellRate maximum cell rate allowed in
Inward (towards chipset)
direction.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 66
Document ID: PMC-1991216, Issue 3

Field Type Field Name Field Description

UINT4 minOutCellRate minimum cell rate
guaranteed in Outward(away
from chipset) direction.

UINT4 InCellRate Bandwidth (cell rate) in
Inward direction has been
used.

UINT4 OutCellRate Bandwidth (cell rate) in
Outward direction has been
used.

UINT1 u1Weight Per-port polling weight used
in APEX queue engine.
For loop ports: its value
ranges from 0 to 7.
For WAN ports: its value
range from 0 to 3.

UINT1 u1ThrshForceFlag Flag indicating whether the
port thresholds was specified
by the user when the port
was set up.

UINT2 minPortThrsh a minimum guaranteed port
threshold level

sVCS_CLASS_SCHEDULER sClassSchdl Contains the class scheduling
parameters for the port.

sVCS_PORT_THRSH sPortClassThrsh Contains the per-port and
per-class congestion control
thresholds.

Structure for Loopback Control Block

 Table 38: VORTEX chipset Loopback Control Block (sVCS_LPBK_CB)

Field Type Field Name Field Description

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 67
Document ID: PMC-1991216, Issue 3

Field Type Field Name Field Description

VCS_DEV_HANDLE DevHandle Device handle to the loopback
device, whose HSS link is in
loopback mode. Either VORTEX
or DUPLEX handle. If NULL,
the chipset is not in Loopback
mode.

sVCS_VC_PORT_DES sTestingVcPort testing point for testing cell
insert/extract

UINT1 HssLinkId Specifies the HSS Link in
loopback mode,
bit 7: 0 = VORTEX, 1 = DUPLEX

UINT2 ForwardIci Index of the forward VC in the
VC table

UINT2 BackwardIci index of the forward VC in the
VC table

UINT1 TestPortState It stores the testing port state
before the Loopback mode being
setup

UINT1 LpbkPortState It stores the loopback port state
before the Loopback mode being
setup

sVCS_LPBK_DATA * psLpbkData control block for received
loopback data from
microprocessor port

Table 39: VORTEX chipset Loopback Data Block (sVCS_LPBK_DATA)

Field Type Field Name Field Description

UINT1 maxSz maximum size of Rx loopback data buffer

UINT1 actualSz actual size of loopback data received

UINT1 * pRxData pointer to the loopback data buffer of ‘maxSz’
bytes

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 68
Document ID: PMC-1991216, Issue 3

Structure for multicast support

Table 40: VORTEX chipset Multicast Record (sVCS_MULTICAST_RECORD)

Field Type Field Name Field Description

VOID * prev a pointer to the previous element in the queue
table

VOID * next a pointer to the next element in the queue table

UINT4 InIci specifies incoming VC connection ICI

sVCS_VC_LIST sOutICIList Contains a list of output connection ICIs

Table 41: VORTEX chipset Multicast Record Table
(sVCS_MULTICAST_TABLE)

Field Type Field Name Field Description

sVCS_MULTICAST_
RECORD *

head a pointer to the head of queue table

sVCS_MULTICAST_
RECORD *

tail a pointer to the tail of queue table

VCS_SEM_ID semMc Semaphore object for the multicast table

UINT2 numGroups Number of multicast groups in the table

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 69
Document ID: PMC-1991216, Issue 3

Structure for OAM and F4 to F5 Processing (per VC)

The structure sVCS_VC_OAM contains the OAM configuration and F4 to F5
OAM processing parameters on per-connection basis.

Table 42: VC OAM Structure (sVCS_VC_OAM)

Field Type Field Name Field Description

sVCS_VC_OAM_FM sFMcfg Contains the FM configuration for the
VC

sVCS_VC_OAM_PM sPMcfg Contains the PM configuration for the
VC

UINT2 OAMBackPath A connection ID in backward direction,
used for OAM backward reporting cells.

Table 43: F4 to F5 OAM Processing Control Block (sVCS_F4TOF5_CB)

Field Type Field Name Field Description

UINT1 u1TermType VPC termination type; could be one of
eVCS_VP_ETE_SEG; eVCS_VP_ETE;
eVCS_VP_SEG.

UINT2 u2SegConnId Segment OAM Connection ID (VCI = 3). if 0,
not provisioned

UINT2 u2EtEConnId End-to-End OAM Connection ID (VCI =4). if
0, not provisioned

sVCS_VC_LIST sVccList Contains a list of VCC connection Ids which
are associated with the VPC

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 70
Document ID: PMC-1991216, Issue 3

Structure for Inband Control Channel

Table 44: VORTEX chipset Channel Record (sVCS_CHNL_RECORD)

Field Type Field Name Field Description

UINT1 state specifies the state of the record, UNUSED or
USED (active)

UINT1 cardId specifies which HSS line, and which VORTEX
or DUPLEX device is connected to the Line or
WAN card
bit 0-2: HSS link number (0 to 7)
bit 3-6: device number
bit7 : 0=VORTEX, 1 = DUPLEX

sVCS_VPI_VCI sVpciTx VPI and VCI for the Tx message channel

sVCS_VPI_VCI sVpciRx VPI and VCI for the Rx message channel

UINT1 * pRxBuff Pointer to a Data buffer for the Rx message

UINT4 maxMsgSz maximum message size

UINT4 dataLength Data length in the Rx buffer

UINT1 flagFCQ VC type: Frame or Cell. 1 = Frame, 0 = Cells

UINT2 u2InConnID Connection ID used for incoming control
message from remote Line card to the APEX
microprocessor port. The value shall be
between (VCS_MAX_VC-2*maxChnls-1) and
(VCS_MAX_VC-1).

UINT2 u2OutConnID Connection ID used for outgoing control
message from the APEX microprocessor port
to remote Line card. The value shall be
between (VCS_MAX_VC-2*maxChnls-1) and
(VCS_MAX_VC-1).

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 71
Document ID: PMC-1991216, Issue 3

Table 45: VORTEX chipset Channel Record Table (sVCS_CHNL_TABLE)

Field Type Field Name Field Description

VCS_SEM_ID semChnl Semaphore object

UINT2 maxChnls Maximum number of control
channels.

UINT2 numChnls Number of active control channels

sVCS_CHNL_RECORD * psChnlRecord (array of) the control channel
records

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 72
Document ID: PMC-1991216, Issue 3

Chipset Data Block (CDB)

The CDB is the top-level structure for each Chipset card. It contains card level
configuration data and device handles to each chipset device on the card.

Table 46: VORTEX chipset Data Block (sVCS_CDB)

Field Type Field Name Field Description

UINT4 u4Valid Indicates whether the CDB is used or not.

eVCS_STATE eState indicates one of the chipset state: VCS_START,
VCS_PRESENT, VCS_STANDBY, VCS_ACTIVE

VOID * pSysInfo Pointer to system specific card information. For
example, in PCI bus environment, the bus number,
IRQ assignment etc.

VCS_USR_CTXT usrCtxt Pointer to user’s context for this card. The user
passes this pointer while adding the card. The
chipset driver passes this context when it invokes
the indication callbacks.

sVCS_CIB sVcsCib Contains the chipset information, such as base
address, memory map and number of VORTEX
and DUPLEX chips.

VCS_DEV_HANDLE ApxHandle Device handle to the APEX device on the Core
card

VCS_DEV_HANDLE AtlasHandle Device handle to the ATLAS device on the Core
card

VCS_DEV_HANDLE DpxHandle Device handle to the DUPLEX device on the Core
card

VCS_DEV_HANDLE pVtxHandle[VCS
_MAX_VORTEXS]

(array of) Device handles to the VORTEX devices
on the core card

UINT2 u2RemoteCardCo
unt

number of remote line/WAN cards which are
actively connected to the core card

sVCS_LPBK_CB sLpbkCtrl Contains Loopback Control Block

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 73
Document ID: PMC-1991216, Issue 3

Chipset Information Vector

This structure contains all the information needed by the chipset driver to access
each individual device of the VORTEX chipset.

Table 47: VORTEX chipset Information Block (sVCS_CIB)

Field Type Field Name Field Description

UINT4 u4BoardBaseAddr Base address of the chipset card, i.e. the first
accessible address of the card. Stored here for
bookkeeping purpose.

UINT4 u4ApexBaseAddr Base address of the APEX chip on the chipset card

UINT4 u4AtlsBaseAddr Base address of the ATLAS chip on the chipset
card

UINT4 u4DpxBaseAddr Base address of the DUPLEX chip on the chipset
card

UINT4 u4VtxBaseAddr[VC
S_MAX_VORTEX]

(array of) Base address of the VORTEX chips on
the chipset card

Event Counts

The structure contains the event counts accumulated by each device driver.

Table 48: VORTEX chipset Driver Statistic Counts (sVCS_STAT_CNT)

Field Type Field Name Field Description

sDPX_STAT_COUNTS sDpxCounts event counts maintained by the DUPLEX
device driver

sVTX_STAT_COUNTS sVtxCounts event counts maintained by the VORTEX
device driver

sAPX_STAT_COUNTS sApxCounts event counts maintained by the APEX
device driver

sATLAS_STAT_COUNTS sAtlasCounts event counts maintained by the ATLAS
device driver

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 74
Document ID: PMC-1991216, Issue 3

6 VORTEX CHIPSET HARDWARE INTERFACE

6.1 Chipset I/O

The VORTEX chipset driver interfaces with the chipset hardware via its underlying
device drivers. Each device driver uses the following low-level system specific
macro for accessing the device registers.

sysVcsRawRead32

This low-level system specific macro is used to read the 32 bit long contents of a
specific address location. This macro should be defined by the user to reflect their
system’s addressing logic. This macro is used by APEX device driver to access its
32 bit register space.

Format #define sysVcsRawRead32(addr)

Inputs addr : address location to be read

Outputs None

Return Codes value read from the address location

sysVcsRawWrite32

Low-level system specific macro is used to write the 32 bit long contents to a
specific address location. This macro should be defined by the user to reflect their
system’s addressing logic. This macro is used by APEX device driver to access its
32 bit register space.

Format #define sysVcsRawWrite32(addr, val)

Inputs addr : address location to write

val : 32 bit value to be written

Outputs None

Return Codes None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 75
Document ID: PMC-1991216, Issue 3

sysVcsRawRead16

Low-level system specific macro is used to read the 16 bit long contents of a
specific address location. This macro should be defined by the user to reflect their
system’s addressing logic. This macro is used by ATLAS device driver to access its
16 bit register space.

Format #define sysVcsRawRead16(addr)

Inputs addr : address location to be read

Outputs None

Return Codes value read from the address location

sysVcsRawWrite16

Low-level system specific macro is used to write the 16 bit long contents to a
specific address location. This macro should be defined by the user to reflect their
system’s addressing logic. This macro is used by ATLAS device driver to access its
16 bit register space.

Format #define sysVcsRawWrite16(addr, val)

Inputs addr : address location to write

val : 16 bit value to be written

 Outputs None

 Return Codes None

sysVcsRawRead8

Low-level system specific macro is used to read the 8 bit long contents of a specific
address location. This macro should be defined by the user to reflect their system’s
addressing logic. This macro is used by DUPLEX and VORTEX device drivers to
access their 8 bit register space.

Format #define sysVcsRawRead8(addr)

Inputs addr : address location to be read

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 76
Document ID: PMC-1991216, Issue 3

Outputs None

Return Codes value read from the address location

sysVcsRawWrite8

Low-level system specific macro is used to write the 8 bit long contents to a
specific address location. This macro should be defined by the user to reflect their
system’s addressing logic. This macro is used by DUPLEX and VORTEX device
drivers to access their 8 bit register space.

Format #define sysVcsRawWrite8(addr, val)

Inputs addr : address location to write

val : 8 bit value to be written

Outputs None

Return Codes None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 77
Document ID: PMC-1991216, Issue 3

6.2 Chipset Detection

sysVcsCardDetect

This function is used to detect the chipset core card in the system, and retrieve
system specific information about the card and VORTEX chipset devices. The
information includes the base address of the card, and memory map for each chipset
device, as well as interrupt IRQ number in the case of PCI platform. This function
is called within the vcsAdd API function.

Note: the device detection functions (e.g. sysApexDeviceDetect,
sysVtxDevice Detect, sysDpxDeviceDetect, sysAtlasDevice

Detect) in each device driver should be modified to reflect the memory mapping
of the card.

Prototype INT4 sysVcsCardDetect(VCS_USR_CTXT usrCtxt, void
**ppSysInfo, sVCS_CIB *pVcsCib)

Inputs usrCtxt : user handle for the core card being added

Outputs ppSysInfo : user-maintained system information
 (e.g., PCI slot, board base address, irq etc.); this

 pointer is stored by the chipset driver

pVcsCib : contains base address of each chipset device on
 the card, as well as number of VORTEX and
 DUPLEX device on the card.

Return Codes VCS_SUCCESS

VCS_FAILURE

6.3 Interrupt Servicing

Interrupt servicing of the VORTEX chipset devices is provided by each underlying
device driver. However, the chipset driver specifies which device interrupts should
be masked or delivered, based on the chipset initialization vector passed in from
Users.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 78
Document ID: PMC-1991216, Issue 3

The chipset driver provides a high level service task called “vcsRxTask”, to
process the cells received from the underlying DUPLEX microprocessor port. The
task waits for messages, sent from the DPR tasks of DUPLEX device drivers, to
arrive at its associate message queue. Once a message has been received, the task
extracts cells/frames out of the device buffers and reports the cells/frames to the
application via indication callback functions. This task can provide an inband
communication channels between the core card and WAN cards.

The apexSarRxTask task, provided by APEX device driver, are used to support
any data communication over the VC connections between the microprocessor port
and a Loop/WAN port, as well as the control channel messaging between the core
card and remote line cards.

The atlasRxCellTask task, provided by ATLAS device driver, is implemented to
support the Microprocessor OAM end-point processing. The supported OAM cells
include Loopback, and Activation/Deactivation.

Please refer to Section 10.12 and Figure 16 for a detailed description.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 79
Document ID: PMC-1991216, Issue 3

7 RTOS INTERFACE

The VORTEX chipset driver requires the use of some RTOS resources. In this
section, a listing of each required resource is shown, along with a declaration and
any specific porting instructions. It is the responsibility of the USER to connect
these requirements into the RTOS, either by defining a macro or writing a function
for each item listed. Care should be taken when matching parameters and return
values.

7.1 Memory Allocation / De-Allocation

sysVcsMemAlloc

Allocates specified number of bytes of memory.

Format #define sysVcsMemAlloc(numBytes)

Prototype UINT1 *sysVcsMemAlloc(UINT4 numBytes)

Inputs numBytes : number of bytes to be allocated

Outputs None

Returns Pointer to first byte of allocated memory

NULL pointer (memory allocation failed)

sysVcsMemFree

Frees memory allocated using sysVCSMemAlloc.

Format #define sysVcsMemFree(pfirstByte)

Prototype void sysVcsMemFree(UINT1 *pfirstByte)

Inputs pfirstByte : pointer to memory region being de-allocated

Outputs None

Returns None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 80
Document ID: PMC-1991216, Issue 3

7.2 Timers

sysVcsDelayTask

Suspends execution of a chipset driver task for a specified number of milliseconds.

Format #define sysVcsDelayTask(time)

Prototype void sysVcsDelayTask(UINT4 time)

Inputs time : sleep time in milliseconds

Outputs None

Returns None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 81
Document ID: PMC-1991216, Issue 3

7.3 Semaphores

sysmVcsSemCreate

Creates a binary semaphore.

Prototype VCS_SEM_ID sysmVcsSemCreate(VOID)

Inputs None

Outputs None

Return Codes pointer to semaphore object OR nul

sysmVcsSemDelete

Deletes a binary semaphore object.

Prototype VOID sysmVcsSemDelete(VCS_SEM_ID semId)

Inputs semId : semaphore identifier

Outputs None

Return Codes None

sysmVcsSemTake

Acquires a binary semaphore.

Prototype INT4 sysmVcsSemTake(VCS_SEM_ID semId)

Inputs semId : semaphore identifier

Outputs None

Return Codes 0 : success, -1 : failure

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 82
Document ID: PMC-1991216, Issue 3

sysVcsSemGive

Relinquishes a semaphore.

Prototype INT4 sysmVcsSemGive(VCS_SEM_ID semId)

Inputs semId : semaphore identifier

Outputs None

Return Codes 0 : success, -1 : failure

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 83
Document ID: PMC-1991216, Issue 3

7.4 System-specific Inband Control Channel (ICC) module
functions

sysVcsIccInstall

Creates the vcsIccRx task, which handles the rx for inband control channel
messages from the microprocessor port of the DUPLEX. It also creates the message
VcsRxMsgQ to allow the application task to communicate with the task.

Prototype INT4 sysVcsIccInstall(VOID)

Inputs None

Outputs None

Return Codes 0 : success, -1 : failure

sysVcsIccRemove

This routine deletes the vcsIccRx tasks and the corresponding message queue
VcsRxMsgQ.

Prototype INT4 sysVcsIccRemove(VOID)

Inputs None

Outputs None

Return Codes 0 : success, -1 : failure

sysVcsIccRxTaskFn

This routine is spawned as a separate task within the RTOS. It retrieves interrupt
status information saved for it by the DPR tasks of DUPLEX device driver. It
invokes the vcsRxTaskFn routine for each device handle received in the
message.

Prototype VOID sysVcsIccRxTask(VOID)

Inputs None

Outputs None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 84
Document ID: PMC-1991216, Issue 3

Return Codes None

Pseudocode begin
do wait for interrupt status messages sent by DPR task of DUPLEX
driver
dequeue a message when it arrives
for each device handle in the message

invoke vcsRxTaskFn
loop forever
end.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 85
Document ID: PMC-1991216, Issue 3

8 APPLICATION PROGRAMMING INTERFACE

This section provides a detailed description of each function that is a member of the
VORTEX chipset driver Application Programming Interface (API).

8.1 Module Initialization

vcsModuleInit

Performs module level initialization of the chipset driver. This involves allocating
all of the memory needed by the chipset driver and initializing the Global Driver
Database (GDD) with the passed Module Initialization Vector (MIV). It also opens
each device driver module for the chipset devices on the card.

The whole VC table (with VCS_MAX_VC number of connection entries or IDs) is
divided into two parts: connection IDs from 0 to (psMiv->maxVCs) are used for
USER data connections, while the top 2*(psMiv->maxChnls) connections are
reserved for control channel useges. Hence, there exists the following constraint
between maxVCs and maxChnls in the MIV parameters: (maxVCs + 2 * maxChnls)
=< VCS_MAX_VC

Valid States START

Side Effects Changes MODULE state to READY

Prototype INT4 vcsModuleInitn(sVCS_MIV *psMiv)

Inputs psMiv : (pointer to) Module Initialization Vector

Outputs None

Returns VCS_SUCCESS
VCS_ERR_MODULE_ALREADY_INIT
VCS_ERR_MEM_ALLOC
VCS_ERR_MIV (invalid Module Init Vector)
VCS_ERR_SEMAPHORE

vcsModuleShutdown

Performs module level shutdown of the chipset driver. This involves deleting all
chipset devices being controlled by the chipset driver (by calling vcsDelete for
each chipset card) and de-allocating the VC, Control Channel Table, and GDD.

Valid States ALL STATES

Side Effects Changes MODULE state to VCS_START

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 86
Document ID: PMC-1991216, Issue 3

Prototype VOID vcsModuleShutdown(VOID)

Inputs None

Outputs None

Returns None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 87
Document ID: PMC-1991216, Issue 3

8.2 Initialization Profile Management

vcsSetInitProfile

Creates an initialization profile that is stored by the chipset driver. A chipset can
now be initialized by simply passing the initialization profile number. This function
should only be called after "vcsModuleInit".

Valid States READY

Side Effects None

Prototype INT4 vcsSetInitProfile(sVCS_INIT_VECTOR
*pProfile, UINT2 *pProfileNum)

Inputs pProfile : (pointer to) initialization profile being added

pProfileNum : (pointer to) profile number to be assigned by
 the chipset driver

Outputs pProfileNum : profile number assigned by the chipset driver

Returns VCS_SUCCESS
VCS_ERR_MODULE_NOT_INIT
VCS_ERR_INVALID_INIT_VECTOR
VCS_ERR_PROFILE_FULL

 Pseudocode begin
check passed profile
reserve unassigned profile number
update corresponding profile
end

vcsGetInitProfile

Gets the contents of an initialization profile given its profile number. The user
should allocate enough memory to receive the initialization vector.

Valid States READY

Side Effects None

Prototype INT4 vcsGetInitProfile(UINT2 profileNum,
sVCS_INIT_VECTOR *pProfile)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 88
Document ID: PMC-1991216, Issue 3

Inputs profileNum : initialization profile number
pProfile :(pointer to) initialization profile

Outputs pProfile : contents of the corresponding profile

Returns VCS_SUCCESS
VCS_ERR_MODULE_NOT_INIT
VCS_ERR_INVALID_PROFILE

Pseudocode begin
make sure profile exists
make copy of the profile
end

vcsClrInitProfile

Clears an initialization profile given its profile number.

Valid States READY

Side Effects None

Prototype INT4 vcsClrInitProfile(UINT2 profileNum)

Inputs profileNum : initialization profile number

Outputs None

Returns VCS_SUCCESS
VCS_ERR_MODULE_NOT_INIT
VCS_ERR_INVALID_PROFILE

Pseudocode Begin
make sure profile exists
release profile number
End

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 89
Document ID: PMC-1991216, Issue 3

8.3 Chipset Add and Delete

vcsAdd

Verifies the presence of a new Chipset card in the hardware, then return a handle
back to the user. The Chipset handle should be used to identify the Chipset card on
which the operation is to be performed.

Valid States READY

Side Effects Changes the CHIPSET state to VCS_PRESENT

Prototype INT4 vcsAdd(VCS_USR_CTXT usrCtxt, VCS *pVcs)

Inputs usrCtxt : User maintained context
 information for the chipset card being added.

Outputs pVcs : (pointer to) Chipset Handle

Returns VCS_SUCCESS
VCS_ERR_MODULE_NOT_INIT
VCS_ERR_CARDS_FULL
VCS_ERR_CHIPSET_NOT_DETECTED
VCS_ERR_CHIPSET_ALREADY_ADDED

 Pseudocode Begin
make sure Chipset present
reserve a Chipset Handle or CDB
save user context in the CDB
add each device to its device driver module.
store each device handle in the CDB.
output Chipset handle
End

vcsDelete

This function is used to remove a specified Chipset card from the list of chipset
cards being controlled by the chipset driver. Deleting a Chipset involves clearing
the CDB for that Chipset and releasing its associated Chipset handle.

Valid States VCS_PRESENT

Side Effects The chipset state change to READY

Prototype INT4 vcsDelete(VCS vcs)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 90
Document ID: PMC-1991216, Issue 3

Inputs vcs : Chipset Handle (from vcsAdd)

Outputs None

Returns VCS_SUCCESS
VCS_ERR_INVALID_HANDLE
VCS_ERR_INVALID_STATE

 Pseudocode Begin
validates the handle
delete the chipset devices from device drivers
releases Chipset handle
End

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 91
Document ID: PMC-1991216, Issue 3

8.4 Chipset Initialization and Reset

vcsInit

Initializes the chipset based on an initialization vector passed by the user. Each
chipset device is configured according to the contents of the initialization vector.
Alternatively, the user can also use an initialization vector profile number. In this
case, the device is now initialized as per the profile contents (stored in GDD).

Valid States VCS_PRESENT

Side Effects Changes CHIPSET state to VCS_STANDBY

Prototype INT4 vcsInit(VCS vcs, sVCS_INIT_VECTOR
*psInitVect, UINT2 profileNum)

Inputs vcs : chipset Handle (from vcsAdd)

psInitVect : initialization vector that is used by the chipset
 driver to configure the chipset devices. The
 pointer should be set to NULL if an initialization
 vector profile is being used instead.

profileNum : profile number to be used to get the initialization
 vector from the GDD. This variable should be set
 to 0xffffffff if an initialization vector is being
 passed directly instead.

Outputs None

Returns VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)
VCS_ERR_INVALID_STATE (chipset is not in a valid state)
VCS_ERR_INVALID_INIT_VECTOR (invalid initialization vector)
VCS_ERR_INVALID_PROFILE_NUM (invalid profile number)
VCS_ERR_PROFILE_VECTOR_BOTH_VALID (both profile and
 vector inputs were valid – not allowed)

Pseudocode Begin
if using profile get a InitVect from profile
validate the InitVect
reset Chipset devices
configure Chipset and initialize all devices
End

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 92
Document ID: PMC-1991216, Issue 3

vcsReset

Applies a software reset to each VORTEX chipset device. Also resets all the CDB
contents (except for the user context). This function is typically called before re-
initializing the Chipset.

Note that the VC connection table, maintained by the chipset driver module, is not
cleared by this function. This allows a quick restore of the connections after the
Reset by calling vcsRebuildVCs. However, if the associated VC connections are
to be cleared, one need exclusively call vcsClearVCs to tear down the connections
before calling the API vcsReset.

Valid States VCS_ACTIVE, VCS_STANDYBY, VCS_PRESENT

Side Effects Changes CHIPSET state to VCS_PRESENT

Prototype INT4 vcsReset(VCS vcs)

Inputs vcs : chipset handle (from vcsAdd)

Outputs None

Returns VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)

Pseudocode Begin
reset each Chipset device
clear initialization part of the CDB
End

8.5 Chipset Activate and De-Activate

vcsActivate

Activates each chipset device by preparing it for normal operation. Activation
involves installing and enabling device interrupts, enabling the APEX queue
engine’s external interfaces. However, the LVDS links to WAN/Line cards are not
activated. These links are activated only when calling vcsAddCard to add the
Line/WAN cards to the system.

Valid States VCS_STANDBY

Side Effects Change the CHIPSET state to VCS_ACTIVE

Prototype INT4 vcsActivate(VCS vcs)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 93
Document ID: PMC-1991216, Issue 3

Inputs vcs : Chipset Handle (from vcsAdd)

Outputs None

Returns VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)
VCS_ERR_INVALID_STATE (chipset is not in a valid state)

Pseudocode Begin
activate each chipset device
End

vcsDeActivate

De-activates the Chipset from normal operation. Interrupts are masked and the
Chipset is put into a quiet state by disabling APEX queue engine.

Valid States VCS_ACTIVE

Side Effects Changes the CHIPSET state to VCS_STANDBY

Prototype INT4 vcsDeActivate(VCS vcs)

Inputs vcs : chipset Handle (from vcsAdd)

Outputs None

Returns VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)
 VCS_ERR_INVALID_STATE (chipset is not in a valid state)

Pseudocode Begin
deactivate devices by calling device driver API
End

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 94
Document ID: PMC-1991216, Issue 3

8.6 Chipset Device Read and Write

vcsReadReg

This function can be used to read a register in a specific VORTEX chipset device
by providing the register number and device ID.

Valid States ALL CHIPSET STATES

Side Effects May affect registers that change after a read operation

Prototype INT4 vcsReadReg(VCS vcs, sVCS_DEV_ID sDevId,
UINT2 u2RegOff, UINT4 * pu4Val)

Inputs vcs : chipset Handle (from vcsAdd) to a specified card
sDevId : specifies a chipset device
u2RegOff : register register offset from its device base

 address

Outputs pu4Val : contains value read from the register

Returns VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)
VCS_ERR_INVALID_DEV_ID (invalid device ID)

 Pseudocode Begin
get a device handle from CDB
call device driver API to read the register value
End

vcsWriteReg

This function can be used to write to a register in a specific VORTEX chipset
device by providing the register number and device ID

Valid States ALL CHIPSET STATES

Side Effects May change the configuration of the chipset device

Prototype INT4 vcsWriteReg(VCS vcs, sVCS_DEV_ID sDevId,
UINT2 u2RegOff, UINT4 u4Val)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 95
Document ID: PMC-1991216, Issue 3

Inputs vcs : chipset Handle (from vcsAdd)
sDevId : specifies a chipset device
u2RegOff : register offset from its device base address
u4Val : value to be written

Outputs None

Returns VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)
VCS_ERR_INVALID_DEV_ID (invalid device ID)

Pseudocode Begin
get a device handle from CDB
call device driver API to write the register
End

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 96
Document ID: PMC-1991216, Issue 3

8.7 Chipset Diagnostics and Loopback Self-test

vcsRegisterTest

Verifies the correctness of the microprocessor’s access to each chipset device by
writing to and reading back values of its registers.

Valid States VCS_PRESENT

Side Effects The chip is reset and kept in the VCS_PRESENT state

Prototype INT4 vcsRegisterTest(VCS vcs, sVCS_DEV_ID sDevId)

Inputs vcs : chipset handle
sDevId : specifies a chipset device.

Outputs None

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)
VCS_ERR_INVALID_STATE (chipset is not in a valid state)
VCS_ERR_INVALID_DEV_ID (invalid device ID)
VCS_FAILURE (test failed)

vcsMemTest

Verifies the correctness of the microprocessor’s access to the external memory
associated with the APEX and ATLAS chip.

Valid States VCS_PRESENT

Side Effects the chipset is reset after the test.

Prototype INT4 vcsMemTest(VCS vcs, sVCS_DEV_ID sDevId)

Input vcs : chipset handle
sDevId : specifies a chipset device.

Outputs None

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)
VCS_ERR_INVALID_STATE (chipset is not in a valid state)
VCS_ERR_INVALID_DEV_ID (invalid device ID)
VCS_FAILURE (test failed)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 97
Document ID: PMC-1991216, Issue 3

vcsLpbkSetup

Used for the integrity check of a chipset system. It sets one of HSS link port of
VORTEX or DUPLEX on the core card into a Diagnostic Loopback mode, and
setup Loopback connections within APEX and ATLAS devices. The loopback point
has to be specified at one of HSS links or Loop/WAN ports, while the cell
insert/extract point can be one of LOOP/WAN ports or the Microprocessor port (of
APEX).

If the specified HSS link port is already in use by some active VC connections, the
Loopback request will be rejected.

If the chipset is already in a LOOPBACK state, the current Loopback link port will
be reset to normal, before the new HSS link port is configured into a diagnostic
Loopback mode. The Loopback VC connections are also re-configured to reflect
the new loopback path. In other words, only one loopback path can be setup at any
time.

Valid States VCS_ACTIVE

Side Effects Changes a HSS link port state into a LOOPBACK mode. This
prohibits any normal VC connections over the link port.

Prototype INT4 vcsLpbkSetup(VCS vcs, sVCS_VC_PORT_DES
sTestingPort, UINT1 u1LpbkLink, sVCS_VC_QOS sQos,
UINT1 u1FrameFlag)

Inputs vcs : chipset handle
sTestingPort : specifies a testing port, where the testing cell

 are inserted and loopbacked cells are
 extracted. The VPI/VCI values of testing cells
 are also specified.

u1LpbkLink : specifies a HSS link to be set up into a
 diagnostic loopback mode.
 bit 0-2: HSS link number (0 to 7)
 bit 3-6: VORTEX device number.
 Unused if DUPLEX.
 bit 7 : 0=VORTEX, 1 = DUPLEX

sQos : contains QOS parameters for testing cell VC.
u1FrameFlag : flag for testing cell type. 1= Frame, 0 = Cell

Outputs None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 98
Document ID: PMC-1991216, Issue 3

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)
VCS_ERR_INVALID_STATE (chipset is not in a valid state)
VCS_ERR_INVALID_PORT_DES
VCS_ERR_LPBKPORT_IN_USE
VCS_ERR_INVALID_HSS_LINK_ID
VCS_ERR_LPBK_INVALID_PARAM

vcsLpbkClear

Configures the loopback port to a normal mode. It also clears the associated
loopback connections.

Valid States VCS_ACTIVE

Side Effects The loopback link port is back to normal, and normal VC
connections over the link port can be resumed.

Prototype INT4 vcsLpbkClear(VCS vcs)

Inputs vcs : chipset handle

Outputs None

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)
VCS_ERR_INVALID_STATE (chipset is not in a valid state)
VCS_ERR_NO_LPBK
VCS_ERR_INVALID_HSS_LINK_ID

vcsMpLpbkTest

When a LOOPBACK state has been setup for the chipset, and its testing port being
set at the Microprocessor port, this function can be called to send out a buffer of
data through the Microprocessor port, and check if the same testing data is being
looped back.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsMpLpbkTest (VCS vcs, UINT1 *pData, UINT4
u4Length, UINT4 u4WaitTime)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 99
Document ID: PMC-1991216, Issue 3

Inputs vcs : chipset handle
pData : buffer pointer to the data to be sent.
u4Length : the length of testing data in bytes
u4WaitTime : waiting time for receiving the loopback data in

 milliseconds.

Outputs None

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)
VCS_ERR_INVALID_STATE (chipset is not in a valid state)
VCS_ERR_NO_LPBK
VCS_ERR_NON_MP_PORT
VCS_ERR_TIMEOUT (timeout for receiving any loopback

 testing cells)
VCS_ERR_CELL_MISSING (received less number of cells which

 have been transmitted)
VCS_ERR_CELL_CORRUPTION (received corrupted testing cells)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 100
Document ID: PMC-1991216, Issue 3

8.8 Connection Management

Connection Management at VC level

vcsConnSetup

A connection request from User, which shall contain traffic parameters such as
bandwidth and QOS service. The connection path could be from WAN port to Loop
port (downstream), Loop port to WAN port (Upstream), or Loop to Loop port,
Microprocessor port to WAN or Loop port. The chipset driver may honor or reject
the connection request based on the resource availability. The associated Line/WAN
card should have already been added to system and the port should be enabled and
setup in a non-Loopback mode, or the request would be rejected. If the requested is
honored, the chipset driver sets up and enables the VC connection by configuring
the appropriate chipset devices, and returns a unique connection ID.

The API configures the Connection Context Tables in both APEX and ATLAS, and
enables cell rate policing (by ATLAS), and congestion control service (by APEX)
based on the QOS contract.

Note 1: the OAM support is, by default, disabled for the connection by setting the
chipset (ATLAS) as a non-termination point. Therefore, all OAM cells will be
passed through transparently. To setup and enable the OAM support, one must
specifically call vcsOAMSetup() API.

Note 2: If the VC is in upstream direction and the VC belongs to a shaped
port/class, the per-VC shaping context is determined by calling a utility function
“sysVcsVCShaping()”, which converts the QOS request to the Shaper Rate
parameters.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsConnSetup(sVCS_CONN_REQUEST
*psConnRequest, UINT2 *pConnID)

Inputs psConnRequest : connection request

Outputs pConnID : connection ID (from 0 to maxVCs-1)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 101
Document ID: PMC-1991216, Issue 3

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_HANDLE
VCS_ERR_INVALID_STATE
VCS_ERR_CONN_FULL
VCS_ERR_INVALID_VC_REQUEST
VCS_ERR_OUT_OF_RESOURCE
VCS_ERR_CONN_REDUNDANT
VCS_ERR_PORT_NOT_READY
VCS_ERR_ACTIVE_CORE_CARD

Pseudocode Begin
Consult with CAC to see if sufficient resources
are available to accommodate the requested
connection, and determine which core card to
service the VC connection.
If yes, call connection configuration function
End

vcsConnTeardown

Tears down a specified VC connection in the chipset. Its associated resource is
recycled to CAC.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsConnTeardown(UINT2 u2ConnID)

Inputs u2ConnID : connection ID for the connection to be shut
 down

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CONNID
VCS_ERR_MULTICAST_CONN (the connection can't be

removed by the API if it is a multicasting VC)

Pseudocode Begin
Call an appropriate connection teardown function
Recycle the resource to CAC
End

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 102
Document ID: PMC-1991216, Issue 3

vcsConnQOSRetrieve

Used to retrieve the connection traffic parameter or QOS parameters, such as peak
cell rate, class.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsConnQOSRetrieve(UINT2 u2ConnID,
sVCS_VC_QOS *psQos)

Inputs u2ConnID : connection ID (from 0 to maxVCs-1).

Outputs psQos : contains current QOS parameters.

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CONNID

vcsConnQOSUpdate

Used to update the connection traffic parameter or QOS parameters, such as peak
bandwidth. The traffic type and/or WFQ VC weight change are not supported by
the API. The request might be rejected by the chipset driver due to resource
limitation.

Note: If the VC is in upstream direction and the VC belongs to a shaped port/class,
the per-VC shaping context is re-determined by calling a utility function
“sysVcsVCShaping()”, which converts the new QOS request to the Shaper Rate
parameters.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsConnUpdate(UINT2 u2ConnID, sVCS_VC_QOS
*psQos)

Inputs u2ConnID : connection ID.
psQos : contains requested QOS parameters.

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_OUT_OF_RESOURCE
VCS_ERR_INVALID_CONNID
VCS_ERR_TRFC_TYPE (new QOS require Class Id change)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 103
Document ID: PMC-1991216, Issue 3

vcsConnDisable

Disables a VC connection after it has been configured (using vcsConnSetup).).
All incoming cells of the VC connection will be discarded. It clears the VC context
Record of APEX device, while the Active bit in the associated ATLAS Ingress VC
table is not changed.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsConnDisable(UINT2 u2ConnID)

Inputs u2ConnID : connection ID for the connection to be
 disabled

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CONNID
VCS_ERR_INVALID_VC_STATE

vcsConnEnable

Re-enables a disabled VC connection. Cells of the VC connection can now pass
through the chipset. It sets up the VC context Record of APEX device, while the
Active bit in the associated ATLAS Ingress VC table is not changed.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsConnEnable(UINT2 u2ConnID)

Inputs u2ConnID: connection ID for the connection to be enabled

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_CONNID
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_VC_STATE

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 104
Document ID: PMC-1991216, Issue 3

vcsConnStatus

Checks the current status of a connection.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsConnStatus(UINT2 u2ConnID, sVCS_VC_STATUS
*psConnStatus)

Inputs u2ConnID : connection ID

Outputs psConnStatus : contains the status information of the
 connection.

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CONNID

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 105
Document ID: PMC-1991216, Issue 3

Connection Management at Port Level

vcsPortSetup

Sets up and enables a specified Loop/WAN port. It also specifies the maximum
throughputs which would be allowed in either (Inbound or outbound) direction of
the port. If the request is honored by CAC module, the function also setups and
enables all four classes for the port.

Valid States VCS_ACTIVE

Side Effects The routine will change the congestion thresholds for all the ports
in the direction of the new port (i.e. all active loop ports if a loop
port is being configured) and all the classes for these ports.

Prototype INT4 vcsPortSetup(sVCS_PORT_ID sPortId, UINT4
u4InCellRate, UINT4 u4OutCellRate,
sVCS_PORT_THRSH_REQUEST *pPortThrshRqt, UINT1
u1Flag)

Inputs sPortId : contains port type (can be WAN, LOOP or uP
 port), and port number for LOOP/WAN port

u4InCellRate : maximum cell rate limit in inbound direction
 of the port

u4InCellRate : minimum cell rate limit in outbound direction
 of the port

pPortThrshRqt : contain per-port threshold level request

u1Flag : forcing flag for per-port maxThreshold
 clp0Threshold, and clp1Threshold.

If 0, these three threshold levels are provided by the chipset driver using the default
algorithm in the utility functions (in the file vcs_sys.c).

If 1, these three threshold values in the per-port threshold request (pointed by
pPortThrsh) are used. No dynamicaly adjustment will be made to the port
threshold levels even when spare resource is available for cell buffering..

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_PORT_ID
VCS_ERR_PORT_ALREADY_CFG
VCS_ERR_EXCEED_MAX_PORT_RATE
VCS_ERR_INVALID_THRSH
VCS_ERR_INVALID_CELL_RATE

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 106
Document ID: PMC-1991216, Issue 3

Pseudocode Begin
Consult with CAC to see if the port is available.
Call an appropriate port setup function
update the CAC data block
End

vcsPortTeardown

Tears down a specified Loop/WAN port, and all VC connections and classes
associated with the port. Its associated resource is recycled to CAC.

Valid States VCS_ACTIVE

Side Effects The routine will change the congestion thresholds for all the ports
in the direction of the port being cleared (i.e. all active loop ports if
a loop port is being tear down) and all the classes for these ports.

Prototype INT4 vcsPortTeardown(sVCS_PORT_ID sPortId)

Inputs sPortId : contains port type (can be WAN, LOOP or uP
 port), and port number for LOOP or WAN port

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_PORT_ID
VCS_ERR_PORT_NOT_CFG

Pseudocode Begin

consult with CAC for a list of related VCs.
teardown the VCs in the list
call an appropriate port teardown function
recycle the associated resource to CAC
End

vcsPortDisable

Disables all the VC connections associated with a specified
Loop/WAN/Microprocessor port, i.e. cells received from or destined to the port will
be discarded. However, the affected VC connections and classes still exist.

The API clears the PortEn bit in the Port context Record of APEX device, which
forces the discard of cells destined to the port. It also clears the Active bits in the
ATLAS Ingress VC tables for all the VC originated from the port.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 107
Document ID: PMC-1991216, Issue 3

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsPortDisable(sVCS_PORT_ID sPortId)

Inputs sPortId : contains port type (can be WAN, LOOP or uP
 port), and port number for LOOP or WAN port

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_PORT_ID
VCS_ERR_PORT_NOT_ENABLED

vcsPortEnable

Re-enables a disabled Loop/WAN/Microprocessor port. It sets the PortEn bit in the
Port context Record of APEX device, and sets the Active bits in the ATLAS Ingress
VC tables for all the VC originated from the port.

Note: those VCs which were disabled by calling vcsConnDisable, will remain in
the Inactive state even though the connections are associated with the port being
enabled. One must call vcsConnEnable API to re-enable the individual VC. The
approach gives the USER a flexibility to control the connections independently at
VC and port levels.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsPortEnable(sVCS_PORT_ID sPortId)

Inputs sPortId : contains port type (can be WAN, LOOP or uP
 port), and port number for LOOP or WAN port

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_PORT_ID
VCS_ERR_PORT_NOT_CFG
VCS_ERR_PORT_ALREADY_ENABLED

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 108
Document ID: PMC-1991216, Issue 3

vcsPortStatus

It reports the status information of a specified port. The information includes the
number of VC connections associated with the port.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsPortStatus(sVCS_PORT_ID sPortId,
sVCS_PORT_INFO *psPortInfo, UINT2 *pu2VcNum,
UINT2 **ppu2ConnId)

Inputs sPortId : contains port type (can be WAN, LOOP or uP
 port), and port number for LOOP or WAN port

Outputs psPortInfo : contains the current port status information.
pu2VcNum : contains the number of connections

 associated with the port
ppConnId : point to an array of ConnId buffer, which is

 allocated by the API and contains a list of
 connection ID. The size is "2 * u2VcNum"
 bytes. It is a responsibility of the caller to free
 the memory buffer.

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_HANDLE
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_PORT

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 109
Document ID: PMC-1991216, Issue 3

Connection Management at Chipset or Module Level

vcsClearVCs

Tears down all existing connections, channels, shapers and ports. If used together
with vcsReset, this means that both hardware and software have been reset, and
the chipset needs to be re-initialized from scratch.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsClearVCs(VOID)

Inputs None

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INTERNAL (driver internal error)

vcsRebuildVCs

Re-builds the existing connections, ports, channels, OAM and F4toF5 processing
list which are maintained in the software, after a specified core card has been reset
by vcsReset. This provides a fast way to recover the system to the pre-reset state.
The caller should call vcsInit and vcsActivate after the reset, before calling
the API function.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsRebuildVCs(VCS vcs)

Inputs vcs : chipset Handle

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_HANDLE
VCS_ERR_INVALID_STATE

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 110
Document ID: PMC-1991216, Issue 3

vcsConnInfo

Reports information on the current active VCs, and loads on each chipset (core
card). It also indicates available resources, such as number of empty VCs, logical
channels and ports.

Valid States VCS_PRESENT, VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsConnInfo(sVCS_CONN_INFO *psConnInfo)

Inputs None

Outputs psConnInfo : contains the system information for the VC
 connections and available resources.

Return Codes VCS_SUCCESS

VCS_ERR_CARD_ID (internal error in active card ID)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 111
Document ID: PMC-1991216, Issue 3

8.9 Shaper support

The following APIs are used to configure any of 4 Shapers, and associate 4 out of
16 possible WAN Port/Class to the 4 shapers in APEX.

vcsShprSetup

Configures and enable a shaper based on a shaper-parameters vector passed by the
user. It is used for shaping traffic on one of the WAN ports.

Note: A shaper should be configured before any of its associated port-classes are
configured. Also, a shaper should be configured before the APEX queue engine is
enabled (i.e., before APEX device activation)

Valid States VCS_STANDBY

Side Effects None

Prototype INT4 vcsShprSetConfig(UINT1 u1ShprNum,
sVCS_SHPR_VECT *psShprVect)

Inputs u1ShprId : shaper to be configured (0-3)

psShprVect : shaper parameters vector that is used by driver
 to program the APEX port context records.

Outputs None

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_STATE (chipset is not in a valid state)
VCS_ERR_INVALID_SHPR_NUM (invalid shaper number)
VCS_ERR_INVALID_SHPR_STATE (shaper is already used)
VCS_ERR_INVALID_SHPR_RATE (invalid shaper vector)

vcsShprTeardown

Tears down a shaper. Shaper can only be torn down if the APEX queue engine is
disabled (i.e., APEX device is de-activated). Note that a shaper should be torn
down only after its associated port is torn down.

Valid States VCS_STANDBY

Side Effects None

Prototype INT4 vcsShprTeardown(UINT1 u1ShprId)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 112
Document ID: PMC-1991216, Issue 3

Inputs u1ShprId : shaper to be torn down (0-3)

Outputs None

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_STATE (chipset is not in a valid state)
VCS_ERR_INVALID_SHPR_NUM (invalid shaper number)
VCS_ERR_INVALID_SHPR_STATE (shaper was not used)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 113
Document ID: PMC-1991216, Issue 3

8.10 Data Tx via Microprocessor port

The following APIs are used to transmit cells or frames via a microprocessor data
connection, which is established between the APEX microprocessor port and a
loop/WAN port.

vcsConnTxCell

Transmit a data cell over a specified microprocessor port connection established by
vcsConnSetup or vcsMcSetup call.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsConnTxCell(UINT2 u2ConnID, sVCS_CELL_HDR
*pHdr, UINT1 *pPyld, UINT1 u1crcFlag)

Inputs u2ConnID : connection ID.

psHdr : pointer to the cell header structure that

 contains the header bytes.

pu1Pyld : pointer to first byte of cell payload

 (48 contiguous bytes)

u1CrcFlg : this is a control flag; can be one of –

0 - no CRC protection required
 1 – overwrite end-of-cell with CRC-10.

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CONNID
VCS_ERR_INVALID_VC_STATE
VCS_ERR_NO_ACTIVE_CARD

vcsConnTxFrame

Transmits a data frame over a specified microprocessor port connection established
by vcsConnSetup or vcsMcSetup call.

Valid States VCS_ACTIVE

Side Effects None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 114
Document ID: PMC-1991216, Issue 3

Prototype INT4 vcsConnTxFrame(UINT2 u2ConnID, sVCS_CELL_HDR
*pHdr, UINT1 *pFrame, UINT4 u4Length)

Inputs u2ConnID : connection ID.

psHdr : cell header to be transmitted with each cell in
 each frame.

pu1Frame : pointer to first byte of frame (buffer)

u4Length : frame length (in bytes)

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CONNID
VCS_ERR_INVALID_VC_STATE
VCS_ERR_NO_ACTIVE_CARD

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 115
Document ID: PMC-1991216, Issue 3

8.11 Multicast support

vcsMcSetup

A multicasting connection request from User, which shall contain traffic parameters
such as bandwidth and QOS service. The connection path could be from a WAN
port to multiple Loop ports (downstream), from a Loop port to multiple WAN ports
(Upstream), from a Loop to multiple Loop ports, or a Microprocessor port to
multiple WAN/Loop ports. The chipset driver may honor or reject the connection
request based on the resource availability. If honored, the chipset driver sets up and
enables the multicasting connection by configuring the appropriate chipset devices,
and returns a unique Multicasting ID. The multicasting group is also registered with
the Multicast Record Table.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsMcSetup(sVCS_MULTICAST_REQUEST
*psVcsMcRequest, UINT4 *pMcastID)

Inputs psVcsMcRequest: contains a Multicasting Connection request

Outputs pMcastID : multicasting ID.

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_MCAST_PORT
VCS_ERR_INVALID_MCAST_REQUEST
VCS_ERR_MEM_ALLOC

vcsMcTeardown

Tears down a specified multicasting connection group. The group is also removed
from the Multicast Record Table.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsMcTeardown(UINT4 u4McastID)

Inputs u4McastID : multicasting ID for the multicasting connection
 group to be shut down.

Outputs None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 116
Document ID: PMC-1991216, Issue 3

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_MCAST_ID

vcsMcAddConn

Adds an outgoing connection for a particular vpi/vci/port to an existing
multicasting group.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsMcAddConn(UINT4 u4McastID,
sVCS_VC_PORT_DES *psVcPort)

Inputs u4McastID : a multicasting ID
psVcPort : a VC/port descriptor of an outgoing connection

 to be added.

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_MCAST_ID
VCS_ERR_INVALID_MCAST_PORT

vcsMcDropConn

Removes an outgoing connection for a particular VC/portfrom an existing
multicasting group.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsMcDropConn(UINT4 u4McastID,
sVCS_VC_PORT_DES *psVcPort)

Inputs u4McastID : a multicasting ID

psVcPort : a VC/port descriptor of an outgoing connection
 to be dropped.

Outputs None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 117
Document ID: PMC-1991216, Issue 3

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_MC_ID
VCS_ERR_VC_NOT_FOUND

vcsMulticastCell

Transmits a cell on each outgoing connection of the multicasting group.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsMulticastCell(UINT4 u4McastGroupId,
sVCS_CELL_HDR *pHdr, UINT1 *pPyld, UINT1
u1CrcFlag)

Inputs u4McastGroupId : ID identifying the multicasting group

pHdr : header for the cell

pPyld : payload of the cell

u1CrcFlag : flag indicating whether the end of the cell
 should be overwritten with CRC10

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_MCAST_ID
VCS_ERR_NO_ACTIVE_CARD
VCS_ERR_INVALID_VC_STATE

vcsMulticastFrame

Transmits a frame on each outgoing connection of the multicasting group.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsMulticastFrame (UINT4 u4McastGroupId,
sVCS_CELL_HDR *pHdr, UINT1 *pFrame, UINT4
u4Length)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 118
Document ID: PMC-1991216, Issue 3

Inputs u4McastGroupId : ID identifying the multicasting group

pHdr : header for the cell

pFrame : payload for the frame

u4Length : length of the payload in bytes

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_MCAST_ID
VCS_ERR_NO_ACTIVE_CARD
VCS_ERR_INVALID_VC_STATE

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 119
Document ID: PMC-1991216, Issue 3

8.12 Inband Control Channels

vcsCtrlChnlSetup

Sets up an inband, bi-directional control channel between a core card and a remote
Line or WAN card. It allocates all necessary resource to prepare for the subsequent
inband message Tx/Rx.

For a channel between a line and core card, the data path (as shown in Figure 19)
requires the establishment of two VC table records in APEX and ATLAS, which
route the control messages between the APEX microprocessor port and the
microprocessor port of DUPLEX device on the remote line card.

For a channel between a WAN and core card, the data path (as shown in Figure 19)
doesn’t require any establishment of VC table records in APEX and ATLAS. The
messages are passed between the microprocessor ports of two DUPLEX devices on
the remote WAN card and core card.

Note the Receive VPI/VCI in the sVCS_CHNL_REQUEST data structure should
be unique among the control channels.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsCtrlChnlSetup(sVCS_CHANNEL_REQUEST
*psChnlRequest, UINT2 *pu2ChnlID)

Inputs psChnlRequest : inband channel request

Outputs pu2ChnlID : channel ID (index of the channel record
 table), from 0 to maxChnls-1.

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_MEM_ALLOC
VCS_ERR_CHNL_FULL
VCS_ERR_INVALID_CHNL_REQ
VCS_ERR_CHNL_DUPLICATE_VPCI

vcsCtrlChnlTeardown

Shuts down a specified control channel between a core card and a remote Line or
WAN card. It also de-allocates the associated resource.

Valid States VCS_ACTIVE

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 120
Document ID: PMC-1991216, Issue 3

Side Effects None

Prototype INT4 vcsCtrlChnlTeardown(UINT2 u2ChnlID)

Inputs u2ChnlID : ID of the channel to be shut down

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CHNL_ID

vcsCtrlChnlTx

Sends a message to a remote card over a specified control channel.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsCtrlChnlTx(UINT2 u2ChnlID, UINT1 *pMsg,
UINT4 u4Length)

Inputs u2ChnlID : channel ID

pMsg : pointer to a message buffer to be sent

u4Length : length of message in bytes.

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CHNL_ID
VCS_ERR_CTRL_MSG_LENGTH

vcsCtrlChnlRx

Retrieves a message that was received from a remote card over a specified control
channel.

Valid States VCS_ACTIVE

Side Effects None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 121
Document ID: PMC-1991216, Issue 3

Prototype INT4 vcsCtrlChnlRx(UINT2 u2ChnlID, UINT1 *pMsg,
UINT4 * pLength)

Inputs u2ChnlID : channel ID

Outputs pMsg : pointer to a message buffer received.

pLength : length of the message in bytes.

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CHNL_ID

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 122
Document ID: PMC-1991216, Issue 3

8.13 BOC Signaling

vcsBOCTx

Sends a BOC signal to a remote card over a specified HSS link.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsBOCTx(UINT1 u1CardId, UINT1 u1BOCcode)

Inputs u1CardID : identify a remote Line or WAN card, by specifying
 HSS line, and VORTEX or DUPLEX device, to
 which it is connected.
 bit 0-2: HSS link number (0 to 7)

 bit 3-6: device number
 bit 7 : 0=VORTEX, 1 = DUPLEX

u1BOCcode : BOC code to be sent.

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CARD_ID
VCS_ERR_PORT_NOT_READY

vcsBOCRx

Retrieves a BOC signal from a remote card over a specified HSS link.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsBOCRx(UINT1 u1CardId, UINT1 *pBOCcode)

Inputs u1CardID : identify a remote Line or WAN card, by
 specifying HSS line, and VORTEX DUPLEX

 device, to which it is connected.
bit 0-2: HSS link number (0 to 7)
bit 3-6: device number
bit7 : 0=VORTEX, 1 = DUPLEX

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 123
Document ID: PMC-1991216, Issue 3

Outputs pBOCcode : contains a BOC code received.

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CARD_ID
VCS_ERR_PORT_NOT_READY

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 124
Document ID: PMC-1991216, Issue 3

8.14 Addition/Deletion of Line/WAN Cards

vcsAddCard

Adds a Line or WAN card to the system. This shall activate the associated HSS link,
and mark the availability of the corresponding loop or WAN ports in the resource
database of the chipset driver.

Note: the API should not be called when the chipset card is in Loopback testing
mode.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsAddCard(VCS vcs, UINT1 u1CardId)

Inputs vcs : chipset handler for the core card, to which the
 remote card is actively connected.

u1CardID : specifies a HSS line of VORTEX or DUPLEX
 device, to which the remote card is connected.

bit 0-2: HSS link number (0 to 7)
bit 3-6: device number

 bit7 : 0=VORTEX (Line card),
 1 = DUPLEX (WAN card)

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_HANDLE
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CARD_ID
VCS_ERR_CARD_ALREADY_ADD
VCS_ERR_LPBKPORT_IN_USE

vcsRemoveCard

Removes a Line or WAN card from the system. It tears down the ports in the APEX
Port and Class Context Records after all related VC connections being deleted. This
shall also de-activate the associated HSS link, and mark the non-availability of the
corresponding loop or WAN ports in the chipset driver resource database to prevent
any future request for connections over the deleted ports.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 125
Document ID: PMC-1991216, Issue 3

Note: the API should not be called when the chipset card is in Loopback testing
mode.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsRemoveCard(UINT1 u1CardId)

Inputs u1CardID : specifies a HSS line of VORTEX or DUPLEX
 device, to which the remote card is connected.

bit 0-2: HSS link number (0 to 7)
bit 3-6: device number

 bit 7 : 0=VORTEX (Line card),
 1 = DUPLEX (WAN card)

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CARD_ID
VCS_ERR_CARD_NOT_ADDED
VCS_ERR_LPBKPORT_IN_USE

vcsRemoteCardInfo

Reports the availability of remote Line/WAN cards at each HSS link of a specified
core card, as well as the HSS link status, and total number of remote cards being
added.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsRemoteCardInfo (VCS vcs, sVCS_RCARD_INFO
*psCardInfo))

Inputs vcs : chipset handler for the core card

Outputs psCardInfo : contains Remote Card and HSS link status
 information

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_HANDLE
VCS_ERR_INVALID_STATE

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 126
Document ID: PMC-1991216, Issue 3

8.15 VC OAM (FM and PM) Setup

The OAM support only applies to upstream or downstream connections between
Loop and WAN ports, not the connections associated with microprocessor port.

OAM At Connection Level

vcsVcOAMSetup

Sets up and enables an OAM (FM and PM) support over an existing F4 or F5
connection. It configures the chipset (ATLAS) as a terminating point (Segment
Point, or End_to_End Point, or both) for OAM cells on the VCconnection, and
associates a backward connection for its RDI and Backward Reporting PM cell
flow. The connection and its backward connection should be already setup, and
their paths must be associated with the same Loop port and WAN port.

Note 1: By default, the F4 to F5 processing is disabled, i.e. the VPC pointer is set to
the address of the VC (or point to itself). One must specifically call
vcsF4toF5Setup API to setup and enable the termination of F4 (VPC) to F5
(VCC).

Note 2: the PM sessions should already be properly configured before the sessions
are associated with the connection. Each connection may participate in two active
PM sessions at the same time, and multiple connections may share one PM session.
A common implementation of PM will involve monitoring and generation at the F4
and F5 level. This means that for an F4 pipe, each constituent F5 connection will
have one F5 PM session and one F4 PM session (both active at the same time),
while all constituent F5 connections point to the same F4 PM session.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsVcOAMSetup(UINT2 u2InConnID,
sVCS_VC_OAM_REQUEST sVcOAM, UINT2 u2BackConnID)

Inputs u2InConnID : connection ID for incoming OAM cell path

sVcOAM : contains per-VC OAM configuration
 parameters

u2BackConnID: connection ID for backward OAM cell path.
 Note: If the incoming connection is F4 OAM

 type, the backward connection is required
 to be the same type of the F4 OAM
 connection.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 127
Document ID: PMC-1991216, Issue 3

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CONNID
VCS_ERR_BACKWARD_VC
VCS_ERR_OAM_ALREADY_SETUP
VCS_ERR_CONN_MP_ORIGIN
VCS_ERR_MEM_ALLOC

vcsVcOAMClear

Disables the OAM support over a specified F4 or F5 connection. It re-configures
the chipset (ATLAS) as a non-end-point for OAM cells on the VCC connection.
Therefore, all incoming OAM cells will be passed transparently through the chipset.
The PM measurement for the connection is disabled too.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsVcOAMClear(UINT2 u2ConnID)

Inputs u2ConnID : connection ID for incoming OAM path.

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CONNID
VCS_ERR_OAM_NOT_SETUP

vcsVcOAMRetrieve

Used to retrieve the current OAM Configurations (PM and FM) on a specified
connection.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsVcOAMRetrieve(UINT2 u2ConnID, sVCS_VC_OAM
*psVcOAM)

Inputs u2ConnID : connection ID

Outputs psVcOAM : contains current OAM parameters.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 128
Document ID: PMC-1991216, Issue 3

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CONNID
VCS_ERR_OAM_NOT_SETUP

vcsVcFMUpdate

Used to update/modify the FM (RDI, AIS, CC) part of the OAM Configurations on
a specified connection. The backward path is not changed.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsVcFMUpdate(UINT2 u2ConnID, sVCS_VC_OAM_FM
psVcFM)

Inputs u2ConnID : connection ID

psVcFM : contains per-VC FM configuration parameters

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CONNID
VCS_ERR_OAM_NOT_SETUP

vcsVcPMUpdate

Used to update/modify the PM part of the OAM Configurations on a specified
connection. The backward path is not changed.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsVcPMUpdate(UINT2 u2ConnID, sVCS_VC_OAM_PM
psVcPM)

Inputs u2ConnID : connection ID

psVcPM : contains per-VC PM configuration parameters

Outputs None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 129
Document ID: PMC-1991216, Issue 3

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CONNID
VCS_ERR_OAM_NOT_SETUP

vcsVcOAMGetDefect

Used to retrieve the received OAM defect type and location on a specified
connection.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsVcOAMGetDefect(UINT2 u2ConnID,
sVCS_VC_OAM_DEFECT *psVcOAMDefect)

Inputs u2ConnID : connection ID

Outputs psVcOAMDefect : contains OAM defect type and location.

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CONNID
VCS_ERR_OAM_NOT_SETUP

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 130
Document ID: PMC-1991216, Issue 3

OAM At Chipset Level

vcsOAMSetConfig

Used to setup the OAM configuration registers on a specified chipset card. The
configuration is not on per-connection basis, i.e. It will globally effect all
connections associated with the chipset card.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsOAMSetConfig(VCS vcs, UINT1 u1Dir,
sVCS_OAM_CFG *psOAM)

Inputs vcs : chipset handler

u1Dir : OAM Flow Direction, either eVCS_ATLAS_EGRESS or
 eVCS_ATLAS_INGRESS

psOAM : contains OAM parameters to be configured.

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_HANDLE
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_FLAG (invalid u1Dir flag)

vcsOAMGetConfig

Used to get the OAM configuration information on a specified chipset card.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsOAMGetConfig(VCS vcs, UINT1 u1Dir,
sVCS_OAM_CFG *psOAM)

Inputs vcs : Chipset handler

u1Dir : OAM Flow Direction, either eVCS_ATLAS_EGRESS
 or eVCS_ATLAS_INGRESS

Outputs psOAM : contains current OAM configurations.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 131
Document ID: PMC-1991216, Issue 3

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_HANDLE
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_FLAG (invalid u1Dir flag)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 132
Document ID: PMC-1991216, Issue 3

8.16 F4 to F5 OAM Processing

vcsF4toF5Setup

Sets up and enables the F4 to F5 OAM processing support.

Note: (1) End-to-end OAM connection of the VPC is required to be setup as a
connection end-point before the API being called. i.e. the end-to-end termination
OAM support should be already setup and enabled on the F4 (VPC) connection.

 (2) Segment OAM connection of F4 (VPC) is optional in the F4-to-F5 OAM
processing.Setting the field "F4SegConnId" with the same value as
"F4EtoEConnId" in the sVCS_F4TOF5_REQUEST, means that the Segment VPC
connection is disabled in the F4toF5 processing chain.

 (3) OAM terminations on its constituent F5 (VCC) connections are not required,
although they might be setup and enabled if desired.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsF4toF5Setup(sVCS_F4TOF5_REQUEST
*psF4toF5Request)

Inputs psF4toF5Request : contains the F4 to F5 processing
 request.

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_VPC_REQUEST
VCS_ERR_F4TOF5_ALREADY_SETUP
VCS_ERR_VC_TYPE (invalid VC type)
VCS_ERR_INVALID_VCC_F4TOF5_CFG

vcsF4toF5Clear

Disables the F4 to F5 OAM processing over a specified F4 VPC connection by
removing all the associated VCCs from the processing list.

Valid States VCS_ACTIVE

Side Effects None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 133
Document ID: PMC-1991216, Issue 3

Prototype INT4 vcsF4toF5Clear(UINT2 u2F4ConnID)

Inputs u2F4ConnID : F4 OAM connection ID.

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_CONNID
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_VPC_REQUEST
VCS_ERR_F4TOF5_NOT_SETUP
VCS_ERR_INTERNAL

vcsF4toF5AddVcc

Adds a VCC connection to a F4 to F5 OAM processing list associated with a
specified F4 VPC connection.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsF4toF5AddVcc(UINT2 u2F4ConnID, UINT2
u2VccId, UINT1 u1F4ToF5Cfg)

Inputs u2F4ConnID : F4 OAM connection ID.

u2VccId : connection ID of the VC to be added

u1F4ToF5Cfg : F4 to F5 processing Configuration for the VCC.
 Bit 0: F4toF5AIS,
 1= F5 FM cells will be generated at F4
 OAM termination;
 0= F5 FM cells will not be generated at
 F4 OAM termination; only CC cells
 will be generated.
 Bit 1: Segment Flow,
 1 = An F5 Segment AIS cell will be
 generated while the F4 connection
 is in AIS alarm.
 0 = an F5 end-to-end AIS will be
 generated instead. The bit should be
 set when the VCC connection is
 within a defined segment or not a VC
 end-point, i.e. the VCC extends
 beyond the end-point of the VPC.

 Note: the bit should not be set to 1 if the VCC
 set as a Segment end-point

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 134
Document ID: PMC-1991216, Issue 3

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CONNID
VCS_ERR_INVALID_VPC_REQUEST
VCS_ERR_F4TOF5_NOT_SETUP
VCS_ERR_VCC_ALREADY_IN_LIST
VCS_ERR_INTERNAL
VCS_ERR_VC_TYPE
VCS_ERR_INVALID_VCC_F4TOF5_CFG

vcsF4toF5DropVcc

Drops a VCC connection from a F4 to F5 OAM processing list associated with a
specified F4 VPC connection.

Valid States VCS_ACTIVE

Side Effects None

Prototype INT4 vcsF4toF5DropVcc(UINT2 u2F4ConnID, UINT2
u2VccId)

Inputs u2F4ConnID : an F4 OAM connection ID.

u2VccId : connection ID of the VC to be droped

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CONNID
VCS_ERR_VCC_NOT_IN_LIST
VCS_ERR_F4TOF5_NOT_SETUP
VCS_ERR_INVALID_VPC_REQUEST
VCS_ERR_INTERNAL

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 135
Document ID: PMC-1991216, Issue 3

8.17 PM Session Configuration/Status

The following APIs allow the USER to configure PM sessions, and retrieve the
statistic performance record accumulated by the PM sessions. It’s up to USER to
interpret the performance record data reported by the PM session.

Note: In the architecture of the DSLAM reference design, only the ATLAS Ingress
PM sessions are used. Therefore, there are total 256 sessions available to the USER,
which are divided into two banks, with128 PM sessions for each bank.

vcsPMSetConfig

Configures a PM session at a specified PM address (0 to 127) on a specified bank
(BANK1 or BANK2)

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsPMSetConfig(UINT1 u1SessionID,
eVCS_PM_BANK ePmBank, UINT2 u2PmCfg)

Inputs u1SessionID : PM session ID (0 to 127)

ePmBank : PM Bank, could be one of eVCS_PM_BANK1 or
 eVCS_PM_BANK2.

u2PmCfg : contains the 16 bit long PM configuration for the
 session.

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_SESSION_ID
VCS_ERR_INVALID_BANK
VCS_ERR_INVALID_PM_CFG

vcsPMGetConfig

Retrieves the configures of a PM session at a specified PM address (0 to 127) on a
specified bank (BANK1 or BANK2)

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 136
Document ID: PMC-1991216, Issue 3

Prototype INT4 vcsPMGetConfig(UINT1 u1SessionID,
eVCS_PM_BANK ePmBank, UINT2 *pu2PmCfg)

Inputs u1SessionID : PM session ID (0 to 127)

ePmBank : PM Bank, could be one of eVCS_PM_BANK1
 or eVCS_PM_BANK2.

Outputs pu2PmCfg : current PM configurations (16 bit long) for the
 session.

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_HANDLE
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_SESSION_ID
VCS_ERR_INVALID_BANK

vcsPMReadRecord

Reads a Performance record from a specified PM session

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsPMConfig(VCS vcs, UINT1 u1SessionID,
eVCS_PM_BANK ePmBank, sVCS_PM_RECORD *psRecord)

Inputs vcs : Chipset handler

u1SessionID : PM session ID (0 to 127)

ePmBank : PM Bank, could be one of eVCS_PM_BANK1 or
 eVCS_PM_BANK2.

Outputs psRecord : contains the PM record data for the session.
 Note: the structure sVCS_PM_RECORD is the
 same as sATLS_PM_RECORD.

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_HANDLE
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_SESSION_ID
VCS_ERR_INVALID_BANK

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 137
Document ID: PMC-1991216, Issue 3

8.18 Protection Switching

vcsRemoveLoad

Removes the connection load from a specified chipset card. The card should be in
VCS_STANDBY or VCS_ACTIVE state before calling the function. Note:
vcsRemoveLoad and vcsAddLoad should be used as a pair.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects the core card will be in a hot-standby state.

Prototype INT4 vcsRemoveLoad (VCS vcs)

Inputs vcs : chipset handler for the core card, whose
 active connections or load are to be removed

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_HANDLE
VCS_ERR_INVALID_STATE

vcsAddLoad

Adds the connection load to a specified chipset card. The card should be in
VCS_STANDBY or VCS_ACTIVE state. In addition, The load has to be removed
first from its current serving chipset card before calling the function. Note:
vcsRemoveLoad and vcsAddLoad should be used as a pair.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects the core card takes over all connection load, including those hot-
standby connections serviced by other core card.

 Prototype INT4 vcsAddLoad (VCS vcs)

Inputs vcs : chipset handler for the core card which will
 take over the load.

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_HANDLE
VCS_ERR_INVALID_STATE

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 138
Document ID: PMC-1991216, Issue 3

vcsRemoveLineLoad

Removes a part of the connection load, which is associated with a specified line
card, from a chipset card. The active HSS links between the core card and line card
are deactivated and the associated VC connection are disabled at ATLAS Ingress
VC Table. This effectively prevents the connection data flow through the line card
and core card.

Note: vcsRemoveLineLoad and vcsAddLineLoad should be used as a pair.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects the effected active connections switched into hot-standby state on
the core card.

Prototype INT4 vcsRemoveLineLoad(VCS vcs,UINT1 u1CardID)

Inputs vcs : chipset handler for the core card, whose
 active connections or load are to be removed

u1CardId : specifies a line card, whose associated
 connections are to be load switched.

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_HANDLE
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CARD_ID
VCS_ERR_INVALID_LINE_CARD_ID

vcsAddLineLoad

Adds a part of the connection load, which is associated with a specified line card, to
a chipset card. The part of load has to be removed first from its current serving
chipset card before calling the function.

Note: vcsRemoveLineLoad and vcsAddLineLoad should be used as a pair.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects the effected active connections switched into active state on the
core card.

Prototype INT4 vcsAddLineLoad(VCS vcs,UINT1 u1CardID)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 139
Document ID: PMC-1991216, Issue 3

Inputs vcs : chipset handler for the core card which will
 take over the load.

u1CardId : specifies a line card, whose associated
 connections are to be load switched.

Outputs None

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_HANDLE
VCS_ERR_INVALID_STATE
VCS_ERR_INVALID_CARD_ID
VCS_ERR_INVALID_LINE_CARD_ID

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 140
Document ID: PMC-1991216, Issue 3

8.19 Counter Configuration

vcsSetRxCntCfg

Sets up the configuration for the two VC level counters in ATLAS for counting the
number of incoming cells (before policing). The two 32-bit cell counters can be
programmed to count any combination of the following incoming cells: CLP0 user
cells, CLP1 user cells, CLP0 OAM cells, CLP1 OAM cells, CLP0 RM cells, CLP1
RM cells, CLP0 cells with invalid VCI/PTI, CLP1 Cells with invalid VCI/PTI.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsSetRxCntCfgs(VCS vcs,UINT1 u1CntSelect,
UINT1 u1Cnt1Cfg,UINT1 u1Cnt2Cfg)

Inputs vcs : chipset handle

u1CntSelect :select flag for counting configurations.
 if 0, Counting Configuration 1 is selected.

 Otherwise, Counting Configuration 2 is
 selected.

u1Cnt1Cfg : configuration for counter 1.

 u1Cnt2Cfg : configuration for counter 2.

Note: A logic 1 in the configuration bits enables
 counting on that particular stream.

Bit 7: CLP1 user cells
Bit 6: CLP0 user cells
Bit 5: CLP1 OAM cells
Bit 4: CLP0 OAM cells
Bit 3: CLP1 RM cells
Bit 2: CLP0 RM cells
Bit 1: CLP1 cells with PTI = 111 ,VCI = 7 to 15
Bit 0: CLP0 cells with PTI = 111 ,VCI = 7 to 15

Outputs None.

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)
 VCS_ERR_INVALID_STATE (chipset is not in a valid state)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 141
Document ID: PMC-1991216, Issue 3

vcsGetRxCntCfg

This function retrieves the configuration for the two VC level counters in ATLAS.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsGetRxCntCfgs(VCS vcs,UINT1
u1CntSelect,UINT1 *pu1Cnt1Cfg, UINT1 *pu1Cnt2Cfg)

Inputs vcs : chipset handle

u1CntSelect : select flag for counting configurations. if 0,
 Counting Configuration 1 is selected.
 Otherwise, Counting Configuration 2 is
 selected.

Outputs pu1Cnt1Cfg : contains configuration for counter 1.

pu1Cnt2Cfg : contains configuration for counter 2
Note: A logic 1 in the configuration bits indicates

 counting on that particular stream is enabled.

Bit 7: CLP1 user cells
Bit 6: CLP0 user cells
Bit 5: CLP1 OAM cells
Bit 4: CLP0 OAM cells
Bit 3: CLP1 RM cells
Bit 2: CLP0 RM cells
Bit 1: CLP1 cells with PTI = 111 ,VCI = 7 to 15
Bit 0: CLP0 cells with PTI = 111 ,VCI = 7 to 15

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)
VCS_ERR_INVALID_STATE (chipset is not in a valid state)

vcsSetNcCntCfgs

Sets up the configurations for the three VC level counters in ATLAS for counting
the number of incoming non-compliant cells (as a result of policing).

The three 16-bit cell counters can be programmed to count offend cells: Non-
compliant CLP0 cells, Non-compliant CLP0+1 cells, Tagged CLP0 cells, Discarded
CLP0 cells, Discarded CLP0+1 cells.

Valid States VCS_STANDBY, VCS_ACTIVE

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 142
Document ID: PMC-1991216, Issue 3

Side Effects None

Prototype vcsSetNcCntCfgs(VCS vcs, eVCS_NON_COMPLIANT_TYPE
u1NcCnt1Cfg, eVCS_NON_COMPLIANT_TYPE
u1NcCnt2Cfg, eVCS_NON_COMPLIANT_TYPE u1NcCnt3Cfg
)

Inputs vcs : chipset handle

u1NcCnt1Cfg : configuration for counter 1. It can be one of
 VCS_NC_CLP0, VCS_NC_CLP01,
 VCS_DISCARD_CLP0, and
 VCS_DISCARD_CLP01

u1NcCnt2Cfg : configuration for counter 2.It can be one of
 VCS_NC_CLP0, VCS_NC_CLP01,
 VCS_DISCARD_CLP0, and
 VCS_DISCARD_CLP01

u1NcCnt3Cfg : configuration for counter 3. It can be one of
 VCS_NC_CLP0, VCS_NC_CLP01,
 VCS_TAG_CLP0, and
 VCS_DISCARD_CLP01,

Outputs None.

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)
VCS_ERR_INVALID_STATE (chipset is not in a valid
VCS_ERR_INVALID_CFG

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 143
Document ID: PMC-1991216, Issue 3

8.20 Statistical Counts

The statistical counts are cell counts that increase monotonically as they accumulate
over time. There are four levels of counts: per VC, per port, per Line/WAN card,
and per chipset

Cell Counts Per VC

vcsGetStatVcTxCnts

This function retrieves the connection level cell transmission counts. The counts
are maintained by the APEX device

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsGetStatVcTxCnts(UINT2 u2ICI, UINT4
*pu4VcClp0TxCnt,UINT4 *pu4VcClp1TxCnt)

Inputs u2ICI : connection ID

Outputs pu4VcClp0TxCnt : count of all CLP0 cells transmitted.

pu4VcClp1TxCnt : count of all CLP1 cells transmitted.

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_CONNID (invalid connection ID)
VCS_ERR_INVALID_STATE (chipset is not in a valid state)

vcsGetStatVcRxCnts

This function retrieves the cell receive counts at the connection level. The counts
are maintained by the ATLAS device. The two 32-bit cell counts are programmed to
count any combination of the following incoming cells: CLP0 user cells, CLP1 user
cells, CLP0 OAM cells, CLP1 OAM cells, CLP0 RM cells, CLP1 RM cells, CLP0
cells with invalid VCI/PTI. CLP1 Cells with invalid VCI/PTI. Typically, counter1
can be used to count CLP0 cells (including user OAM and RM cells), while the
counter2 for CLP1 cells. The count type can be configured by calling API function
vcsSetRxCntCfgs().

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 144
Document ID: PMC-1991216, Issue 3

Prototype INT4 vcsGetStatVcRxCnts(UINT2 u2ICI,
sVCS_VC_STAT_CNT *pRxCnt1, sVCS_VC_STAT_CNT
*pRxCnt2)

Inputs u2ICI : connection ID

Outputs pRxCnt1 : contains count type and count of cells received,
 which is maintained in counter 1.

pRxCnt2 : contains count type and count of cells received,
 which is maintained in counter 2.

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_CONNID (invalid connection ID)
 VCS_ERR_INVALID_STATE (device is not in a valid state)
 VCS_ERR_CONN_MP_ORIGIN

vcsGetStatVcNcCnts

This function retrieves the non-compliant cell counts at the connection level. The
counts are incremented as a result of cell rate policing by the ATLAS device. The
programmable 16 bit counts can be programmed as follows: Non-compliant CLP0
cells, Non-compliant CLP0+1 cells, Tagged CLP0 cells, Discarded CLP0 cells,
Discarded CLP0+1 cells. The count type can be configured by calling API function
vcsSetNcCntCfgs ().

Valid States VCS_VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsGetStatVcNcCnts(UINT2 u2ICI,
sVCS_VC_STAT_CNT *pNcCnt1, sVCS_VC_STAT_CNT
*pNcCnt2, sVCS_VC_STAT_CNT *pNcCnt3)

Inputs u2ICI : connection ID

Outputs pNcCnt1 : contains count type and count for non-compliant
 counter 1.

pNcCnt2 : contains count type and count for non-compliant
 counter 2.

pNcCnt3 : contains count type and count for non-compliant
 counter 3..

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 145
Document ID: PMC-1991216, Issue 3

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_CONNID (invalid connection ID)
VCS_ERR_INVALID_STATE
VCS_ERR_CONN_MP_ORIGIN

vcsResetVcRxNcCnts

This function resets the Rx and non-compliant cell counts at the connection level.

Valid States VCS_VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsResetVcRxNcCnts(UINT2 u2ConnId)

Inputs u2ICI : connection ID, whose connection must be
 originated from Loop or WAN port.

Outputs None

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_CONNID (invalid connection ID)
VCS_ERR_INVALID_STATE
VCS_ERR_CONN_MP_ORIGIN

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 146
Document ID: PMC-1991216, Issue 3

Cell Counts Per Port

vcsGetStatPortCnts

This function retrieves counts of VC cells which are transmitted or received through
a specified Loop/WAN port. The counts are the sum of VC cell counts over the
connections associated with the port.

For the Rx count, the cell type being counted is determined by the count
configurations set in vcsSetRxCntCfg API. It is suggested that the configurations
be set the same for all connections within the port.

Valid States STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsGetStatPortCnts(sVCS_PORT_ID sPortId,
UINT4 *pu4PortTxCnt, UINT4 *pu4PortRxCnt)

Inputs sPortId : Loop or WAN Port ID

Outputs pu4PortTxCnt : count of cells transmitted to the port.

pu4PortRxCnt : count of cells received from the port.

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_PORTID (invalid port ID)
VCS_ERR_INVALID_STATE
VCS_ERR_CONN_MP_ORIGIN
VCS_ERR_PORT_NOT_READY
VCS_ERR_PORT_NOT_CFG

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 147
Document ID: PMC-1991216, Issue 3

Cell Counts Per Line/WAN card

vcsGetStatCardCnts

This function retrieves counts of cells which are transmitted or received through a
specified Line or WAN card. The count is maintained by the VORTEX or
DUPLEX devices on the chipset card.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsGetStatCardCnts(UINT1 u1CardId, UINT4
*pu4CardTxCnt, UINT4 *pu4CardRxCnt)

Inputs u1CardID : specifies a remote card by the HSS link,
 which connects the remote card to.the core card.
 bit 0-2: HSS link number (0 to 7 for VORTEX)
 (0 to 1 for DUPLEX)

 bit 3-6: device number
 bit 7 : 0=VORTEX (Line card),
 1 = DUPLEX (WAN card)

 Outputs pu4CardTxCnt : count of cells transmitted to the card.

pu4CardRxCnt : count of cells received from the card.

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_CARD_ID (invalid card ID)
 VCS_ERR_INVALID_STATE (chipset is not in a valid state)
VCS_ERR_NO_ACTIVE_CARD

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 148
Document ID: PMC-1991216, Issue 3

Counts Per Chipset

vcsGetStatDiscardCnts

This function is used to retrieve the discard/error counts accumulated by the APEX
device. These counts include number of CLP0 and CLP1 cells discarded due to
congestion as well as number cells discarded for reasons other than congestion.

This function can be used to maintain a steady count of the types mentioned by
invoking it periodically.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsGetStatDiscardCnts(VCS vcs,UINT4
*pu4DiscardCnt UINT4 *pu4Clp0DiscardCnt,
UINT4 *pu4Clp1DiscardCnt)

Inputs vcs : chipset handle

Outputs pu4DiscardCnt : general discard count of all cells that have
 been discarded due to reasons other than

 congestion (i.e., re-assembly timeout,
 re-assembly max. length error etc.)

 pu4Clp0DiscardCnt : count of all CLP0 cells discarded due
 to congestion.

 pu4Clp1DiscardCnt : count of all CLP1 cells discarded due
 to congestion.

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)
 VCS_ERR_INVALID_STATE (chipset is not in a valid state)

vcsGetStatEventCnts

This function is used to retrieve the event counts accumulated and maintained by
the underlying device drivers.

Note: for the current version, only DUPLEX and VORTEX device drivers provide
such statistical information. The event counts are reset upon the retrieval.

Valid States VCS_PRESENT, VCS_STANDBY, VCS_ACTIVE

Side Effects None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 149
Document ID: PMC-1991216, Issue 3

Prototype INT4 vcsGetStatEventCnts(VCS vcs, sVCS_DEVICE_ID
sDevId, sVCS_STAT_CNT *psVcsStatCnt)

Inputs vcs : chipset handle

sDevID : specifies the device driver, whose statistical
 counts are to be retrieved. It can be one of
 VCS_DUPLEX or VCS_VORTEX

Outputs psVcsStatCnt : contains the statistic event counts. The counts
 are valid only if the function returns
 VCS_SUCCESS. Also, the only fields in this
 structure that are valid are those have been
 requested using the input parameter sDevID.

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)
VCS_ERR_INVALID_STATE (chipset is not in a valid state)

VCS_ERR_DRIVER_NOT_SUPPORT

8.21 Congestion counts & Status

The congestion counts are snapshots of the current congestion counts on a specified chipset
card. They need not increase monotonically. The counts can be polled for real-time
performance monitoring or status check of the chipset operation.

vcsGetCongDevCnt

This function returns the total number of cells available for buffering in the chipset
device, i.e. APEX (FreeCnt).

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsGetCongDevCnt(VCS vcs, UINT4 *pu4Cnt)

Inputs vcs : chipset handle

Outputs pu4Cnt : snapshot of FreeCnt.

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)

VCS_ERR_INVALID_STATE (chipset is not in a valid state)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 150
Document ID: PMC-1991216, Issue 3

vcsGetCongDirCnt

This function retrieves the count of all cells queued for all loop/WAN ports in
APEX devie.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsGetCongDirCnt(VCS vcs, UINT1 u1Dir, UINT4
*pu4Cnt)

Inputs vcs : chipset handle

u1Dir : 0 – loop, 1- WAN

Outputs pu4Cnt : loop/WAN cells queue count

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)

VCS_ERR_INVALID_STATE (chipset is not in a valid state)

vcsGetCongPortCnt

This function retrieves the count of all cells queued for the specified port in APEX
device.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsGetCongPortCnt(VCS vcs, sVCS_PORT_ID
sPortId, UINT4 *pu4Cnt)

Inputs vcs : chipset handle

sPortId : port type (loop, WAN, uP) and number

Outputs pu4Cnt : cells queued for this port

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)
VCS_ERR_INVALID_STATE (chipset is not in a valid state)
VCS_ERR_INVALID_PORT_ID (port has not been configured)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 151
Document ID: PMC-1991216, Issue 3

vcsGetCongClassCnt

This function retrieves the count of all cells queued for the specified class in the
APEX device.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsGetCongClassCnt(VCS vcs, sVCS_PORT_ID
sPortId, UINT1 u1ClassNum, UINT4 *pu4Cnt)

Inputs vcs : chipset handle

sPortId : port identifier.

u1ClassNum : class Number (0 to 3)

Outputs pu4Cnt : cells queued for this class.

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)

VCS_ERR_INVALID_STATE (chipset is not in a valid state)

VCS_ERR_INVALID_PORT_ID (invalid port ID)
VCS_ERR_INVALID_CLASS_ID (class not configured)

vcsGetCongConnCnts

This function retrieves the following counts at a VC level

• all CLP0 cells in both VC and class queue (VcCLP0Cnt)

• all CLP01 cells in VC queue (VcQCLP01Cnt)

• all CLP01 cells in class queue (VcClassQCLP01Cnt)

The counts are maintained by the APEX device.

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsGetCongConnCnts(UINT4 u4ICI, UINT4
*pu4VcClp0Cnt, UINT4 *pu4VcQClp01Cnt, UINT4
*pu4VcClassQClp01Cnt)

Inputs u4ICI : connection ID.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 152
Document ID: PMC-1991216, Issue 3

Outputs pu4VcClp0Cnt : snapshot of VcCLP0Cnt

pu4VcQClp01Cnt : snapshot of VcQCLP01Cnt

pu4VcClassQClp01Cnt: snapshot of VcClassQCLP01Cnt

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)
 VCS_ERR_INVALID_STATE (chipset is not in a valid state)
VCS_ERR_INVALID_CONNID (connection not configured)

vcsGetLastDiscardICI

This function retrieves the connection Ids of the last time a CLP0 or a CLP1 cell
was discarded due to congestion

Valid States VCS_STANDBY, VCS_ACTIVE

Side Effects None

Prototype INT4 vcsGetLastDiscardICI(VCS vcs, UINT4
*pu4Clp0ConnId, UINT4 *pu4Clp1ConnId)

 Inputs vcs : chipset handle.

Outputs pu4Clp0ConnId : connection ID of last time a CLP0 cell
 was discarded due to congestion

pu4Clp1ConnId : connection ID of last time a CLP cell was
 discarded due to congestion.

Return Codes VCS_SUCCESS

VCS_ERR_INVALID_HANDLE (invalid chipset handle)
 VCS_ERR_INVALID_STATE (chipset is not in a valid state)

8.22 Callback Functions

The chipset driver uses the following indication routines to notify the applications
of events within the chipset devices and chipset driver. These routines need to be
implemented by the user.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 153
Document ID: PMC-1991216, Issue 3

Microprocessor Data Connection callbacks

indRxDataCell

This callback is invoked by the Microprocessor Data Connection Rx task after it
extracts a cell from the microprocessor interface.

Prototype VOID indRxDataCell(UINT4 u4ECI, sVCS_CELL_HDR
*psHdr, UINT1 *pu1Pyld, INT4 result)

Inputs u4ECI : ID of the connection on which cell was received.

psHdr : header of the transmitted cell.

psPyld : payload of the transmitted cell.

result : result of cell Rx

Outputs None

Return Codes None

IndRxDataFrm

This callback is invoked by the Microprocessor Data Connection Rx task after it
extracts an AAL5 frame from the microprocessor interface. A pointer to the first
byte of the AAL5 frame buffer chain, the header of the last cell in the payload and
the connection ID is passed to the user.

Prototype VOID indRxDataFrm(UINT4 u4ECI, sVCS_CELL_HDR
*psHdr, UINT1 *pu1Frm, UINT4 u4Len, INT4 result)

Inputs u4ECI : ID of the connection on which frame was received.

psHdr : header of the last cell in frame.

pu1Frm: payload of the frame (buffer chain)

u4Len : length of the frame in bytes

result : result of frame Rx

Outputs None

Return Codes None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 154
Document ID: PMC-1991216, Issue 3

Inband Control Channel Callbacks

indRxCtrlMsg

This callback is invoked by the Inband Control Channel Rx task after it receives a
message from a remote card over an existing control channel. Note this function
should be re-entrant, as both ICC Rx task and APEX SAR Rx task could call the
function at the same time.

Prototype INT4 indRxCtrlMsg (UINT2 ChnlID,INT4 result)

Inputs ChnlID : channel ID

result : result of message Rx

Outputs None

Return Codes None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 155
Document ID: PMC-1991216, Issue 3

OAM Callbacks

indRxOAM

This callback is invoked by the Rx task of underlying ATLAS device driver after it
receives an OAM cell from its microprocessor port.

Prototype void indRxOAM(VCS_USR_CTXT vcsUsrCtxt,
sVCS_DEV_ID *psDevId,INT4 u4OamType, UINT1
u1CmdFlag, INT4 arg1, INT4 connId, INT4 result)

Inputs vcsUsrCtxt : ser context, which is passed in from User
 when calling vcsAdd API.

psDevId : contains Device ID

u4OamType : type of OAM cell received

u1CmdFlag : flag to indicates a COMMAND or RESPONSE

arg1 : additional OAM cell info. It contains actual
 message ID in the case of OAM cell type
 “Activation/Deactivation”

connId : connection ID of the OAM cell received

result : result of OAM processing by ATLAS device
 driver

Outputs None

Return Codes None

indCosStatus

This callback is invoked when a valid Change of (alarm) Status extracted from
ATLAS Ingress COS FIFO. The function is called from within a watchdog task
"sysVcsWdgPtrlTaskFn".

Prototype void indCosStatus(UINT4 u4VcId, UINT2 u2Status)

Inputs u4VcId : connection ID, whose ingress VC has a valid
 COS status

u2Status : contains COS status bits (bits 0-9)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 156
Document ID: PMC-1991216, Issue 3

Outputs None

Return Codes None

Event Callbacks

indRxBOC

This callback is invoked by the DPR task of underlying VORTEX or DUPLEX
device driver after it receives a BOC signal from a remote card.

Prototype INT4 indRxBOC(VCS_USR_CTXT usrCtxt, sVCS_DEV_ID
*psDevId, UINT1 u1HssLnk, UINT1 u1BOCcode)

Inputs vcsUsrCtxt : User Context, which is passed in from User
 when celling vcsAdd() API.

psDevId : contains Device ID

u1HssLnk : HSS link number

u1BOCcode : contains a BOC code received

Outputs None

Return Codes None

indVcsCritical

This indication callback function is called by apexHiDPR which executes in the
context of the DPR task. The DPR taskis spawned by the underlying device driver.
They provide the user with device ID, event ID and other supplemental arguments.

Prototype VOID indVcsCritical(VCS_USR_CTXT usrCtxt,
sVCS_DEV_ID *psDeviceID, UINT4 u4EventId, UINT4
arg1, UINT4 arg2, UINT4 arg3)

Inputs usrCtxt : user’s context for the chipset.

psDeviceID : contains device type and device number

u4EventId : event ID

arg1, arg2, arg3 : supplemental information

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 157
Document ID: PMC-1991216, Issue 3

Outputs None

Return Codes None

indVcsError

This indication callback function is called by apexLoDPR, atlasDPR, vortexDPR,
or dpxDPR, which execute in the context of the DPR tasks. The DPR tasks are
spawned by the underlying APEX, ATLAS, VORTEX and DUPLEX device drivers.
They provide the user with an event ID, device identifier ID and other supplemental
arguments.

Prototype VOID indVcsError(VCS_USR_CTXT usrCtxt,
sVCS_DEV_ID *psDeviceID, UINT4 u4EventId, UINT4
arg1, UINT4 arg2, UINT4 arg3)

Inputs usrCtxt : user’s context for the device.

 psDeviceID : contains device type and device number

u4EventId : event ID

arg1, arg2, arg3 : supplemental information

 Outputs None

Return Codes None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 158
Document ID: PMC-1991216, Issue 3

9 SYSTEM-SPECIFIC UTILITY FUNCTIONS

These utility functions are normally called by the chipset driver APIs, and therefore
should be considered as internal library functions. However, USER may port them
with a different, system-dependent approach.

9.1 Congestion Control Service

The following routines can be used to calculate congestion threshold levels for
QOS classes defined by TM4.0 (CBR, RT-VBR, non-RT VBR, GFR and UBR).
Please see Appendix A for a detailed description of the implementation. USER may
implement them with a new algorithm for the congestion control.

sysVcsPortThresholds

This routine is invoked when a new port is configured or an existing port is being
deleted. It determines the per-port threshold levels and associated per-class
thresholds for the port which is currently being configured or deleted. Besides this,
it will also recalculate the port thresholds and class thresholds for all the ports,
which are in the same direction as the port being configured or deleted. For
example, all the loop port and associated class thresholds are re-configured if the
routine is invoked for a loop port.

Valid States Not Applicable

Side Effects None

Prototype INT4 sysVcsPortThresholds(sVCS_PORT_ID *psPortId,
sVCS_PORT_THRSH_REQUEST *psPortThrshReq, UINT1
forceFlag, sVCS_PORT_THRSH *psPortClThrsh)

Inputs psPortId : specify a Loop or WAN port.

ForceFlag : when set to 1, the threshold values are set from
 the psPortThrshReq structure without any
 change.

 When set to 0, only the minPortThrsh value is
 taken from the psPortThrshReq. The other
 threshold values are calculated by the routine.

psPortThrshReq: this structure contains the minimum port
 threshold for the port. If the forceFlag is set, this
 structure should also contain the clp0 threshold,
 the clp1 threshold and the max threshold for the
 port.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 159
Document ID: PMC-1991216, Issue 3

Outputs psPortClThrsh: pointer to the array of sVCS_PORT_THRSH data
 structure buffer, which contains the per-port
 and per-class thresholds for all ports in the
 direction of the port being configured or
 deleted.

Return Codes VCS_SUCCESS
VCS_ERR_DIR_MAX_THRSH_0
VCS_ERR_INVALID_THRSH
VCS_ERR_PRT_BW_GUARANTEE

sysVcsVcThresholds

This routine is invoked when a connection is being configured, or the QOS of an
existing connection is being updated or the connection is being deleted. It
determines the per-VC threshold levels based on the traffic type and QOS requested
for the VC. Besides this the routine will also recalculate the thresholds of all the
connections which are in the same port as the connection being configured, updated
or deleted. The thresholds for all the classes within this port are also recalculated.

Valid States Not Applicable

Side Effects None

Prototype INT4 sysVcsVcThresholds(sVCS_PORT_ID* psPortId,
UINT2 u2ConnId, sVCS_VC_QOS* psNewVcQOS,
sVCS_PORT_THRSH* psPortThrsh, sVCS_VC_THRSH*
psVcThrsh)

Inputs psPortId : specifies the port on which connection is
 to be configured

u2ConnId : specifies the connection id if connection
 already configured

psVcQos : pointer to the QOS parameters structure for
 the connection

Outputs psPortThrsh : contains the port thresholds and
 updated class thresholds

psVcThrsh : pointer to an array of structures
 containing the per-VC threshold levels of
 all the connections on the port on which
 the connection is being configured,
 updated or deleted.

Return Codes VCS_SUCCESS
VCS_ERR_VC_BW_GUARANTEE

VCS_ERR_OUT_OF_RESOURCE (out of resources)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 160
Document ID: PMC-1991216, Issue 3

9.2 Scheduling Service

The following routines can be used to calculate scheduling parameters for Class of
Service defined by TM4.0 (CBR, RT-VBR, non-RT VBR, GFR and UBR). Please
see Appendix A for a detailed description of the implementation. USER may
implement them with a new scheduling algorithm.

sysVcsLoopPortScheduler

Determines the per-port polling weight based on the minimum cell rate or
bandwidth requested for the loop port. This routine is invoked when a loop port is
being configured

Valid States Not Applicable

Side Effects None

Prototype INT4 sysVcsLoopPortScheduler (UINT4u4OutCellRate,
UINT1 *pu1Weight)

Inputs u4OutCellRate: minimum cell rate for the cells transmitted
 out to the Loop port.

Outputs pu1Weight : polling weight, between 0 to 7.

Return Codes VCS_SUCCESS
VCS_ERR_INVALID_CELL_RATE

sysVcsWANPortScheduler

Determines the per-port polling weight based on the minimum cell rate or
bandwidth requested for the WAN port. . This routine is invoked when a WAN port
is being configured.

Valid States Not applicable

Side Effects None

Prototype INT4 sysVcsWANPortScheduler (UINT4 u4OutCellRate,
UINT1 *pu1Weight)

Inputs u4OutCellRate : minimum cell rate limit for the cells
 transmitted out to the WAN port.

Outputs pu1Weight : polling weight, between 0 to 3.

Return Codes VCS_SUCCESS

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 161
Document ID: PMC-1991216, Issue 3

VCS_ERR_INVALID_CELL_RATE

sysVcsClassVcScheduler

Determines the Class scheduler parameters based on the traffic type and QOS
parameters of the connections in each class. This routine is invoked each time a
new connection is configured or the QOS of the connection is updated. The routine
will also return the connection weight if the connection is not a shaped connection
or a frame connection.

Valid States Not Applicable

Side Effects None

Prototype INT4 sysVcsVcClassScheduler(sVCS_VC_PORT_ID
*psPortId, UINT2 u2ConnId, sVCS_VC_QOS *psVcQos,
sVCS_CLASS_SCHEDULER *psClassSch, UINT1 *pu1Wt)

Inputs psPortId : specifies port on which connection is
 configured

u2ConnId : Connection ID
psVcQOS : QOS parameters for the connection .

Outputs psClassSch : contains the Class scheduler
 parameters.

pu1Wt : pointer to weight for the connection

Return Codes VCS_SUCCESS

9.3 Shaping Service

The following routines can be used to calculate shaping parameters based on ATMF
TM4.1 parameters or QOS request. USER may implement them with a new shaping
algorithm.

sysVcsVCShaping

Determines the shaped single rate parameters based on the QOS parameters and the
shaper configuration. This routine is invoked when a shaped connection is
configured or its QOS parameters are updated.

Valid States Not Applicable

Side Effects None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 162
Document ID: PMC-1991216, Issue 3

Prototype INT4 sysVcsVCShaping(UINT1 u1ShprId, sVCS_VC_QOS
*psVcQos, sVCS_VC_SHPR *psVcShpr)

Inputs u1ShprId : shaper used by the connection

psVcQos : contains QOS parameters

Outputs psVcShpr : contains the per-VC shaper rate context.

Return Codes VCS_SUCCESS
VCS_ERR_SHPR_PARAMETER

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 163
Document ID: PMC-1991216, Issue 3

9.4 Policing Service

The following routines can be used to calculate ATLAS policing parameters based
on QOS request. USER may implement them with a new policing algorithm.

sysVcsVcPolicing

Determines the per_VC Policing parameters (Increment field and Limit field) based
on QOS request.

Valid States Not Applicable

Side Effects None

Prototype VOID sysVcsVcPolicing(sVCS_VC_QOS *psVcQos,
sVCS_VC_POLICING *pPolicing1, sVCS_VC_POLICING
*pPolicing2)

Inputs psVcQos : contains QOS parameters

Outputs pPolicing1 : containing the Increment and Limit fields for
 GCRA1

pPolicing12 : containing the Increment and Limit fields for
 GCRA2

Return Codes None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 164
Document ID: PMC-1991216, Issue 3

9.5 Port Mapping

The following routines can be used to map the HSS link numbers of VORTEX
devices to loop port numbers. Note that we have to reserve some port numbers for
use in Control Channels.

sysVcsLoopIdToPort

Determines a port number based on Loop IDs (VORTEX device ID, HSS link ID
and xdsl ID). The mapping algorithm is system-specific, and not necessarily limited
to the one implemented here.

Valid States Not Applicable

Side Effects None

Prototype VOID sysVcsLoopIdToPort(UINT1 u1VtxId, UINT1
u1LinkId, UINT1 u1xdslId, UINT2 *pu2PortNum)

Inputs u1VtxId : VORTEX device ID, (from to
 (VCS_MAX_VORTEXS-1))

u1LinkId : HSS link ID of the VORTEX device (from 0 to 7)

u1xdslId : logical channel ID within the DUPLEX of a
 line card which is connected to the VORTEX
 device via the HSS link. (from 0 to 32).
 However, if u1LinkId == VCS_CHNL_LINK_ID,
 u1xdslId shall contains the link number
 (from 0 to (VCS_CHNL_XDSL_ID - 1)).

Output pu2PortNum : Loop Port number

Return Codes None

sysVcsPortToLoopId

Determines Loop IDs (VORTEX device ID, HSS link ID and xdsl ID) based on a
port number. The mapping algorithm is system-specific, and not necessarily limited
to the one implemented here.

Valid States Not Applicable

Side Effects None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 165
Document ID: PMC-1991216, Issue 3

Prototype VOID sysVcsPortToLoopId(UINT2 u2PortNum, UINT1
*pVtxId, UINT1 *pLinkId, UINT1 *pxdslId)

Inputs pu2PortNum : Loop Port number

Outputs pVtxId : contains VORTEX device ID
 (from 0 to (VCS_MAX_VORTEXS-1))

pLinkId : HSS link ID of the VORTEX device
 (from 0 to 7)

pxdslId : Logical channel ID within the DUPLEX of a
 line card which is connected to the VORTEX
 device via the HSS link. (from 0 to 32).
 However, if u1LinkId == VCS_CHNL_LINK_ID,
 u1xdslId shall contains the link number
 (from 0 to (VCS_CHNL_XDSL_ID - 1)).

 Return Codes None

sysVcsChnlIdToPort

Determines a reserved port number for control channels to a line card which is
connected to a specified HSS link of a VORTEX device. The mapping algorithm is
system-specific, and not necessarily limited to the one implemented here.

Valid States Not Applicable

Side Effects None

Prototype VOID sysVcsChnlIdToPort(UINT1 u1VtxId, UINT1
u1LinkId, UINT2 *pu2ChnlPortNum)

Inputs u1VtxId : VORTEX device ID,
 (from 0 to(VCS_MAX_VORTEXS-1))

u1LinkId : HSS link ID of the VORTEX device
 (from 0 to 7)

Outputs pu2ChnlPortNum : reserved Loop Port number for control
 channels

Return Codes None

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 166
Document ID: PMC-1991216, Issue 3

10 THEORY OF OPERATIONS

This section provides some of the implementation details of the VORTEX chipset
driver modules. The implementation details include processing flows, data
structures and algorithm descriptions where applicable.

10.1 Module Management

The following flow diagram illustrates the typical function call sequences that occur
when initializing or shutting down the VORTEX chipset driver module.

Figure 5: Module Management Flow Diagram

vcsModuleInit

vcsSetInitProfile

vcsModuleShutDown

Performs module level initialization of the chipset driver. It allocates memory for
the Module Data Block (MDB) and its components and initializes its contents.

OPTIONAL: Register an initialization profile and a diagnostic profile. This allows the
user to store pre-defined parameter vectors that are validated ahead of time. When
the device-initialization function is invoked only a profile number need to be
passed. This method simplifies and expedites the above operations.

START

De-register an initialization profile and a diagnostic profile previously registered with
the driver.

Performs module level shutdown for the chipset driver. Deletes all chipset devices
registered with the driver and de-allocates the Module Data Block(MDB).

END

vcsClrInitProfile

Perform all chipset board level functions here (for example, add, delete, initialize
etc.)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 167
Document ID: PMC-1991216, Issue 3

10.2 Chipset Management

Figure 6 illustrates the typical function call sequences that occur when adding,
initializing, re-initializing and deleting chipset (card).

Figure 6: Chipset Management Flow Diagram

vcsAdd

vcsInit

vcsActivate

vcsReset

vcsDeactivate

vcsReset

vcsDelete

Detects the chipset being added in the hardware (using sysVcsBoardDetect),
performs a chipset device check, assigns a chipset handle for storing chipset
information and applies a software reset to the chipset.

Initializes the chipset (devices) based on an initialization vector or initialization
vector profile provided by the user. The initialization vector is validated by the user
and stored by the driver as part of device context information. The chipset registers
are then configured accordingly.

START

Prepares the chipset for normal operation by installing and enabling interrupts,
enabling the tx/rx of cells and frames from the microprocessor ports and enabling
the APEX queue engine’s external interfaces and HSS links of VORTEX and DUPLEX
per VC connection request. The chipset is now operational and all other API can be
i k d

De-activates the chipset and removes it from normal operation. This function
disables device interrupts, disables tx/rx of cells/frames from microprocessor port
and disables the queue engine’s external interfaces.

vcsReset performs a software reset on the device. It also resets the Chipset Data
Block (CDB) contents except for the initialization vector. This function can be
invoked from any chipset state.

Removes the chipset from the list of chipsets being controlled by the driver. This
function clears the Chipset Data Block for the chipset being deleted and frees the
chipset handle assigned for this chipset.

END

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 168
Document ID: PMC-1991216, Issue 3

10.3 Port Management

The following flow diagram illustrates the typical function call sequences to setup,
and teardown a port.

Figure 7: Port Management Flow Diagram

vcsPortSetup

vcsPortStatus

vcsPortTeardown

Setup a new port, and allocates necessary resources for the port.

OPTIONAL: The APIs can be used to retrieve the current port status, as well as the
number of VC connections associated with the port.

START

OPTIONAL: To temporary disable the port (no cells can pass through the port), or
re-enable the disabled port.

Tear down a port and associated connections, and de-allocate the resource back to
the system.

END

VcsPortDisable
vcsPortEnable

The chipset must be in ACTIVE state when calling the following APIs.

Pre-requirement: the associated remote Line/WAN card should have already been
added to the system by calling vcsAddCard().

OPTIONAL: setup some VC connections through the port, or teardowm any
connections associated with the port. See the next section “Connection
Management”.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 169
Document ID: PMC-1991216, Issue 3

10.4 Connection Management

The following flow diagram illustrates the typical function call sequences to setup,
update and teardown a VC connection.

Figure 8: Connection Management Flow Diagram

vcsConnSetup

vcsConnQOSRetrieve
vcsConnQOSUpdate

vcsConnTeardown

Setup a new VC connection, and allocates necessary resources for the connections.
A unique connection ID (from 0 to 65535) is returned after the connection is
successfully established.

OPTIONAL: The APIs can be used to retrieve the current QOS settings of the VC
connection, and update the connection with a new set of QOS parameters.

START

OPTIONAL: To temporary disable the receive and transmission of cells on a
connection, or re-enable the disabled connection.

Tear down a connection, and de-allocate the resource back to the system.

END

VcsConnDisable
vcsConnEnable

OPTIONAL: The APIs can be used to check the status of the connection, as well as
the accumulated Rx and Tx cell count on the connection.

VcsConnStatus
VcsGetStatVcRxCnts
VcsGetStatVcTxCnts
vcsGetStatVcNcCnts

The chipset must be in ACTIVE state when calling the following APIs.

Pre-requirement: the associated ports should have already been setup.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 170
Document ID: PMC-1991216, Issue 3

10.5 Loopback Test

The following flow diagram illustrates the typical function call sequences to
conduct the loopback tests of the chipset system.

Figure 9: Loopback Test Flow Diagram

vcsLpbkSetup Setup a loopback path or connections, and configure a specified HSS link port into
a Diagnostic Loopback mode.

If the testing point is set at Microprocessor port, calling the function to conduct the
Loopback tests.

START

Reset the Loopback HSS link to the normal mode, and clears the loopback
connections in the APEX and ATLAS VC tables.

END

vcsLpbkClear

If the testing point is set at a Loop/WAN port, the USER can conduct any loopback
tests using some necessary ATM traffic generator (e.g. HP E42829B ATM traffic
generator) equipment.

The chipset must be in ACTIVE state when calling the following APIs.

Testing ……

vcsUpLpbkTest

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 171
Document ID: PMC-1991216, Issue 3

10.6 Multicast Support

The following flow diagram illustrates the typical function call sequences to setup,
update and teardown a multicast group.

Figure 10: Multicast Support Flow Diagram

vcsMcSetup

vcsMcAddConn

vcsConnTeardown

Setup a new multicast group, and allocates necessary resources for the the
connection group. A unique multicasting connection handle is returned after the
multicast group is successfully established.

OPTIONAL: The API can be used to add a VC connection to the existing multicast
group.

START

Tear down the multicast group, and de-allocate the resource back to the system.

END

vcsMcDropConn
OPTIONAL: The API can be used to drop a VC connection from the existing
multicast group.

The chipset must be in ACTIVE state when calling the following APIs.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 172
Document ID: PMC-1991216, Issue 3

10.7 Line/WAN Card Management and Communication

The following flow diagram illustrates the typical function call sequences to add,
remove and/or communicate with a remote Line/WAN card.

Figure 11: Line/WAN Card Management Flow Diagram

vcsAddCard

vcsChnlSetup

vcsRemoveCard

It adds a Line or WAN card to the chipset
system, and activates the HSS link between the
remote card and chipset core card. The driver
marked the availability of the Loop or WAN
ports in its CAC database.

Inband Communications: To setup a bi-
directional communication channel between
the chipset core card and remote card.

START

It removes the Line or WAN card from the
chipset system, and de-activates the HSS link
between the remote card and chipset core
card. The driver marked the absence of the
Loop or WAN ports in its CAC database.END

vcsChnlShutdown

BOC signaling:
The APIs can be used to
transmit a BOC signal to the
remote card, or receive a
BOC code from the remote
board.

The chipset must be in STANDBY or ACTIVE
state when calling the following APIs.

vcsBOCTx

vcsBOCRx

vcsChnlTx

vcsChnlRx

Inband Communications: Send a message to
the remote card over the channel.

Inband Communications: receive a message
from the remote card over the channel.

Inband Communications: Shutdown the
communication channel.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 173
Document ID: PMC-1991216, Issue 3

10.8 OAM Management

The following flow diagram illustrates the typical function call sequences to setup,
update and clear an OAM configuration over a VC connection.

Figure 12: OAM Management Flow Diagram

vcsConnSetup

vcsConnSetup

vcsVcOAMClear

Pre-requirement: the VC connection should be already setup by calling
vcsConnSetup.

START

OPTIONAL: these three APIs can be used to retrieve the current setting of OAM
configuration, and modify the OAM parameters for the VC.

Disable the F4 or F5 OAM support, and clear the OAM configuration. Therefore, all
incoming OAM cells will be passed transparently through the chipset thereafter

END

Setup and enables a F4 or F5 OAM Support over the connection. For the connection
originated from WAN port, a shortcut backward path may be used, which can be
setup directly in the ATLAS Egress VC table without passing through the APEX, as
shown in Figure 21.

The chipset must be in ACTIVE state when calling the following APIs.

OPTIONAL: Setup another VC connection in a backward direction if a backward VC
has not been established yet. OAM backward reporting cells will be routed to the
backward path.

vcsVcOAMSetup

vcsVcOAMRetrieve

vcsVcFMUpdate

vcsVcOAMGetDefect OPTIONAL: the API can be used to poll the received OAM defect type and locations.

vcsVcPMUpdate

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 174
Document ID: PMC-1991216, Issue 3

10.9 F4 to F5 Processing

The following flow diagram illustrates the typical function call sequences to setup,
update and clear a F4 to F5 Processing.

Figure 13: F4 to F5 Processing Flow Diagram

vcsConnSetup

vcsOAMSetup

VcsF4toF5Clear

Pre-requirement 1: the F4 (VPC) connection and all constituent F5 (VCC)
connections should have already been setup by calling vcsConnSetup.

START

OPTIONAL: The API allows USER to dynamically add a VCC connection to the F4 to
F5 Processing list.

Disable the F4 to F5 OAM processing over the VPC OAM connection by removing
the F4 VPC pointer from the constituent F5 connections.

END

Setup and enables the F4 to F5 OAM Processing. It adds the constituent F5
connections to the processing list by linking the F4 VPC pointer into the F5
connections.

The chipset must be in ACTIVE state when calling the following APIs.

Pre-requirement 2: the OAM support over the F4 (VPC) connection(s) should have
already been setup by calling vcsOAMSetup. The OAM support over constituent F5
(VCC) connections might be setup too, if desired.

VcsF4toF5Setup

VcsF4toF5AddVcc

VcsF4toF5DropVcc OPTIONAL: The API allows USER to dynamically drop a VCC connection from the F4
to F5 Processing list.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 175
Document ID: PMC-1991216, Issue 3

10.10 Protection Switch and Line Load Transfer

The following flow diagram illustrates the typical function call sequences to
conduct a protection switch between an active core card and a hot-standby core
card, or transfer the connection load of a line card from one serving core card to the
other core card.

Figure 14: Protection Switch and Load Transfer Flow Diagram

Setup connections on
one active core card,
while the other core

card is in hot-standby
mode

vcsRemoveLineLoad

START

END

vcsAddLineLoad

The chipset must be in
ACTIVE state when calling
the following APIs.

vcsRemoveLoad

vcsAddLoad

Remove the load from the
active core card

Add the load to the other
core card

END

Setup connections
to/from a Line card on

one core card

START

Now the traffic load
goes through the
second core card

Now the traffic load
to/from the line

card goes through
the other core card

The chipset must be in
ACTIVE state when calling
the following APIs.

Remove the load
associated with a Line
card from the core card

Add the removed Line
load to the other core
card

Protection Switch Line Load Transfer

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 176
Document ID: PMC-1991216, Issue 3

10.11 Chipset Reset and Quick Recovery

Figure 6 illustrates the typical function call sequences that occurs for a quick
recovering of all existing VC connections after reset of chipset (core card).

Figure 15: Chipset Reset and Quick Recovery Flow Diagram

vcsReset
Reset the chipset card (hardware). All VC connections/ports setup are perserved in
software. Chipset is in VCS_PRESENT state.

Activate the chipset card (hardware). Chipset is in VCS_ACTIVE state.

START

When the chipset is back to VCS_ACTIVE state, rebuilds all VC connections, ports,
channels and OAM, F4 to F5 Processing support into chipset hardware.

END

vcsRebuildVCs

Re-initialize the chipset card (hardware). Chipset is in VCS_STANDBY state.vcsInit

vcsActivate

Pre-reset state: some connections/ports, Control channels, OAM or
F4 to F5 support might have been setup

After the quick recovery: the connections/ports, Control channels,
OAM or F4 to F5 support have now been restored.

10.12 Interrupt service module

Figure 16 illustrates the interrupt service model used in the chipset driver design.
Note that the underlying device driver provides the service routines for each chipset
device. This section gives an overview of the interrupt service model.

The interrupt service code includes some system specific code (routines prefixed by
sys) that is typically implemented by the user for their system, as well as some
system independent code (prefixed by chipset device name) provided by the device
drivers that does not change from system to system.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 177
Document ID: PMC-1991216, Issue 3

The interrupt handle routines prefixed by sys (e.g. sysApexHiIntHandler and
sysApexLoIntHandler) are system-specific, and shall be implemented by the
user. They are installed in the interrupt vector table of the system processor. These
routines are invoked when one or more chipset devices interrupt the processor.

Interrupt servicing

When an interrupt occurs, sysXXXHandler (where XXX denotes a chipset device
name, e.g. Apex, Atlas, Vortex, Duplex) invokes a device driver provided routine,
XXXISR, for each device that has interrupt processing enabled. XXXISR reads the
Interrupt Status register of the chipset device and returns with the status information
if a valid error/status bit is set. This status information is then sent by
sysXXXHandler selectively to one of two tasks – the SAR Receive tasks or the
DPR task depending on the nature of the condition(s) detected.

sysXXXSarRxTaskFn are system-specific routines that run as separate tasks (SAR
Rx tasks) within the RTOS. These tasks wait for messages, sent by
sysXXXIntHandler (in APEX case) or sysXXXDPRTask (in VORTEX and
DUPLEX cases), to arrive at their associated message queues. These messages
correspond to arrival of cell(s) in the SAR TX Data register(s)

Once a message has been received by sysXXXSarTaskFn, it invokes the driver-
provided routine, xxxSarRxTaskFn. The xxxSarRxTaskFn routine takes the
appropriate actions based on the status information received in the message.
Actions include extracting cells/frames from the SAR TX registers and reporting
frame re-assembly timeouts or length errors to the application via indication
callback functions. In the case of APEX Rx task, it multicasts the cell/frame to a list
of destination VCs if the incoming cell/frame belongs to a multicasting connection.
In the case of ATLAS Rx task, it processes the cell and may send out a backward
reporting OAM cell if the received cell is of certain OAM types.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 178
Document ID: PMC-1991216, Issue 3

Figure 16: Interrupt Service Model

sysApexHiIntHandler

apexHiISR

apexHiDPR

sysApexDPRtask

indApexCritical

sysApexLoIntHandler

apexLoISR
apexSarRxTaskFn

sysApexSarRxTaskFn

interrupt context
information

indRxCell,
indRxFrm

APEX Device Driver

Chipset
Driver

interrupt context
information

apexLoDPR
indApexError

sysAtlasIntHandler

atlasHiISR
atlasHiDPR

sysAtlasDPRtask

indAtlasCritical

atlasLoISR

ATLAS Device Driver
interrupt context

information

atlasLoDPR
indAtlasError

Application

vtxDPR

sysVtxDPRtask

sysVortexIntHandler

vtxISR

vcsRxSarTaskFn sysVcsSarRxTaskFn

interrupt context
information

indRxDataCell,
indRxDataFrm

VORTEX Device Driver

indVortexNotify

VC Table

Channel
 Table

dpxDPR

sysDpxDPRtask

sysDuplexIntHandler

dpxISR

interrupt context
information

DUPLEX Device Driver

indRxChnl

indDuplexNotify

indVcsCritical

indVcsCritical

indVcsError

indVcsError

indVcsError

indVcsError

indDuplexRxCell

Multicasting

atlasSarRxTaskFn
sysAtlasSarRxTaskFn

Microprocessor
OAM support

Channel
 Table

indRxChnl

indRxOAM

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 179
Document ID: PMC-1991216, Issue 3

sysXXXDPRtask is another system-specific routine that runs as a separate task
(DPR task) within the RTOS. This task also waits for messages, sent by
sysXXXIntHandler, to arrive at an associated message queue. These messages
correspond to interrupt conditions that are not SAR-related.

When a message is received, the driver-supplied function xxxDPR is invoked. This
function updates the interrupt counters for the interrupt events causing the interrupt.
If at least one event crosses its threshold, an indication callback is invoked. The
input arguments passed to this indication function include the user’s context for the
device and an indication vector that consists of threshold crossing events. After
processing all interrupt events, the DPR reads the interrupt registers again and
performs the same operations if more bits are found to be set. Finally, when no
more valid bits are set in the interrupt register, the DPR routine exits after enabling
the low-priority error interrupt processing.

Note that the driver-provided routines, xxxISR, ,xxxSarRxTaskFn, and xxxDPR
routines themselves do not specify a communication mechanism between the ISRs
and tasks. Therefore the user is given full flexibility in choosing a communication
mechanism between the two. The most common way to implement this
communication mechanism is to use a message queue, a service that is provided by
most RTOSes.

Installation and removal of interrupt handlers

The system specific routines, sysXXXIntHandler, and sysXXXDPRtask, are
implemented by the user. sysXXXIntHandler is installed in the interrupt vector
table of the processor using user-implemented routines,
sysXXXIntInstallHandler. The sysXXXDPRtask is spawned as a task during
the first time invocation of sysXXXIntInstallHandler. In addition,
sysXXXIntInstallHandler also creates the communication channels between
sysXXXIntHandler and sysXXXDPRtask. This communication channel is
usually implemented as a message queue.

Similarly, during removal of interrupts, the sysXXXIntHandler and
sysXXXIntHandler routines are removed from the microprocessor’s interrupt
vector table and the sysXXXDPRtask task is deleted. This code is implemented by
the user in system specific functions sysXXXIntRemoveHandler.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 180
Document ID: PMC-1991216, Issue 3

11 PORTING GUIDE

This section outlines how to port the VORTEX chipset driver to your hardware and
OS platform. However, this manual can offer only guidelines for porting the chipset
driver because each platform and application is unique.

11.1 Driver Source Files

The C source files listed in Table 49 and Table 50 contain the code for the chipset
driver. You may need to modify the code or develop additional code. The code is in
the form of constants, macros, and functions. For ease of porting, the code is
grouped into source files (src) and include files (inc). The src files contain the
functions and the inc files contain the constants and macros. A makefile is also
included. For all the underlying device driver (APEX, ATLAS, VORTEX and
DUPLEX), please refer to their Device Driver User Manual for porting instructions.

Table 49: Chipset Driver Source Files

File Description

vcs_api1.c Chipset management API functions

vcs_api2.c Connection/port management API functions

vcs_api3.c Control Channel/Multicasting/OAM API functions

vcs_hw.c Hardware interface functions

vcs_rtos.c RTOS interface functions

vcs_sys.c System-dependent utility functions

vcs_ind.c Internal indication callback functions for underlying
device drivers

vcs_buf.c Buffer management for cell/frame Rx from uP

vcs_queu.c Generic queue functions

vcs_util.c Internal utility functions

vcs_test.c Example implementation of callback and Chipset
Initialization Vector functions

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 181
Document ID: PMC-1991216, Issue 3

Table 50 : Chipset Driver Include Files

File Description

vcs_api.h API function prototypes, data structures, constants, and
definitions

vcs_type.h Variable type definitions

vcs_hw.h Hardware interface constants and macro definitions

vcs_rtos.h RTOS interface constants and macro definitions

vcs_sys.h System-dependent constant and function prototype

vcs_err.h Error codes returned by the chipset driver

vcs_buf.h Prototypes of driver’s internal functions

vcs_ind.h Prototypes of driver’s internal callback functions

vcs.h Driver’s internal data structures

vcs_queu.h Data structures, prototypes of generic queue functions

vcs_test.h Data structures, constants, and definitions used by sample
code in vcs_test.c

11.2 Porting Procedure

The following procedures summarize how to port the chipset driver to your
platform. The subsequent sections describe these procedures in more detail.

To port the chipset driver to your platform:

Step 1: Port the driver’s hardware interface (page 182):

Step 2: Port the driver’s OS extensions (page 183):

Step 3: Port the driver’s system-dependent utility functions (page 185);

Step 4: Port the driver’s application-specific elements (page 185):

Step 5: Build the driver (page 186).

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 182
Document ID: PMC-1991216, Issue 3

Step 1: Porting the Hardware Interface

This section describes how to modify the chipset driver for your hardware platform.

To port the driver to your hardware platform:

1. Modify the variable type definitions in vcs_type.h.

2. Modify the low-level device read/write macros in the vcs_hw.h
file. You may need to modify the raw read/write access macros
(sysVcsRawRead and sysVcsRawWrite) to reflect the application’s
addressing logic.

3. Define the hardware system-configuration constants in the vcs_hw.h
file. Modify the following constants to reflect the application’s
hardware configuration:

Device Constant Description Default

VCS_MAX_DEVS The maximum number of chipset
core cards to be controlled by the
driver

2

VCS_MAX_VORTEXS The number of VORTEX chips on a
chipset core card

2

VCS_MAX_VCS The maximum number of vc’s to be
supported by the chipset driver
depends on the APEX SDRAM size

16K

VCS_MAX_LOOP_PORTS The maximum number of Loop
ports supported by the system

2K

VCS_MAX_WAN_PORTS The maximum number of WAN
ports supported by the system

4

VCS_MAX_CELL_RATE The maximum traffic throughput in
half duplex: in cells/second

1420K

VCS_MAX_CELL_RATE_PER_LOOP The maximum traffic throughput
per loop port: in cells/second

230K

VCS_SYSCLK_FREQ APEX System clock frequency in
Hz

80000000

VCS_SYSCLK_FREQ_ATLAS ATLAS System clock frequency in
Hz

50000000

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 183
Document ID: PMC-1991216, Issue 3

Device Constant Description Default

VCS_MAX_NUM_CELL_BUFFS The maximum cell buffer size in
cells, determined by APEX SRAM
size.

64K

VCS_APEX_MEM_OFFSET Memory offset of APEX device 0x0000

VCS_ATLAS_MEM_OFFSET Memory offset of ATLAS device 0x8000

VCS_DUPLEX_MEM_OFFSET Memory offset of DUPLEX device 0x14000

VCS_VORTEX_MEM_OFFSET Memory offset of first VORTEX
device

0xC000

VCS_VORTEX_MEM_RANGE memory range per VORTEX device 0x4000

4. Modify the sysVcsCardDetect function in vcs_hw.c as per your hardware
environment. This function should output the base addresses of the chipset
devices. This function also outputs a pointer to system-specific
configuration information (for example, IRQ associated with the chipset
device interrupt). This output parameter is simply stored by the driver in the
CDB can be returned as NULL if not required by other system-specific
functions.

Step 2: Porting the RTOS interface

The RTOS interface functions and macros consist of code that is RTOS dependent
and needs to be modified as per your RTOS’s characteristics.

To port the driver’s RTOS interface:

1. Redefine the following macros in vcs_rtos.h to the corresponding
system calls that your target system supports.

Service Type Macro Name Description

sysVcsMemAlloc Allocates a memory block

sysVcsMemFree Frees a memory block

sysVcsMemSet Fills a memory block with a specified value

Memory

sysVcsMemCpy Copies the contents of one memory block to
another

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 184
Document ID: PMC-1991216, Issue 3

Service Type Macro Name Description

sysVcsGetVcOAMBuff Get a memory block to store VC OAM

sysVcsFreeVcOAMBuff Frees the VC OAM memory block

sysVcsGetF4toF5Cb Get a memory block to store F4 to F5
Control Block

Buffer
Management

sysVcsFreeF4toF5Cb Frees the F4 to F5 CB memory block

sysVcsSemCreate Creates a mutual-exclusion semaphore

sysVcsSemDelete Destroys the specified semaphore

sysVcsSemTake Acquires the specified semaphore

Semaphores

sysVcsSemGive Relinquishes the specified semaphore

2. Modify other OS-specific Constant definition in vcs_rtos.h, such as
stack size and task priority for the ICC Rx and Watchdog tasks.

3. Modify the system-specific interrupt handler, SAR processing and delay
routines in vcs_rtos.c:

Service Type Function Name Description

sysVcsIccInstall Spawns the ICC Rx task and associated
message queues

sysVcsIccRemove Deletes the ICC Rx task and associated
message queues

sysVcsIccRxTaskFn This function is executed in the context
of the ICC Rx task. It extracts cells and
frames from the underlying DUPLEX
device uP interface and sends them to
the application task using the
indRxCell/indRxFrm callback
functions

ICC Rx task

sysVcsIccRxMsg This routine is invoked by
vcsIndDuplexRxCell() to inform the
ICC Rx task of the incoming
cells/frames.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 185
Document ID: PMC-1991216, Issue 3

Service Type Function Name Description

sysVcsWdgInstall Spawns the Watchdog task

sysVcsWdgRemove Deletes the Watchdog task.

Watchdog Polling task

sysVcsWdgPtrlTaskFn This function is executed in the context
of the Watchdog task. It activate
watchdog patrol for APEX devices, and
poll the Ingress COS Status FIFO of
ATLAS devices

Timer sysVcsDelayTask Puts the currently executing task to
sleep for a specified number of
milliseconds

Step 3: Porting the System-Specific utility functions

Porting the system-specific utility function includes modifying the utility functions
in vcs_sys.c file. You may tailor them to your own network system requirements.

To port the driver’s system-specific utility functions:

1. Modify the routines for calculating congestion thresholds,
sysVcsPortThresholds and sysVcsVcThresholds.

2. Modify the routines for calculating scheduling and shaping parameters, which
include sysVcsLoopPortScheduler, sysVcsWANPortScheduler,
sysVcsVcClassScheduler and sysVcsVcShaping.

3. Modify the Tables for the default policing actions vs. traffic type.

4. Modify the port mapping routines, if you wish to use a different mapping
algorithm.

Step 4: Porting the Application-Specific Elements

Porting the application-specific elements includes coding the indication callback
functions and defining the initialization vector for chipset devices.

To port the driver’s application-specific elements:

1. Modify the default device initialization vectors in vcs_test.c to meet your
application needs, reflect the chipset core card architecture, and provide bus
interface consistence between the chipset devices.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 186
Document ID: PMC-1991216, Issue 3

2. Code the callback functions according to the application. Example
implementations of these callback functions are provided in vcs_test.c. The
callback functions are the following:

void indRxDataCell(UINT4 u4ECI, sVCS_CELL_HDR *psHdr,
UINT1 *pu1Pyld, INT4 result);

void indRxDataFrm(UINT4 u4ECI, sVCS_CELL_HDR *psHdr, UINT1
*pu1Frm, UINT4 u4Length, INT4 result);

void indRxCtrlMsg(UINT2 u2ChnlId, INT4 result);

void indRxBOC(VCS_USR_CTXT vcsUsrCtxt, sVCS_DEV_ID
*psDevId, UINT1 u1HssLnk, UINT1 u1BOCcode);

void indRxOAM(VCS_USR_CTXT vcsUsrCtxt, sVCS_DEV_ID
*psDevId, INT4 u4OamType, UINT1 u1CmdFlag, INT4 arg1,INT4
connId, INT4 result);

void indCosStatus(UINT4 u4ICI, UINT2 u2Status);

void indCritical(VCS_USR_CTXT vcsUsrCtxt, sVCS_DEV_ID
*psDevId, UINT4 u4EventId, UINT4 arg1, UINT4 arg2, UINT4
arg3);

void indError(VCS_USR_CTXT vcsUsrCtxt, sVCS_DEV_ID
*psDevId, UINT4 u4EventId, UINT4 arg1, UINT4 arg2, UINT4
arg3);

Step 5: Building the Driver

This section describes how to build the chipset driver.

To build the driver:

1. Modify the Makefile to reflect the absolute path of your code, your compiler
and compiler options

2. Choose from among the different compile options supported by the driver as
per your requirements.

3. Compile the source files and build the chipset API driver library using your
make utility.

4. Link the chipset API driver library to your application code.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 187
Document ID: PMC-1991216, Issue 3

12 CODING CONVENTIONS

This section describes the coding conventions used in the implementation of all
PMC driver software.

12.1 Variable Type Definitions

Table 51: Variable Type Definitions

Type Description

UINT1 unsigned integer – 1 byte

UINT2 unsigned integer – 2 bytes

UINT4 unsigned integer – 4 bytes

INT1 signed integer – 1 byte

INT2 signed integer – 2 bytes

INT4 signed integer – 4 bytes

VOID void

12.2 Naming Conventions

Table 52 presents a summary of the naming conventions followed by all PMC
driver software. A detailed description is then given in the following sub-sections.

The names used in the drivers are verbose enough to make their purpose fairly
clear. This makes the code more readable. Generally, the device’s name or
abbreviation appears in prefix.

Table 52: Naming Conventions

Type Case Naming convention Examples

Macros Uppercase prefix with “m” and
device abbreviation

mVCS_WRITE

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 188
Document ID: PMC-1991216, Issue 3

Type Case Naming convention Examples

Constants Uppercase prefix with device
abbreviation

VCS_REG

Structures Hungarian Notation prefix with “s” and
device abbreviation

sVCS_DDB

API Functions Hungarian Notation prefix with device name vcsAdd()

Porting Functions Hungarian Notation prefix with “sys” and
device name

sysVCSReadReg()

Other Functions Hungarian Notation myOwnFunction()

Variables Hungarian Notation maxDevs

Pointers to
variables

Hungarian Notation prefix variable name
with “p”

pmaxDevs

Global variables Hungarian Notation prefix with device name vcsGDD

Macros

• Macro names must be all uppercase.

• Words shall be separated by an underscore.

• The letter ‘m’ in lowercase is used as a prefix to specify that it is a macro, then
the device abbreviation must appear.

• Example: mVCS_WRITE is a valid name for a macro.

Constants

• Constant names must be all uppercase.

• Words shall be separated by an underscore.

• The device abbreviation must appear as a prefix.

• Example: VCS_REG is a valid name for a constant.

Structures

• Structure names must be all uppercase.

• Words shall be separated by an underscore.

• The letter ‘s’ in lowercase must be used as a prefix to specify that it is a
structure, then the device abbreviation must appear.

• Example: sVCS_DDB is a valid name for a structure.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 189
Document ID: PMC-1991216, Issue 3

Functions

API Functions

• Naming of the API functions must follow the hungarian notation.

• The device’s full name in all lowercase shall be used as a prefix.

• Example: vcsAdd() is a valid name for an API function.

Porting Functions

Porting functions correspond to all function that are HW and/or RTOS dependent.

• Naming of the porting functions must follow the hungarian notation.

• The ‘sys’ prefix shall be used to indicate a porting function.

• The device’s name starting with an uppercase must follow the prefix.

• Example: sysVCSReadReg() is a hardware / RTOS specific.

Other Functions

• Other Functions are all the remaining functions that are part of the driver and
have no special naming convention. However, they must follow the hungarian
notation.

• Example: myOwnFunction() is a valid name for such a function.

Variables

• Naming of variables must follow the hungarian notation.

• A pointer to a variable shall use ‘p’ as a prefix followed by the variable name
unchanged. If the variable name already starts with a ‘p’, the first letter of the
variable name may be capitalized, but this is not a requirement. Double pointers
might be prefixed with ‘pp’, but this is not required.

• Global variables must be identified with the device’s name in all lowercase as a
prefix.

• Examples: maxDevs is a valid name for a variable, pmaxDevs is a valid name
for a pointer to maxDevs, and vcsBaseAddress is a valid name for a global
variable. Note that both pprevBuf and pPrevBuf are accepted names for a
pointer to the prevBuf variable, and that both pmatrix and ppmatrix are
accepted names for a double pointer to the variable matrix.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 190
Document ID: PMC-1991216, Issue 3

12.3 File Organization

Table 53 presents a summary of the file naming conventions. All file names must
start with the device abbreviation, followed by an underscore and the actual file
name. File names should convey their purpose with a minimum amount of
characters. If a file size is getting too big one might separate it into two or more
files, providing that a number is added at the end of the file name (e.g.
vcs_api1.c or vcs_api2.c).

There are 4 different types of files:

• The API file containing all the API functions

• The hardware file containing the hardware dependent functions

• The RTOS file containing the RTOS dependent functions

• The other files containing all the remaining functions of the driver

Table 53: File Naming Conventions

File Type File Name

API vcs_api1.c, vcs_api.h

Hardware Dependent vcs_hw.c, vcs_hw.h

RTOS Dependent vcs_rtos.c, vcs_rtos.h

Other vcs_init.c, vcs_init.h

API Files

• The name of the API files must start with the device abbreviation followed by
an underscore and ‘api’. Eventually a number might be added at the end of the
name.

• Examples: vcs_api1.c is the only valid name for the file that contains the
first part of the API functions, vcs_api.h is the only valid name for the file
that contains all of the API functions headers.

Hardware Dependent Files

• The name of the hardware dependent files must start with the device
abbreviation followed by an underscore and ‘hw’. Eventually a number might
be added at the end of the file name.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 191
Document ID: PMC-1991216, Issue 3

• Examples: vcs_hw.c is the only valid name for the file that contains all of the
hardware dependent functions, vcs_hw.h is the only valid name for the file
that contains all of the hardware dependent functions headers.

RTOS Dependent Files

• The name of the RTOS dependent files must start with the device abbreviation
followed by an underscore and ‘rtos’. Eventually a number might be added at
the end of the file name.

• Examples: vcs_rtos.c is the only valid name for the file that contains all of
the RTOS dependent functions, vcs_rtos.h is the only valid name for the file
that contains all of the RTOS dependent functions headers.

Other Driver Files

• The name of the remaining driver files must start with the device abbreviation
followed by an underscore and the file name itself, which should convey the
purpose of the functions within that file with a minimum amount of characters.

• Examples: vcs_init.c is a valid name for a file that would deal with
initialization of the device, vcs_init.h is a valid name for the corresponding
header file.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 192
Document ID: PMC-1991216, Issue 3

13 APPENDIX A: CALCULATION OF
CONGESTION THRESHOLD AND SCHEDULING
PARAMETERS

13.1 Introduction

The queue engine of the APEX has a fixed amount of resources to buffer the cells
of the active connections. To allocate these resources fairly and effectively, the
application has to set congestion thresholds at the port, class and connection level,
which guarantee certain amount of resources to the connection during conditions of
congestion. The minimum VC level congestion parameters are determined by the
traffic type and QOS parameters for the connection. The actual port/class/VC
congestion thresholds are calculated and dynamically updated based on the
minimum thresholds of the existing connections in the port/class.

The queue engine of the APEX provides scheduling at three levels, port, class and
connection level. The scheduling parameters are determined by the type of traffic
and the QOS parameters. The scheduling parameters have to be set in a way that
ensures fair scheduling within the same class.

The chipset driver has utility functions to calculate the port, class and connection
thresholds for congestion management. It also has utility functions to calculate port,
class and connection scheduling parameters to ensure fair scheduling. The
algorithm for calculating the congestion thresholds and the scheduling parameters is
network specific and thus the utility functions in the chipset driver should only be
considered as a sample implementation. The user may modify these routines to
tailor them to their own network requirements.

13.2 Calculation of congestion thresholds

The issues to be considered when calculating the congestion parameters for the
port, class and connection are as follows:

(1) Based on the QOS parameters the driver has to guarantee a certain amount of
resources to the connection. These resources should be available to the connection
during conditions of congestion. Therefore once the driver guarantees the resources
to a connection, these resources are reserved for the connection and cannot be
shared with any other connection.

(2) There are conditions, where all the system resources are not reserved for the
existing connections. In this case we have spare resources, which would be wasted.
So in order to utilize this spare resources the utility functions should distribute the
spare resources fairly among the existing connections based on class types. This
would increase the throughput of the existing connections.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 193
Document ID: PMC-1991216, Issue 3

The congestion algorithm has to strictly follow the first condition and maintain the
QOS resource guarantee under all conditions. As far as sharing the spare resource
the driver can use different algorithms to fairly distribute the additional resources.
One option is to distribute the spare resource equally amongst all connection. In this
scenario, every time a new connection is added, due to a reduction in spare
resources, the driver will have to re-calculate the congestion thresholds for all
existing connections. This could be computationally intensive since the chip set can
have a maximum of 64K connections. Therefore the algorithm has to strike a
balance between distributing spare resource fairly and not be too computationally
intensive.

In the algorithm implemented by the driver, the application will specify the
direction thresholds for the Loop and WAN directions at the time of initialization.
The minimum port threshold is specified by the application at the time of the port
setup configuration. The driver will calculate the port thresholds to guarantee the
requested resources and also to distribute the spare resources available, among all
the ports in the direction of the port being configured. The spare resources allocated
to the port are then distributed among the classes in these ports. This means that
each time a port is added or deleted, the spare resources will change Thus, we will
have to recalculate the thresholds for all the configured ports in that direction and
also the thresholds for all the classes within these ports.

On the other hand, when a connection is configured, the connection thresholds are
calculated such that the minimum resources required for the connection are
allocated, based on the QOS parameters, and the spare resources available in each
class is shared among all the connections within the class. Each time a connection is
added or deleted or the QOS of the connection is updated, the spare resources
available in the class changes. Therefore the thresholds of all the classes and all the
connections, in the port on which the connection is modified, are recalculated.

The following sections will explain in greater detail as to how the different
thresholds are calculated.

Direction threshold

The direction thresholds for the Loop direction and the WAN direction are provided
by the application in the initialization vector for the APEX chip. The direction
thresholds specified by the user should conform to the following conditions:

• dirClp1Thresh < dirClp0Thresh < dirMaxThresh

• (dirMaxThresh for Loop) + (dirMaxThresh for WAN) = (maxCellBuf)*(z)

where maxCellBuf is provided by the application in the initialization vector for
APEX reflects the total number of cell buffers available to the APEX chip.
Maximum value of maxCellBuf is 256K cells.

z – statistical multiplexing factor determined by user

z > 1 means statistical multiplexing is assumed

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 194
Document ID: PMC-1991216, Issue 3

z = 1 means no statistical multiplexing

The number of maximum cell buffers is dependent on the amount of SDRAM
connected to the APEX. In the reference design implementation the maximum
number of cell buffers is 64K.

Port threshold

The application will request a minimum port threshold (portMinThresh) at the
time of port configuration. The value of the minimum port threshold would depend
on the port profile e.g. in case of a DSLAM implementation it would depend on the
bandwidth of the DSL modem, which sends traffic on this port. It should be noted
that the portMinThresh is a guarantee that this resource is reserved for the
connections configured on this port. Since the driver is guaranteeing this resource,
it should first check whether enough resources are available. To do this it will use
the following criteria:

(Sum of portMinThresh for all existing ports for the port direction) +
(portMinThresh for new port) <= (dirMaxThresh for the port direction)

If this condition is not met, the port configuration request will be rejected. If the
condition is met the port configuration request is honored.

Even though the port is guaranteed portMinThresh cell buffers, the available
resource could be larger than this number. To share the spare resources fairly
amongst all the active ports in a particular direction (Loop or WAN), the driver will
calculate the portMaxThresh using the following criteria:

• portMaxThresh = (portMinThresh) * (dirMaxThresh for the direction) /
(sum of portMinThresh for all active ports in the direction)

The driver will calculate the portClp0Thresh and portClp1Thresh as follows:

• portClp1Thresh = (portMaxThresh)*(dirClp1Thresh)/
(maxDirThresh)

• portClp0Thresh = (portMaxThresh)*(dirClp0Thresh)/
(dirMaxThresh)

Note: each time the application adds a new port, the spare resources will be reduced
by a certain amount and the driver will have to recalculate and update the
congestion threshold for all the ports in a particular direction (2048 for loop and 4
for WAN). Similarly when a port is deleted, the spare resources will be increased by
a certain amount and all the port thresholds have to be recalculated.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 195
Document ID: PMC-1991216, Issue 3

If the application does not wish to use this algorithm, the API for configuring the
port can be invoked with the forceFlag set to 1. In this case, the application
specified values of portMaxThresh, portClp1Thresh and
portClp0Thresh are used without any change. No spare resources are allocated
to the port and the threshold values for the port are unchanged until the port is
deleted.

The port threshold parameters are written to the APEX chip as 4 bit log and 4 bit
fractional format. The tables for encoding the values are shown in Table 60. When
setting the port thresholds the application should also consider the rounding off
error, while converting an integer value to a 4 bit log 4 bit fractional value.

Class threshold

The class thresholds will depend on the following:

(1) It will depend on the connections configured under each class. The class
thresholds should be large enough to be able to maintain the ‘resource guarantee’
given to each connection in the class.

(2) It will also depend on how the spare resources within the port are to be
distributed between the 4 classes.

The spare resources within the port is calculated as follows:

Spare resources = portMaxThresh –

 (sum of (vcMinThresh*(1 - CLR)) for connections in class 0) –

 (sum of (vcMinThresh*(1 - CLR)) for connections in class 1) –

 (sum of vcMinThresh for connections in class 2) –

 (sum of vcMinThresh for connections in class 3)

where CLR is the cell loss ratio for the connection.

The spare resources are distributed between the 4 classes based on the value of the
constants VCS_SPARE_RESOURCES_CLASS0,
VCS_SPARE_RESOURCES_CLASS1, VCS_SPARE_RESOURCES_CLASS2,
VCS_SPARE_RESOURCES_CLASS3. The constants determine the percentage
of the spare resources allocated to a particular class and the sum of these 4
constants should be less than or equal to 100.

The class thresholds for the 4 classes are determined as follows:

Class 0:

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 196
Document ID: PMC-1991216, Issue 3

classMaxThresh = (sum of (vcMinThresh*(1 - CLR))
for connections in class 0) +(VCS_SPARE_RESOURCES_CLASS0 *
spare resources)

classClp0Thresh =(sum of vcClp0Thresh for connections in
class 0)+(VCS_SPARE_RESOURCES_CLASS0*spare resources)

classClp1Thresh =(sum of vcClp1Thresh for connections in
class 0)+(VCS_SPARE_RESOURCES_CLASS0*spare resources)

Class 1:

classMaxThresh =(sum of (vcMinThresh*(1 - CLR)) for
connections in class 1) +(VCS_SPARE_RESOURCES_CLASS1 *
spare resources)

classClp0Thresh =(sum of vcClp0Thresh for connections in
 class 1)+(VCS_SPARE_RESOURCES_CLASS1*spare resources)

classClp1Thresh =(sum of vcClp1Thresh for connections in
 class 1)+(VCS_SPARE_RESOURCES_CLASS1*spare resources)

Class 2:

classMaxThresh =(sum of vcMinThresh for connections in class
2) + (VCS_SPARE_RESOURCES_CLASS2*spare resources)

classClp0Thresh =(sum of vcClp0Thresh for connections in
 class 2)+(VCS_SPARE_RESOURCES_CLASS2*spare resources)

classClp1Thresh =(sum of vcClp1Thresh for connections in
 class 2)+(VCS_SPARE_RESOURCES_CLASS2*spare resources)

Class 3:

ClassMaxThresh =(sum of vcMinThresh for connections in class
 3) +(VCS_SPARE_RESOURCES_CLASS3 * spare resources)

classClp0Thresh =(sum of vcClp0Thresh for connections in
 class 3)+(VCS_SPARE_RESOURCES_CLASS3*spare resources)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 197
Document ID: PMC-1991216, Issue 3

classClp1Thresh =(sum of vcClp1Thresh for connections in
class 3)+(VCS_SPARE_RESOURCES_CLASS3*spare resources)

As explained in the next section, the connections in class 0 and 1 are connections of
traffic type CBR and RT-VBR. These connections by their nature are latency-
senstive type connections and their traffic normally has small latency. They usually
do not need spare resources allocated to them. On the other hand the connections in
class 2 and 3 are of traffic type NRT-VBR, GFR, UBR and ABR, which are less
sensitive in latency and their traffic could have large latency.. Allocating spare
resources to these classes will increase the buffering space and therefore reduces
congestion of these connections. Therefore, majority of the spare resources should
be allocated to classes 2 and 3.

Note: each time a port is added or deleted, the value of the spare resources for each
port in the same direction will change. This in turn will affect the class thresholds.
On the other hand, each time a connection is added or deleted, the thresholds of the
class containing the connection will change. Thus, each time a port is added or
deleted, or a connection is added, updated or deleted, the class thresholds will have
to be recalculated.

The class thresholds are written to the APEX chip in 4 bit log and 4 bit fractional
format. This is the same format as used for the port thresholds. The tables for
encoding the values are shown in Table 60.

Connection threshold

When configuring a connection, the application will provide the QOS parameters
for the connection. The driver will utilize the QOS parameters to assign the
connection to a particular class and calculate the thresholds depending on traffic
type. The QOS parameters provided by the application are as follows:

Table 54: QOS parameters provided by the application

QOS parameter Description of QOS parameter

Traffic type Whether connection is CBR, rt-VBR, nrt-VBR, GFR, ABR, UBR

PCR Peak cell rate

SCR Sustained cell rate

MBS Maximum burst size at peak cell rate

CDVT Cell delay variance tolerance

MaxCTD Maximum cell transfer delay

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 198
Document ID: PMC-1991216, Issue 3

QOS parameter Description of QOS parameter

CLR Cell Loss Ratio

MFS Maximum frame size

The driver will assign the connection to a certain class based on the traffic type. The
table below shows the mapping between class and traffic type.

Table 55: Class assignment for different traffic types

CBR rt-VBR nrt-VBR GFR UBR ABR

Class 0 1 2 2 3 3

Table 56: Calculation of connection congestion thresholds

Traffic VcMinThrsh VcCLP1Thrsh VcCLP0Thrsh VcMaxThrsh
(EPD/PPD
only)

Comment

CBR maxCTD MaxCTD maxCTD maxCTD No value
storing more
than the
maxCTD.
Tagging not
applied to
this traffic,
hence CLP0
& CLP1
Thrsh values
are identical.

rt-VBR maxCTD MaxCTD maxCTD maxCTD From
congestion
perspective,
rt-VBR and
CBR are
identical.
Difference
lies in CDV
tolerance
reflected in
class
scheduling.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 199
Document ID: PMC-1991216, Issue 3

Traffic VcMinThrsh VcCLP1Thrsh VcCLP0Thrsh VcMaxThrsh
(EPD/PPD
only)

Comment

nrt-
VBR

MBS MBS * (PCR –
SCR) / PCR

MBS * n, n >
1

VcCLP0Thrs
h + est. MFS

Minimum
CLR is the
focus.
Always want
sufficient
resources to
capture a
burst.
VcCLP1Thrs
h set to a
level where
the VC is
within traffic
contract.
VcCLP0Thrs
h set to a
level where
the VC has
some
burstiness
caused by the
network.
VcMaxThrsh
set to accept
the last frame
permitted
under
VcCLP0Thrs
h.

GFR MBS MBS * (PCR-
MCR) / PCR

MBS * n, n >
1

VcCLP0Thrs
h + MFS

Very similar
to nrt-VBR,
except packet
centric.

UBR 0 1 est. MFS VcCLP0Thrs
h + est. MFS

No minimum
resource
guarantees.

ABR 0 1 1 est. MFS + 1 The CLP0 &
1 thresholds
are kept to
very small
values,
relying on the
connection

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 200
Document ID: PMC-1991216, Issue 3

Traffic VcMinThrsh VcCLP1Thrsh VcCLP0Thrsh VcMaxThrsh
(EPD/PPD
only)

Comment

s/w to
regulate
traffic rates
and avoid
congestion.

Once the driver determines the class to which a connection is assigned and the
thresholds are calculated (according to the above table), it distributes the spare
resources available in the class equally among the connections configured in the
class. The equations for calculating the spare resources in the class are the same as
shown in the section of class thresholds. Thus the connection thresholds are
calculated by the following equations:

vcMaxThrsh = vcMaxThrsh (as calculated from above table) +
 (spare resources available in class / number of connections in class)

vcClp1Thrsh = vcClp1Thrsh (as calculated from above table) +
 (spare resources available in class / number of connections in class)

vcClp0Thrsh = vcClp0Thrsh (as calculated from above table) +
 (spare resources available in class / number of connections in class)

Note that each time a connection is added, deleted or the QOS parameters are
updated, the spare resources allocated to each class in the port will change. Thus,
the spare resources allocated to each connection within the port will change.
Therefore, the driver will recalculate the congestion thresholds for all the
connections in the port.

The connection thresholds vcClp0Thresh, vcClp1Thrsh and vcMaxThrsh
are written to the APEX chip in 4 bit log and 2 bit fractional format. The tables for
encoding the values are shown in Table 61.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 201
Document ID: PMC-1991216, Issue 3

13.3 Calculation of scheduling parameters

Assigning port weights

During configuration of a loop port or WAN port, a weight has to be assigned to the
port, which determines the relative polling frequency for that port. Lower polling
weight means higher polling frequency and therefore higher throughput. For the
loop port the weights range from 0-7, whereas for the WAN port the weights range
from 0-3. The maximum polling frequency of the scheduler is dependent on the
system clock (e.g. for sysClk of 80MHz the maximum polling frequency is
1.25MHz). Given the maximum polling frequency of the scheduler, the maximum
polling frequency for a port with a particular weight is given by

max polling freq. for weight n = (max polling freq. for the system) / (2 n)

Assuming that the maximum port rate is 400 Kcells we will use the following
lookup table to assign the port weights for the loop port

Table 57: Loop port lookup table

Loop port weight Port Rate (Kcells/sec)

0 350-400

1 300-349

2 150-299

3 75-150

4 40-74

5 20-39

6 10-19

7 0-9

The following lookup table will be used to assign the port weights for the WAN
port

Table 58: WAN port lookup table

WAN port weight Port Rate (Kcells/sec)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 202
Document ID: PMC-1991216, Issue 3

0 300-400

1 75-299

2 20-74

3 0-19

Calculating class scheduler parameters

The APEX chip provides us with a mechanism to fix the scheduling priority
between the different classes within a port. Each class (except class 0) has a
parameter classXCellLmt, which determines the amount of time assigned to the
class by the scheduler. To determine the classXCellLmt parameter, the driver
needs to determine the bandwidth required by the connections under each class. The
bandwidth can be determined by:

class bandwidth = (Sum of bandwidth guaranteed for each connection in the class)

The bandwidth for each connection will depend on the type of traffic i.e. for CBR
traffic use the PCR(Peak cell rate), for rt-VBR and nrt-VBR traffic use SCR
(sustained cell rate), for ABR and GFR use MCR (minimum cell rate), for UBR the
bandwidth guaranteed is zero.

The percentage of time that should be allocated to each class by the scheduler is
given by

Percentage for class x = (class bandwidth for class x) / (sum of all
class bandwidth),

where Class Number x ranges from 0 to 3.

Based on the percentage of utilization, the driver calculates the Limit field
classXCellLmt parameter by using the following table:

Table 59: Class Limit field (ClassXCellLmt) setting

Limit Field Percentage of Usage

0 100.00%

1 50.00%

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 203
Document ID: PMC-1991216, Issue 3

Limit Field Percentage of Usage

2 33.33%

3 25.00%

4 20.00%

5 16.67%

6 14.28%

7 12.50%

8 11.11%

9 9.09%

10 7.69%

11 6.66%

12 5.88%

13 4.76%

14 4.00%

15 3.44%

Calculating the weight for a WFQ connection

The weight for a WFQ connection determines the number of transmit opportunities
the WFQ connections is given relative to the other connections in the same class.
The driver will calculate the weight using the following equation:

 queue weight = (126 * VC-PCR) / (Port Rate),

where VC-PCR is the peak cell rate of the connection.

The actual value to be programmed into the APEX chip is encoded, which should
be given by

If (queue weight = 1)

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 204
Document ID: PMC-1991216, Issue 3

 actual value = 0

else

 actual value = (queue weight/2)

Calculating the shaping parameters for a SFQ connection

Before a shaping connection is configured, the application has to configure the
shaper. While configuring the shaper the application will specify the parameter
QShpNRTRate, which represents the maximum shaped data rate calculated in the
number of clock cycles per timeslot. The other shaping parameters for the SFQ
connection are calculated as follows:

 ShpIncr = f(SYSCLK) / (QShpNRTRate * SCR)

 ShpCdvt = ShpIncr - f(SYSCLK) / (QShpNRTRate * PCR)

 ShpLateBits = log (MBS * ShpCdvt) / log 2

where f(SYSCLK) is the clock frequency for the system, SCR is sustained cell rate,
PCR is peak cell rate and MBS is maximum burst size at peak cell rate.

13.4 Conversion tables

Encoding a value to 4 bit log 4 bit fractional value: Used for port and class threshold
parameters.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 205
Document ID: PMC-1991216, Issue 3

Table 60: 4 Bit Logarithmic, 4 Bit Fractional encoding

4 bits fractional

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

3 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

4 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248

5 256 272 288 304 320 336 352 368 384 400 416 432 448 464 480 496

6 512 544 576 608 640 672 704 736 768 800 832 864 896 928 960 992

7 1024 1088 1152 1216 1280 1344 1408 1472 1536 1600 1664 1728 1792 1856 1920 1984

8 2048 2176 2304 2432 2560 2688 2816 2944 3072 3200 3328 3456 3584 3712 3840 3968

9 4096 4352 4608 4864 5120 5376 5632 5888 6144 6400 6656 6912 7168 7424 7680 7936

10 8192 8704 9216 9728 10240 10752 11264 11776 12288 12800 13312 13824 14336 14848 15360 15872

11 16384 17408 18432 19456 20480 21504 22528 23552 24576 25600 26624 27648 28672 29696 30720 31744

12 32768 34816 36864 38912 40960 43008 45056 47104 49152 51200 53248 55296 57344 59392 61440 63488

13 65536 69632 73728 77824 81920 86016 90112 94208 98304 102400 106496 110592 114688 118784 122880 126976

14 131072 139264 147456 155648 163840 172032 180224 188416 196608 204800 212992 221184 229376 237568 245760 253952

4
B

its
 L

og

15 262143

Encoding a value to 4 bit log 2 bit fractional: Used for vcClp0Thresh,
vcClp1Thresh and vcMaxThresh parameters.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 206
Document ID: PMC-1991216, Issue 3

Table 61: 4 Bit Logarithmic, 2 Bit Fractional encoding

2 bits fractional

0 1 2 3

0 0 1 2 3

1 4 5 6 7

2 8 10 12 14

3 16 20 24 28

4 32 40 48 56

5 64 80 96 112

6 128 160 192 224

7 256 320 384 448

8 512 640 768 896

9 1024 1280 1536 1792

10 2048 2560 3072 3584

11 4096 5120 6144 7168

4
B

its
 L

og

12 8191

Encoding vcMinThresh parameter:

Table 62: 3 bit encoding for vcMinThresh

Encoded value Actual value

000 0

001 24

010 32

011 48

100 64

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 207
Document ID: PMC-1991216, Issue 3

Encoded value Actual value

101 96

110 128

111 256

VO
R

TE
X

C
H

IP
SE

T
D

R
IV

ER
 D

ES
IG

N
 S

PE
C

IF
IC

AT
IO

N

Pr
op

rie
ta

ry
 a

nd
 C

on
fid

en
tia

l t
o

PM
C

-S
ie

rra
, I

nc
.,

an
d

fo
r i

ts
 C

us
to

m
er

s’
In

te
rn

al
 U

se

20
8

D
oc

um
en

t I
D

: P
M

C
-1

99
12

16
, I

ss
ue

 3

14
 A

PP
EN

D
IX

 B
Th

e
ap

pe
nd

ix
 c

on
ta

in
s s

ev
er

al
 d

ia
gr

am
s s

ho
w

in
g

th
e

da
ta

 fl
ow

 o
f u

se
r c

el
ls

, O
A

M
 c

el
ls

 a
s w

el
l a

s c
on

tro
l c

ha
nn

el
 p

at
hs

 b
et

w
ee

n
re

m
ot

e
Li

ne
/W

A
N

 c
ar

ds
 a

nd
 c

hi
ps

et
 c

or
e

ca
rd

.

Fi
gu

re
 1

7:
 U

ps
tre

am
 D

at
a

Fl
ow O
AM

U
to

pi
a

L2
, R

ec
ei

ve
d

D
at

a

VO
R

TE
X

1

Lo
op

 A
ny

-P
H

Y
R

X
Sl

av
e

S/
U

N
I-A

PE
X

Lo
op

 A
ny

-P
H

Y
TX M

as
te

r

W
AN

 A
ny

-P
H

Y R
X

M
as

te
r

W
AN

 A
ny

-P
H

Y
TX

M
as

te
r

Eg
re

ss
 In

Sl
av

eS/
U

N
I-A

TL
A

S

Eg
re

ss

O
ut

 M
as

te
r

In
gr

es
s

O
ut

, S
la

ve
In

gr
es

s

In
, M

as
te

r

SS
R

AM
- c

on
te

xt
SD

R
AM

- ce
ll

bu
ffe

r
SS

R
AM

- V
C

 ta
bl

e

An
y

-
PH

Y
,

Tr
an

sm
itt

ed
D

at
a

U
to

pi
a

L2

D U P L E X

W
A

N
C

ar
d

Li
ne

C
ar

d

VO
R

TE
X

2

VO
R

TE
X

n

U
L2

U
L1

U
ps

tre
am

16
 b

it
16

 b
it

16
 b

it

16
 b

it

D U P L E X

VO
R

TE
X

C
H

IP
SE

T
D

R
IV

ER
 D

ES
IG

N
 S

PE
C

IF
IC

AT
IO

N

Pr
op

rie
ta

ry
 a

nd
 C

on
fid

en
tia

l t
o

PM
C

-S
ie

rra
, I

nc
.,

an
d

fo
r i

ts
 C

us
to

m
er

s’
In

te
rn

al
 U

se

20
9

D
oc

um
en

t I
D

: P
M

C
-1

99
12

16
, I

ss
ue

 3

Fi
gu

re
 1

8:
 D

ow
ns

tr
ea

m
 D

at
a

Fl
ow O

A
M

U
to

pi
a

L2
, R

ec
ei

ve
d

D
at

a

V
O

R
TE

X
 1

Lo
op

 A
ny

-P
H

Y
R

X
S

la
ve

S
/U

N
I-A

P
E

X

Lo
op

 A
ny

-P
H

Y
TX M

as
te

r

W
A

N
 A

ny
-P

H
Y R

X
M

as
te

r

W
A

N
 A

ny
-P

H
Y

TX
M

as
te

r

E
gr

es
s

In
S

la
veS

/U
N

I-A
TL

A
S

E
gr

es
s

O
ut

 M
as

te
r

In
gr

es
s

O
ut

, S
la

ve
In

gr
es

s

In
, M

as
te

r

S
S

R
A

M
- c

on
te

xt
S

D
R

A
M

- ce
ll

bu
ffe

r
S

S
R

A
M

- V
C

 ta
bl

e

A
ny

-
P

H
Y

,
Tr

an
sm

itt
ed

D
at

a

U
to

pi
a

L2

D U P L E X

Li
ne

C
ar

d

V
O

R
TE

X
 2

V
O

R
TE

X
 n

U
L2

U
L1

D
ow

ns
tre

am

16
 b

it
16

 b
it

16
 b

it

16
 b

it

D U P L E X

VO
R

TE
X

C
H

IP
SE

T
D

R
IV

ER
 D

ES
IG

N
 S

PE
C

IF
IC

AT
IO

N

Pr
op

rie
ta

ry
 a

nd
 C

on
fid

en
tia

l t
o

PM
C

-S
ie

rra
, I

nc
.,

an
d

fo
r i

ts
 C

us
to

m
er

s’
In

te
rn

al
 U

se

21
0

D
oc

um
en

t I
D

: P
M

C
-1

99
12

16
, I

ss
ue

 3

Fi
gu

re
 1

9:
 L

oo
p-

to
-L

oo
p

D
at

a
Fl

ow O
AM

U
to

pi
a

L2
, R

ec
ei

ve
d

D
at

a

VO
R

TE
X

1

Lo
op

 A
ny

-P
H

Y
R

X
Sl

av
e

S/
U

N
I-A

PE
X

Lo
op

 A
ny

-P
H

Y
TX M

as
te

r

W
AN

 A
ny

-P
H

Y R
X

M
as

te
r

W
AN

 A
ny

-P
H

Y
TX

M
as

te
r

Eg
re

ss
 In

Sl
av

eS/
U

N
I-A

TL
A

S

Eg
re

ss

O
ut

 M
as

te
r

In
gr

es
s

O
ut

, S
la

ve
In

gr
es

s

In
, M

as
te

r

SS
R

AM
- c

on
te

xt
SD

R
AM

- ce
ll

bu
ffe

r
SS

R
AM

- V
C

 ta
bl

e

An
y

-
PH

Y
,

Tr
an

sm
itt

ed
D

at
a

U
to

pi
a

L2

D U P L E X

W
A

N
C

ar
d

Li
ne

C
ar

d

VO
R

TE
X

2

VO
R

TE
X

n

U
L2

U
L1

16
 b

it
16

 b
it

16
 b

it

16
 b

it

D U P L E X

VO
R

TE
X

C
H

IP
SE

T
D

R
IV

ER
 D

ES
IG

N
 S

PE
C

IF
IC

AT
IO

N

Pr
op

rie
ta

ry
 a

nd
 C

on
fid

en
tia

l t
o

PM
C

-S
ie

rra
, I

nc
.,

an
d

fo
r i

ts
 C

us
to

m
er

s’
In

te
rn

al
 U

se

21
1

D
oc

um
en

t I
D

: P
M

C
-1

99
12

16
, I

ss
ue

 3

Fi
gu

re
 2

0:
 u

P-
to

-W
AN

 a
nd

 W
AN

-to
-u

P
D

at
a

Fl
ow

O
AM

U
to

pi
a

L2
, R

ec
ei

ve
d

D
at

a

VO
R

TE
X

1

Lo
op

 A
ny

-P
H

Y
R

X
Sl

av
e

S/
U

N
I-A

PE
X

Lo
op

 A
ny

-P
H

Y
TX M

as
te

r

W
AN

 A
ny

-P
H

Y R
X

M
as

te
r

W
AN

 A
ny

-P
H

Y
TX

M
as

te
r

Eg
re

ss
 In

Sl
av

eS/
U

N
I-A

TL
A

S

Eg
re

ss

O
ut

 M
as

te
r

In
gr

es
s

O
ut

, S
la

ve
In

gr
es

s

In
, M

as
te

r

SS
R

AM
- c

on
te

xt
SD

R
AM

- ce
ll

bu
ffe

r
SS

R
AM

- V
C

 ta
bl

e

An
y

-
PH

Y
,

Tr
an

sm
itt

ed
D

at
a

U
to

pi
a

L2

D U P L E X

W
A

N
C

ar
d

Li
ne

C
ar

d

VO
R

TE
X

2

VO
R

TE
X

n

U
L2

U
L1

W
AN

-to
-u

P

16
 b

it
16

 b
it

16
 b

it

16
 b

it

D U P L E X

uP
-to

-W
AN

M
ic

ro
pr

oc
es

so
r

 P

or
t

VO
R

TE
X

C
H

IP
SE

T
D

R
IV

ER
 D

ES
IG

N
 S

PE
C

IF
IC

AT
IO

N

Pr
op

rie
ta

ry
 a

nd
 C

on
fid

en
tia

l t
o

PM
C

-S
ie

rra
, I

nc
.,

an
d

fo
r i

ts
 C

us
to

m
er

s’
In

te
rn

al
 U

se

21
2

D
oc

um
en

t I
D

: P
M

C
-1

99
12

16
, I

ss
ue

 3

Fi
gu

re
 2

1:
 u

P-
to

-L
oo

p
an

d
Lo

op
-to

-u
P

D
at

a
Fl

ow

O
AM

U
to

pi
a

L2
, R

ec
ei

ve
d

D
at

a

VO
R

TE
X

1

Lo
op

 A
ny

-P
H

Y
R

X
Sl

av
e

S/
U

N
I-A

PE
X

Lo
op

 A
ny

-P
H

Y
TX M

as
te

r

W
AN

 A
ny

-P
H

Y R
X

M
as

te
r

W
AN

 A
ny

-P
H

Y
TX

M
as

te
r

Eg
re

ss
 In

Sl
av

eS/
U

N
I-A

TL
A

S

Eg
re

ss

O
ut

 M
as

te
r

In
gr

es
s

O
ut

, S
la

ve
In

gr
es

s

In
, M

as
te

r

SS
R

AM
- c

on
te

xt
SD

R
AM

- ce
ll

bu
ffe

r
SS

R
AM

- V
C

 ta
bl

e

An
y

-
PH

Y
,

Tr
an

sm
itt

ed
D

at
a

U
to

pi
a

L2

D U P L E X

Li
ne

C
ar

d

VO
R

TE
X

2

VO
R

TE
X

n

U
L2

U
L1

Lo
op

-to
-u

P

16
 b

it
16

 b
it

16
 b

it

16
 b

it

D U P L E X

uP
-to

-L
oo

p

M
ic

ro
pr

oc
es

so
r

 P

or
t

VO
R

TE
X

C
H

IP
SE

T
D

R
IV

ER
 D

ES
IG

N
 S

PE
C

IF
IC

AT
IO

N

Pr
op

rie
ta

ry
 a

nd
 C

on
fid

en
tia

l t
o

PM
C

-S
ie

rra
, I

nc
.,

an
d

fo
r i

ts
 C

us
to

m
er

s’
In

te
rn

al
 U

se

21
3

D
oc

um
en

t I
D

: P
M

C
-1

99
12

16
, I

ss
ue

 3

Fi
gu

re
 2

2:
 L

oo
pb

ac
k

D
at

a
Fl

ow
 v

ia
 m

ic
ro

pr
oc

es
so

r p
or

t

uP
-W

AN
-u

P

uP
-L

oo
p-

uP

O
AM

U
to

pi
a

L2
, R

ec
ei

ve
d

D
at

a

VO
R

TE
X

1

Lo
op

 A
ny

-P
H

Y
R

X
Sl

av
e

S/
U

N
I-A

PE
X

Lo
op

 A
ny

-P
H

Y
TX M

as
te

r

W
AN

 A
ny

-P
H

Y R
X

M
as

te
r

W
AN

 A
ny

-P
H

Y
TX

M
as

te
r

Eg
re

ss
 In

Sl
av

eS/
U

N
I-A

TL
A

S

Eg
re

ss

O
ut

 M
as

te
r

In
gr

es
s

O
ut

, S
la

ve
In

gr
es

s

In
, M

as
te

r

SS
R

AM
- c

on
te

xt
SD

R
AM

- ce
ll

bu
ffe

r
SS

R
AM

- V
C

 ta
bl

e

An
y

-
PH

Y
,

Tr
an

sm
itt

ed
D

at
a

U
to

pi
a

L2

D U P L E X

W
A

N
C

ar
d

Li
ne

C
ar

d

VO
R

TE
X

2

VO
R

TE
X

n

U
L2

U
L1

16
 b

it
16

 b
it

16
 b

it

16
 b

it

D U P L E X

M
ic

ro
pr

oc
es

so
r

Po

rt

Lo
op

ba
ck

at
 W

A
N

 si
de

Lo
op

ba
ck

at
 L

O
O

P
si

de

VO
R

TE
X

C
H

IP
SE

T
D

R
IV

ER
 D

ES
IG

N
 S

PE
C

IF
IC

AT
IO

N

Pr
op

rie
ta

ry
 a

nd
 C

on
fid

en
tia

l t
o

PM
C

-S
ie

rra
, I

nc
.,

an
d

fo
r i

ts
 C

us
to

m
er

s’
In

te
rn

al
 U

se

21
4

D
oc

um
en

t I
D

: P
M

C
-1

99
12

16
, I

ss
ue

 3

Fi
gu

re
 2

3:
 In

ba
nd

 C
on

tr
ol

 C
ha

nn
el

 D
at

a
Fl

ow

O
AM

U
to

pi
a

L2
, R

ec
ei

ve
d

D
at

a

VO
R

TE
X

1

Lo
op

 A
ny

-P
H

Y
R

X
Sl

av
e

S/
U

N
I-A

PE
X

Lo
op

 A
ny

-P
H

Y
TX M

as
te

r

W
AN

 A
ny

-P
H

Y R
X

M
as

te
r

W
AN

 A
ny

-P
H

Y TX
M

as
te

r

Eg
re

ss
 In

Sl
av

eS/
U

N
I-A

TL
A

S

Eg
re

ss

O
ut

 M
as

te
r

In
gr

es
s

O
ut

, S
la

ve
In

gr
es

s

In
, M

as
te

r

SS
R

AM
- c

on
te

xt
SD

R
AM

- ce
ll

bu
ffe

r
SS

R
AM

- V
C

 ta
bl

e

An
y

-
PH

Y
,

Tr
an

sm
itt

ed
D

at
a

U
to

pi
a

L2

D U P L E X

Li
ne

C
ar

d

VO
R

TE
X

2

VO
R

TE
X

n

U
L2

U
L1

16
 b

it
16

 b
it

16
 b

it

16
 b

it

D U P L E X

M
ic

ro
pr

oc
es

so
r

Po

rt
M

ic
ro

pr
oc

es
so

r

Po
rt

M
ic

ro
pr

oc
es

so
r

Po

rt

B
et

w
ee

n
Li

ne
 a

nd
 C

or
e

ca
rd

D U P L E X

M
ic

ro
pr

oc
es

so
r

Po

rt

VO
R

TE
X

C
H

IP
SE

T
D

R
IV

ER
 D

ES
IG

N
 S

PE
C

IF
IC

AT
IO

N

Pr
op

rie
ta

ry
 a

nd
 C

on
fid

en
tia

l t
o

PM
C

-S
ie

rra
, I

nc
.,

an
d

fo
r i

ts
 C

us
to

m
er

s’
In

te
rn

al
 U

se

21
5

D
oc

um
en

t I
D

: P
M

C
-1

99
12

16
, I

ss
ue

 3

Fi
gu

re
 2

4:
 M

ul
tic

as
tin

g
D

at
a

Fl
ow O
AM

U
to

pi
a

L2
, R

ec
ei

ve
d

D
at

a

VO
R

TE
X

1

Lo
op

 A
ny

-P
H

Y
R

X
Sl

av
e

S/
U

N
I-A

PE
X

Lo
op

 A
ny

-P
H

Y
TX

W
AN

 A
ny

-P
H

Y R
X

M
as

te
r

W
AN

 A
ny

-P
H

Y
TX

M
as

te
r

E
gr

es
s

In
Sl

av
eS/

U
N

I-A
TL

A
S

E
gr

es
s

O
ut

 M
as

te
r

In
gr

es
s

O
ut

, S
la

ve
In

gr
es

s

In
, M

as
te

r

SS
R

AM
- c

on
te

xt
SD

R
AM

- ce
ll

bu
ffe

r
SS

R
AM

- V
C

 ta
bl

e

A
ny

-
PH

Y
,

Tr
an

sm
itt

ed
D

at
a

U
to

pi
a

L2

D U P L E X

W
A

N
C

ar
d

Li
ne

C
ar

d

VO
R

TE
X

2

VO
R

TE
X

n

U
L2

U
L1

16
 b

it
16

 b
it

16
 b

it

16
 b

it

D U P L E X

M
ic

ro
pr

oc
es

so
r

 P

or
t R

x

IC
I

0
H

0
/ H

1
H

2
/ H

3
Pa

yl
oa

d

Pa
yl

oa
d

. . . .
....

W
or

d0

W
or

d1
3

M
ic

ro
pr

oc
es

so
r

 P

or
t T

x

0
31

VO
R

TE
X

C
H

IP
SE

T
D

R
IV

ER
 D

ES
IG

N
 S

PE
C

IF
IC

AT
IO

N

Pr
op

rie
ta

ry
 a

nd
 C

on
fid

en
tia

l t
o

PM
C

-S
ie

rra
, I

nc
.,

an
d

fo
r i

ts
 C

us
to

m
er

s’
In

te
rn

al
 U

se

21
6

D
oc

um
en

t I
D

: P
M

C
-1

99
12

16
, I

ss
ue

 3

Fi
gu

re
 2

5:
 O

AM
 D

at
a

Fl
ow

O
AM

U
to

pi
a

L2
, R

ec
ei

ve
d

D
at

a

VO
R

TE
X

1

Lo
op

 A
ny

-P
H

Y
R

X
Sl

av
e

S/
U

N
I-A

PE
X

Lo
op

 A
ny

-P
H

Y
TX M

as
te

r

W
AN

 A
ny

-P
H

Y R
X

M
as

te
r

W
AN

 A
ny

-P
H

Y
TX

M
as

te
r

Eg
re

ss
 In

Sl
av

eS/
U

N
I-A

TL
A

S

Eg
re

ss

O
ut

 M
as

te
r

In
gr

es
s

O
ut

, S
la

ve
In

gr
es

s

In
, M

as
te

r

SS
R

AM
- co

nt
ex

t
SD

R
AM

- ce
ll

bu
ffe

r
SS

R
AM

- V
C

 ta
bl

e

An
y

-
PH

Y
,

Tr
an

sm
itt

ed
D

at
a

U
to

pi
a

L2

D U P L E X

W
A

N
C

ar
d

Li
ne

C
ar

d

VO
R

TE
X

2

VO
R

TE
X

n

U
L2

U
L1

D
ow

ns
tre

am

U
ps

tre
am

16
 b

it
16

 b
it

16
 b

it

16
 b

it

D U P L E X

Lo
op

ba
ck

(S
M

)

Lo
op

ba
ck

(S
M

)

Lo
op

ba
ck

(S
M

)

VO
R

TE
X

C
H

IP
SE

T
D

R
IV

ER
 D

ES
IG

N
 S

PE
C

IF
IC

AT
IO

N

Pr
op

rie
ta

ry
 a

nd
 C

on
fid

en
tia

l t
o

PM
C

-S
ie

rra
, I

nc
.,

an
d

fo
r i

ts
 C

us
to

m
er

s’
In

te
rn

al
 U

se

21
7

D
oc

um
en

t I
D

: P
M

C
-1

99
12

16
, I

ss
ue

 3

Fi
gu

re
 2

6:
 M

ic
ro

pr
oc

es
so

r O
AM

 su
pp

or
t

O
AM

U
to

pi
a

L2
, R

ec
ei

ve
d

D
at

a

VO
R

TE
X

1

Lo
op

 A
ny

-P
H

Y
R

X
Sl

av
e

S/
U

N
I-A

PE
X

Lo
op

 A
ny

-P
H

Y
TX M

as
te

r

W
AN

 A
ny

-P
H

Y R
X

M
as

te
r

W
AN

 A
ny

-P
H

Y
TX

M
as

te
r

Eg
re

ss
 In

Sl
av

eS/
U

N
I-A

TL
A

S

Eg
re

ss

O
ut

 M
as

te
r

In
gr

es
s

O
ut

, S
la

ve
In

gr
es

s

In
, M

as
te

r

SS
R

AM
- co

nt
ex

t
SD

R
AM

- ce
ll

bu
ffe

r
SS

R
AM

- V
C

 ta
bl

e

An
y

-
PH

Y
,

Tr
an

sm
itt

ed
D

at
a

U
to

pi
a

L2

D U P L E X

W
A

N
C

ar
d

Li
ne

C
ar

d

VO
R

TE
X

2

VO
R

TE
X

n

U
L2

U
L1

D
ow

ns
tre

am

U
ps

tre
am

16
 b

it
16

 b
it

16
 b

it

16
 b

it

D U P L E X

Lo
op

ba
ck

(S
M

)

Lo
op

ba
ck

(S
M

)

Lo
op

ba
ck

(S
M

)

Lo
op

ba
ck

(S
M

)

M
ic

ro
pr

oc
es

so
r

po
rt

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency,
fitness or suitability for a particular purpose of any such information or the fitness, or suitability for a particular purpose, merchantability,
performance, compatibility with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this
document. PMC-Sierra, Inc. expressly disclaims all representations and warranties of any kind regarding the contents or use of the
information, including, but not limited to, express and implied warranties of accuracy, completeness, merchantability, fitness for a particular
use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to,
lost profits, lost business or lost data resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has been
advised of the possibility of such damage.

© 1999 PMC-Sierra, Inc.

Issue date: September 1999

PMC-Sierra, Inc. 218 105 - 8555 Baxter Place Burnaby, BC Canada V5A 4V7
�604 .415.6000

14.1 List of Terms

AIS: Alarm Indication Signal.

API (Application Programming Interface): Describes the connection between this MODULE and
the USER’s Application.

CAC: Connection Admission Control.

CC: Continuity Check.

CDB (Chipset Data Block): Structure that holds the Configuration Data for each Chipset.

DEVICE: One VORTEX chipset Integrated Circuit, which can be APEX, ATLAS, VORTEX, or
DUPLEX.

DEVICE DRIVER: A device level software module to control and service an individual type of
VORTEX chipset devices.

CHIPSET: A VORTEX chipset consists of APEX, ATLAS , DUPLEX and VORTEX chips.

CHIPSET DRIVER: A board-level software module, which integrates the underlying device
drivers, and provides a synchronized access and control over all VORTEX chipset devices on
CORE CARDs to achieve one or more system-level functionality.

CHIPSET CARD: A circuit card containing VORTEX chipset devices for traffic management. It
at least consists of one APEX and one ATLAS chip, but may contain several VORTEX and
DUPLEX chips as well. There can be more than one card, all served by this one Chipset Driver
MODULE.

CIV (Chipset Initialization Vector): Structure passed from the API to the Chipset driver during
initialization; it contains parameters that identify the specific modes and arrangements of the
physical CORE CARD being initialized.

CORE CARD: same as CHIPSET CARD.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency,
fitness or suitability for a particular purpose of any such information or the fitness, or suitability for a particular purpose, merchantability,
performance, compatibility with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this
document. PMC-Sierra, Inc. expressly disclaims all representations and warranties of any kind regarding the contents or use of the
information, including, but not limited to, express and implied warranties of accuracy, completeness, merchantability, fitness for a particular
use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to,
lost profits, lost business or lost data resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has been
advised of the possibility of such damage.

© 1999 PMC-Sierra, Inc.

Issue date: September 1999

PMC-Sierra, Inc. 219 105 - 8555 Baxter Place Burnaby, BC Canada V5A 4V7
�604 .415.6000

DPR (Deferred Processing Routine): This function is installed as a task by each device driver, at a
USER configurable priority, that serves as the next logical step in Interrupt processing. Data that
was collected by the ISR is analyzed and then calls are made into the Application that inform it of
the events that caused the ISR in the first place. Because this function is operating at the task
level, the USER can decide on its importance in the system, relative to other functions.

DSLAMs: Digital Subscriber Line Access Multiplexer.

FM: Fault management, one of OAM cell types. It includes AIS, RDI, CC.

HSS: High Speed Serial links.

ISR (Interrupt Service Routine): A common function in each Device Driver for intercepting and
servicing DEVICE events. This function is kept as short as possible because an Interrupt
preempts every other function starting the moment it occurs and gives the service function the
highest priority while running. Data is collected, Interrupt indicators are cleared and the function
ended.

LB: LoopBack

LINE CARD: A circuit card containing S/UNI-DUPLEX device and other Loop-side interface
devices. The line card is usually connected to the core card via a HSS link.

GDD (Global Driver Database): Structure that holds the Configuration Data for this MODULE.

MIV (MODULE Initialization Vector): Structure passed from the API to the MODULE during
initialization, it contains parameters that identify the specific characteristics of the Chipset driver
MODULE being initialized.

MODULE: All of the code that is part of this chipset driver, there is only ONE instance of this
MODULE connected to ONE OR MORE VORTEX chipset cards.

OAM: Operation And Maintenance.

OAM flow: Information flow transferred through the network by the means of a dedicated
channel supported by specific octets of the transmission systems for the physical layer and by
specific ATM cells referred to as OAM cells for the ATM layer.

PM: Performance Management, one of OAM cell types.

VORTEX CHIPSET DRIVER DESIGN SPECIFICATION

None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency,
fitness or suitability for a particular purpose of any such information or the fitness, or suitability for a particular purpose, merchantability,
performance, compatibility with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this
document. PMC-Sierra, Inc. expressly disclaims all representations and warranties of any kind regarding the contents or use of the
information, including, but not limited to, express and implied warranties of accuracy, completeness, merchantability, fitness for a particular
use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to,
lost profits, lost business or lost data resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has been
advised of the possibility of such damage.

© 1999 PMC-Sierra, Inc.

Issue date: September 1999

PMC-Sierra, Inc. 220 105 - 8555 Baxter Place Burnaby, BC Canada V5A 4V7
�604 .415.6000

RDI: Remote Defect Indication.

RTOS (Real Time Operating System): The host for this Chipset driver.

VC: Virtual Circuit connection, including VCC and VPC.

VCC: Virtual Channel or F5 Connection.

VPC: Virtual Path or F4 Connection.

WAN: Wide Area Network.

WAN CARD: A circuit card containing S/UNI-DUPLEX device and other WAN-side interface
devices. The WAN card is usually connected to the core card via a HSS link.

