
PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

PMC-Sierra, Inc. 105 - 8555 Baxter Place Burnaby, BC  Canada V5A 4V7  604 .415.6000

PM5351

S/UNI-TETRA

SOFTWARE DRIVER FOR THE
S/UNI-TETRA

PRELIMINARY

ISSUE 1



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

PMC-Sierra, Inc. 105 - 8555 Baxter Place Burnaby, BC  Canada V5A 4V7  604 .415.6000



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

i

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

CONTENTS

1 OVERVIEW...............................................................................................1

1.1 SCOPE ..........................................................................................1

1.2 AUDIENCE.....................................................................................1

1.3 OBJECTIVES.................................................................................1

2 SOFTWARE DRIVER FEATURES ...........................................................2

3 APPLICATION PROGRAMMER’S INTERFACE .......................................4

3.1 SOFTWARE ARCHITECTURE......................................................4

3.1.1 Application Interface............................................................5

3.1.2 RTOS Interface....................................................................5

3.1.3 S/UNI-TETRA Hardware Interface ......................................6

3.2 DRIVER FILES ..............................................................................6

3.3 USING THE API TO ACCESS FEATURES OF THE S/UNI-TETRA6

3.3.1 Access to Features via the Registers..................................7

3.3.2 Power-on Initialization, Self Test and Activation...................7

3.3.3 Event Notification ................................................................8

3.4 DATA STRUCTURES .....................................................................9

3.4.1 tTetraState...........................................................................9

3.4.2 tetraDDB ...........................................................................10

3.4.3 tetraCDDB.........................................................................11

3.5 APPLICATION INTERFACE FUNCTION PROTOTYPES.............12

3.5.1 tetraEntryPoint...................................................................12



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

ii

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.5.2 tetraExitPoint .....................................................................12

3.5.3 tetraReset..........................................................................13

3.5.4 tetraInit ..............................................................................13

3.5.5 tetraActivate ......................................................................14

3.5.6 tetraIsr ...............................................................................14

3.5.7 tetraEnableInterrupts.........................................................14

3.5.8 tetraDisableInterrupts........................................................15

3.5.9 tetraStatistics.....................................................................15

3.5.10 tetraClearCounters............................................................15

3.5.11 tetraReadRegister .............................................................16

3.5.12 tetraReadSstb ...................................................................16

3.5.13 tetraReadSptb ...................................................................17

3.5.14 tetraWriteRegister .............................................................17

3.5.15 tetraWriteSstb ...................................................................18

3.5.16 tetraWriteSptb ...................................................................18

3.6 RTOS INTERFACE FUNCTION PROTOTYPES ..........................19

3.6.1 InstallIsr.............................................................................19

3.6.2 InstallTimer........................................................................20

3.7 S/UNI-TETRA INTERFACE FUNCTION PROTOTYPES .............20

4 APPENDIX A. SOURCE CODE..............................................................21

5 REFERENCES .......................................................................................22



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

1

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

1 OVERVIEW

1.1 Scope

A software driver for the S/UNI-TETRA (PM5351) is described in this document.
The driver is written in C language and is structured such that it is reusable and
can be ported to a user’s environment with minimal modification. The application
programmer’s interface (API) and an example of how to operate the
S/UNI-TETRA via this API is presented.

The driver is built and tested on the S/UNI-QUAD reference design[1] with a
S/UNI-TETRA replacing the S/UNI-QUAD chip.  The software driver interfaces to
the MC68332 processor of the reference design board via processor dependent
software, a simple software dispatcher and a serial port interface. A thorough
description of this additional software is not covered in this document, nor is it
supported, but the source code is made available to users with the driver source
code.

This driver source code is preliminary and not fully tested at the time this
document was issued. Please contact PMC for the latest status of the source
code.

1.2 Audience

The intended audience for this document is Software Engineers that use this
software to gain familiarity with the operation of the S/UNI-TETRA product, or to
incorporate the driver into their own systems.

1.3 Objectives

The objective of making this driver available is to provide an example that may
shorten the learning curve and development time that users require to write
S/UNI-TETRA drivers for their own systems. It also allows use of the reference
design as an evaluation/development vehicle, to gain familiarity with the
S/UNI-TETRA and  for users to code/unit test their own software while waiting for
their own hardware prototypes – effectively allowing the user’s hardware and
software development to run in parallel.



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

2

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

2 SOFTWARE DRIVER FEATURES

The following features are provided by the software driver:

• Driver supports multiple S/UNI-TETRA chips.

• Driver abstracts each channel and chip into a logical device to provide access
to these by device ID.

• Driver provides a device data block which allows the user to specify the
configuration of logical devices.

• API routines are provided to reset, initialize or activate a logical device.

• Driver provides a header file that defines all registers and bit fields of the
S/UNI-TETRA to reduce the coding effort. The defines are parsed from the
datasheet and provide a means to access features of the S/UNI-TETRA
directly by using the read/write register access routines of the API.

• API routines to poll and accumulate counter statistics

• An interrupt service routine to dispatch interrupt events to a user application

• Source code is written in ANSI C language.

• All source code that may need to be modified to port the driver to another
environment is located within a separate file.

• All routines are re-entrant. The user can use semaphores to lock access to
the device data block or the register space. Since the use of semaphores is
dependant on the software environment it is left to the user to add them if
necessary.

• Source code has debug macros that can be used during debug to dump error
events to a console.

The following features are provided as a user interface to the reference design
hardware:

• A serial port interface that accepts user commands and provides a log of
events due to interrupts or accumulation of statistics.



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

3

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

• Commands that invoke the API routines, and allow the API data structures to
be accessed.



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

4

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3 APPLICATION PROGRAMMER’S INTERFACE

3.1 Software Architecture

The S/UNI-TETRA driver interfaces to software and hardware components as
shown in figure 1.  Each of these interfaces is described in the following sections.
Communication between components is via function calls, and in the opposite
direction, via function callbacks.

The application programmer’s interface (API) covers the function calls and data
structures passed through the three planes shown in figure 1. These planes
interface to the application component, the RTOS component, and the S/UNI-
TETRA hardware. The arrows show the direction of the function call.

Figure 1. Interfaces of the S/UNI-TETRA Driver

6�81,�7(75$

5726

$SSOLFDWLRQ

6�81,�7(75$

'HYLFH 'ULYHU

)XQFWLRQ FDOOV ,QGLFDWLRQ FDOOEDFNV

5HJLVWHU $FFHVV ,QWHUUXSW

6HUYLFH FDOOV

6HUYLFH FDOOEDFNV



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

5

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.1.1 Application Interface

The user’s application task interfaces to the driver by making function calls that
command the driver to carry out a specified operation on the S/UNI-TETRA. The
function prototypes are shown in section 3.5.

The S/UNI-TETRA has four independent channels that can be seperately
controlled and some registers that globally configure the operation of the chip.
For this reason the driver has separate data structures associated with each
channel and a separate data structure associated with the chip. Each of these
data structures provides data for a separately manageable device. There are four
channel devices and one chip device per S/UNI-TETRA.  The application must
identify the device when making a driver function call via a device ID.

When an event occurs within the S/UNI-TETRA the driver must notify the user
application that the event occurred. This is done via an Indication function
callback with the device identifier as a function parameter.

3.1.2 RTOS Interface

The real-time operating system (RTOS) provides the environment for the driver
and user application to run. Typically this would be a multi-tasking, single
processor, environment with semaphores to protect critical sections of code or
variables from being corrupted. The RTOS provides the following services to the
driver:

• Install a system timeout, or periodic timer.

• Install an interrupt service routine that is dispatched when the S/UNI-TETRA
interrupt pin is active.

• Provide memory management services to map the register space, allocate
data structures and translate between virtual and physical addressing.

• Creation and management of tasks.

• Task to task communication or message queues.

• Semaphores



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

6

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

The simplest environment for this driver to operate in is a single task where the
application is tightly coupled to the driver. In this case one task (the application)
directly calls the API routines and another task (the RTOS) may call the service
callback. The service callback could be the interrupt service routine or a routine
that periodically polls and accumulates counter statistics. In this case the driver is
written such that there is no contention among the application task and the
RTOS task for access to a S/UNI-TETRA register or a field within the device data
block.

In a multi-tasking environment, where multiple applications may want to access
the the same device simultaneously, the user could provide a loosely coupled
interface between the API and the application tasks. This would be implemented
by a queing mechanism and/or semaphores to block another application task
from calling an API routine of the device until the current API call has completed.

3.1.3 S/UNI-TETRA Hardware Interface

The S/UNI-TETRA hardware interfaces to the driver via register access and via
an interrupt pin. There is no DMA interface to the S/UNI-TETRA.

3.2 Driver Files

The driver is designed for use with the reference design board[1] and some of
the interfaces may need to be modified or ported to the user’s environment. An
implementation file and a header file with the functions and defines that may
need to be modified to port the driver to another environment have been supplied
in the files “tetra_p.h” and “tetra_p.c”.

The registers and bit descriptions of the S/UNI-TETRA have been parsed from
the datasheet[2] and placed in the header file “tetra_r.h”. Further datasheet
related defines are provided in the file “tetra_d.h”.

The files “tetra.h” and “tetra.c” provide the rest of the driver.

An example application is provided by the file “app.c”.

3.3 Using the API to Access Features of the S/UNI-TETRA

This software driver provides a framework for users to integrate the
S/UNI-TETRA into their own systems. It provides an API of routines that all users
of the S/UNI-TETRA would require. Additional features of the S/UNI-TETRA,
such as access to overhead, diagnostics or configuration for POS are available



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

7

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

directly to the user via read/write functions of the API, and by using the header
files that define all registers and bit fields.

3.3.1 Access to Features via the Registers

For example, the following code segment shows how a user could modify the
value of the outgoing Path Signal Label (C2 byte) for an unscrambled POS
application and read the receive path signal label of the third channel device.

U8 Value;

DeviceId = DEVICE_ID_CHAN3;

/*modify the transmit path signal label */
tetraWriteRegister(DeviceId,REG_48_TPOP_Path_Signal_Label,0xCF);

/*read the receive path signal label*/
tetraReadRegister(DeviceId,REG_37_RPOP_Path_Signal_Label,&Value);

3.3.2 Power-on Initialization, Self Test and Activation

A user will typically modify the “tetraEntryPoint(…)” function for their application
environment and perform power-on initialization and self test (POST) of their
system.  For this reason the user may need to reset, init and activate the S/UNI-
TETRA directly via the API to place it in an operational state following the POST.
The following example illustrates this:

/* perform power-on initialization of the S/UNI-TETRA */
tetraEntryPoint();

/* power on self test : configure a diagnostic loopback on channel 4 */
DeviceId = DEVICE_ID_CHAN4;
pDevice = tetraGetDevice(DeviceId);
pDevice->InitVector = NULL;
pDevice->ActivateVector = NULL;
tetraReset(DeviceId);
tetraWriteRegister(DeviceId, REG_07_Channel_Control, BIT_07_SDLE);
tetraInit(DeviceId);
tetraActivate(DeviceId);

/* finished POST so configure all channels with defaults */
DeviceId = DEVICE_ID_CHIP;
pDevice = tetraGetDevice(DeviceId);
pDevice->InitVector = NULL;
pDevice->ActivateVector = NULL;



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

8

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

tetraReset(DeviceId);
for ( I= FIRST_CHAN_DEVICE_ID; I <= LAST_CHAN_DEVICE_ID; I++) {
    pDevice = tetraGetDevice(I);
    pDevice->InitVector = NULL;
    pDevice->ActivateVector = NULL;
    tetraReset(I);
    tetraInit(I);
    tetraActivate(I);
}
tetraInit(DeviceId);
tetraActivate(DeviceId);

3.3.3 Event Notification

Finally a user may need to be notified of an event within the S/UNI-TETRA. This
occurs through the driver function “tetraDispatchEvent(..)”.  For example, the user
may wish to be notified that the receive path signal label has changed. The user
must first enable the interrupt event as shown here before device activation, or
within the “ActivateVector” before the device was activated:

/* get the current enables, without clearing status */
tetraReadRegister(DeviceId,REG_33_RPOP_Interrupt_Enable,&Value);

/* modify the interrupt enable bit */
tetraWriteRegister(DeviceId,REG_33_RPOP_Interrupt_Enable,(Value|BIT_33_PSLE));

At some time later when the C2 byte changes the driver’s interrupt service
routine would dispatch the PSLI interrupt to the “tetraDispatchEvent(…)” function
which is shown below:

void tetraDispatchEvent(int DeviceId, int regnum, U8 val)
{
    char msg[MAX_MESSAGE_LENGTH];
    DebugMsg(msg,“Device%i: Int reg 0x%02lX = 0x%02lX”,DeviceId,regnum,val);
}

In this driver the event is simply written to the console, but the user would need
to port this function to interface to the user’s application, via a task
communication mechanism provided by the RTOS. In this driver all interrupt
events are assumed to have equal priority and are written to the console as they
are observed in the interrupt service routine. A user’s application would want to
prioritize and process these interrupt events.



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

9

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.4 Data Structures

3.4.1 tTetraState

The driver maintains one chip device and four channel devices per
S/UNI-TETRA. Operation of a device is maintained via a device data block which
is defined in the following sections. The device data block has a state variable
that is used to manage the state transitions of the device as shown in figure 2.

Figure 2. State Diagram of a Device

Reset

Entry
Point

Init Active

tetraReset(…)

tetraActivate(…)

tetraReset(…)

tetraInit(…)

tetraReset(…)

The states of a device are defined as follows:

tetraENTRY_POINT : This is the default state when the variable has not yet been
assigned by an API call that resets, initializes or activates the device.

tetraRESET : The device has been reset via software. No other register accesses
have been performed after the reset. This state must occur before the device can
be initialized and ensures the device is in a known state of operation. Specifically



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

10

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

the device is idle while in the RESET state and does not affect operation of the
system.

tetraINIT : The device data block (DDB or CDDB) holds the initialization of the
device and and is passed into the tetraInit(…) function to place the device in the
initialization state. The registers of the device are initialized but the device does
not yet interact with other system components. (ie.  the device will not activate the
interrupt pin, or otherwise interact with the system.)

tetraACTIVE : The device data block holds the interrupt enables and other
information necessary to allow the device to interact with the system. This
information is passed in the function call tetraActivate(…) to place the device in
the active state. In the active state the S/UNI-TETRA would be able to activate
the interrupt pin and interact with the other hardware components of the system.
The user must ensure that the processor has assigned an interrupt service
routine and has activated other system components as necessary before placing
a device in the active state.

3.4.2 tetraDDB

The device context for the S/UNI-TETRA chip is provided in the device data block
which has the members shown below. This structure is allocated within the
function call tetraEntryPoint(…).

Member Description

u32  BaseAddress Address of the S/UNI-TETRA
in memory space

tTetraState  State State of this chip device

tTetraRegisterValue* InitVector Specifies initialization of chip
device. Assigned a NULL value
for the chip defaults.

tTetraRegisterValue* ActivateVector Specifies interrupt enables for
chip device. Assigned a NULL
value for chip defaults (all
interrupts disabled).

int DeviceId[SUNI_TETRA_NUMBER_CHANNELS] Specifies the channel device
IDs belonging to this chip.



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

11

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

u8 CspiIntEn_0C Interrupt Enable bits of chip
device.

u8 CspiIntMask_0C Interrupt Mask bits to check for
active interrupt status.

3.4.3 tetraCDDB

The device context for a S/UNI-TETRA channel is provided in the device data
block which has the parameters shown below. This structure is allocated within
the function call tetraEntryPoint(…).

Member Description

u32  BaseAddress Address of the S/UNI-TETRA
channel in memory space. Each
channel is offset by 0x100.

tTetraState  State State of this device

tTetraRegisterValue* InitVector Specifies initialization of channel
device. Assigned a NULL value for
the chip defaults.

tTetraRegisterValue* ActivateVector Specifies interrupt enables for
channel device. Assigned a NULL
value for defaults (all interrupts
disabled).

u8 XXXXIntEn_RR There are 16 interrupt enable
registers associated with a channel
device. “XXXX” represents the
hardware block and “RR” represents
the register number.

u8 XXXXIntMask_RR There are 16 interrupt maskable
registers associated with a channel
device. These specify the interrupt
status bits to check within the
interrupt service routine. “XXXX”
represents the hardware block and
“RR” represents the register number.



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

12

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

u32 XXXXCount There are 20 counters associated
with a channel device. Here “XXXX”
represents the error counter name.

3.5 Application Interface Function Prototypes

The API has the following functions that allow the application component to
request an action from the driver:

3.5.1 tetraEntryPoint

Description: This is the first API call that should be made. It allocates
and assigns devices for all S/UNI-TETRA chips in the
system. Then it resets, initializes and finally activates the
devices.

Function Prototype: void tetraEntryPoint(void)

Function Parameters: none

Return Value: tetraSUCCESS  – all devices have been successfully
placed in the active state

tetraFAILURE  – one or more devices could not be
activated.

Additional Notes: This function is in the porting file “tetra_p.c” because it
needs to be modified for the users environment.

3.5.2 tetraExitPoint

Description: This function does the reverse of the TetraEntryPoint
function. It places all devices in the reset state and then
deallocates all device resources.

Function Prototype: void tetraExitPoint(void)

Function Parameters: none

Return Value: none



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

13

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Additional Notes: This function is in the porting file “tetra_p.c” because it
needs to be modified for the users environment.

3.5.3 tetraReset

Description: This function performs a software reset of a S/UNI-
TETRA device and all of its associated channels.

Function Prototype: tTetraStatus tetraReset(int DeviceId)

Function Parameters: DeviceId  – specifies the device data block

Return Value: tetraSUCCESS  – reset completed

tetraFAILURE  – invalid device identifier specified.

Additional Notes: none

3.5.4 tetraInit

Description: This function initializes the device, but does not enable
interrupts.

Function Prototype: tTetraStatus tetraInit(int DeviceId)

Function Parameters: DeviceId  – specifies the device data block for the
device.

Return Value: tetraSUCCESS  – the device has been successfully
initialized.

tetraFAILURE  – invalid device ID

Additional Notes: The caller must ensure the device data block specifies
the initialization values for the device.



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

14

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.5.5 tetraActivate

Description: This function places the device in an active state by
enabling device interrupts, checking the PHY address
and enabling the PHY on the utopia bus.

Function Prototype: tTetraStatus tetraActivate(int DeviceId)

Function Parameters: DeviceId  – specifies the device data block for the
device.

Return Value: tetraSUCCESS  – the device has been successfully
activated.

tetraFAILURE  – invalid device ID

Additional Notes:

3.5.6 tetraIsr

Description: This function is the interrupt service routine for the chip
device.

Function Prototype: void tetraIsr(int DeviceId)

Function Parameters: DeviceId  – specifies the device data block for the chip
device.

Return Value: tetraSUCCESS  – the interrupt has been processed.

tetraFAILURE  – invalid device ID or no Interrupts
were active.

Additional Notes: Only the chip device requires an ISR. The channel
devices are serviced by the chip’s ISR.

3.5.7 tetraEnableInterrupts

Description: This function enables or re-enables interrupts for the
device.



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

15

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Function Prototype: void tetraEnableInterrupts(int DeviceId)

Function Parameters: DeviceId  – specifies the device data block.

Return Value: none

Additional Notes: This call is only valid in the active state.

3.5.8 tetraDisableInterrupts

Description: This function disables interrupts for the device.

Function Prototype: void tetraDisableInterrupts(int DeviceId)

Function Parameters: DeviceId  – specifies the device data block for the
device.

Return Value: none

Additional Notes: This call is only valid in the active state.

3.5.9 tetraStatistics

Description: This function should be called periodically to
accumulate counter statistics.

Function Prototype: void tetraStatistics(int DeviceId)

Function Parameters: DeviceId  – specifies the device data block for the
device.

Return Value: none

Additional Notes:

3.5.10 tetraClearCounters

Description: This function clears the accumulated counter values.



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

16

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Function Prototype: void tetraClearCounters(int DeviceId)

Function Parameters: DeviceId  – specifies the device data block for the
device.

Return Value: none

Additional Notes:

3.5.11 tetraReadRegister

Description: This function reads the S/UNI-TETRA register
associated with the device.

Function Prototype: bool tetraReadRegister(int DeviceId,
int offset,U8* value)

Function Parameters: DeviceId  – specifies the device data block for the
device.

offset  – specifies the register number from the
datasheet.

value  – is a pointer to an 8-bit value which is modified
with the value read.

Return Value: true  – the register was successfully read

false  – the register could not be read

Additional Notes: The device should be in the reset, init or active state
when making this call.

3.5.12 tetraReadSstb

Description: This function reads the indirect S/UNI-TETRA SSTB
register associated with the device.

Function Prototype: bool tetraReadSstb(int DeviceId,
int offset,U8* value)

Function Parameters: DeviceId  – specifies the device data block for the
device.



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

17

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

offset  – specifies the register number of the indirect
SSTB register from the datasheet.

value  – is a pointer to an 8-bit value which is modified
with the value read.

Return Value: true  – the register was successfully read

false  – the register could not be read

Additional Notes: The device should be in the reset, init or active state
when making this call.

3.5.13 tetraReadSptb

Description: This function reads the indirect S/UNI-TETRA SPTB
register associated with the device.

Function Prototype: bool tetraReadSptb(int DeviceId,
int offset,U8* value)

Function Parameters: DeviceId  – specifies the device data block for the
device.

offset  – specifies the register number of the SPTB
register from the datasheet.

value  – is a pointer to an 8-bit value which is modified
with the value read.

Return Value: true  – the register was successfully read

false  – the register could not be read

Additional Notes: The device should be in the reset, init or active state
when making this call.

3.5.14 tetraWriteRegister

Description: This function writes the S/UNI-TETRA register
associated with the device.

Function Prototype: bool tetraWriteRegister(int DeviceId,



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

18

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

int offset,U8 value)

Function Parameters: DeviceId  – specifies the device data block for the
device.

offset  – specifies the register number from the
datasheet.

value  – is the 8-bit value to write.

Return Value: true  – the register was successfully written

false  – the register could not be written

Additional Notes: The device should be in the reset, init or active state
when making this call.

3.5.15 tetraWriteSstb

Description: This function writes the indirect S/UNI-TETRA SSTB
register associated with the device.

Function Prototype: bool tetraWriteSstb(int DeviceId,
int offset,U8 value)

Function Parameters: DeviceId  – specifies the device data block for the
device.

offset  – specifies the register number of the indirect
SSTB register from the datasheet.

value  – is the 8-bit value to write.

Return Value: true  – the register was successfully written

false  – the register could not be written

Additional Notes: The device should be in the reset, init or active state
when making this call.

3.5.16 tetraWriteSptb

Description: This function writes the indirect S/UNI-TETRA SPTB
register associated with the device.



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

19

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Function Prototype: bool tetraWriteSptb(int DeviceId,
int offset,U8 value)

Function Parameters: DeviceId  – specifies the device data block for the
device.

offset  – specifies the register number of the indirect
SPTB register from the datasheet.

value  – is the 8-bit value to write.

Return Value: true  – the register was successfully written

false  – the register could not be written

Additional Notes: The device should be in the reset, init or active state
when making this call.

3.6 RTOS Interface Function Prototypes

The driver requests services from the RTOS which are defined in the following
function prototypes:

3.6.1 InstallIsr

Description: This function requests the RTOS to install an interrupt
service routine.

Function Prototype: void InstallIsr(void func(void*),void*
context)

Function Parameters: func  – is the function which is to be called when an
interrupt occurs. (ie. tetraIsr )

context  – specifies the context passed as a parameter
in the function call. ( ie. the device ID)

Return Value: none

Additional Notes:



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

20

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.6.2 InstallTimer

Description: This function requests the RTOS to periodically call a
timer function.

Function Prototype: void InstallTimer(int msec,
(void) *func(int),
void* context)

Function Parameters: msec – is the period of the timer in milliseconds.

func  – is the function which is to be called periodically.
(ie. tetraStatistics )

context  – specifies the context passed as a parameter
in the function call. (ie. the device ID)

Return Value: none

Additional Notes:

3.7 S/UNI-TETRA Interface Function Prototypes

The driver uses macros to read and to write the hardware registers. These need
to be modified to port the driver to a different environment. The macro definitions
are as follows, where “c” is the device data block pointer, “regnum” is the register,
and “value” is the 8-bit value written to a register:

#define tetraWrite(c, regnum, value) (*(U8*)( c->BaseAddress + (regnum) ) = (value))

#define tetraRead(c, regnum) (*(U8*)( c->BaseAddress + (regnum) ))



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

21

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

4 APPENDIX A. SOURCE CODE

Please contact PMC-Sierra to obtain the source code.



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

22

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

5 REFERENCES

[1] PMC-980932, S/UNI-QUAD Reference Design, PMC-Sierra, Issue 1, September
1998.
[2] PMC-971240, S/UNI-TETRA Datasheet, PMC-Sierra, Issue 4, September 1998.



PM5351 S/UNI-TETRA

APPLICATION NOTE

PMC-981217 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-TETRA

None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency, fitness or
suitability for a particular purpose of any such information or the fitness, or suitability for a particular purpose, merchantability, performance, compatibility
with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this document. PMC-Sierra, Inc. expressly
disclaims all representations and warranties of any kind regarding the contents or use of the information, including, but not limited to, express and implied
warranties of accuracy, completeness, merchantability, fitness for a particular use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to, lost profits,
lost business or lost data resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has been advised of the possibility
of such damage.

© 1998 PMC-Sierra, Inc.

PM-981217 (R1)

PMC-Sierra, Inc. 105 - 8555 Baxter Place Burnaby, BC  Canada V5A 4V7  604 .415.6000

CONTACTING PMC-SIERRA, INC.

PMC-Sierra, Inc.
105-8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: (604) 415-6000

Fax: (604) 415-6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmc-sierra.com
Application Information: apps@pmc-sierra.com
Web Site: http://www.pmc-sierra.com


