TECHNICAL OVERVIEW PMC-971016 PMC-Sierra, Inc.

PM7346 S/UNI-QJET

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

**PM7346** 



## S/UNI<sup>™</sup>-QJET

# SATURN QUAD USER NETWORK INTERFACE FOR J2/E3/T3

**TECHNICAL OVERVIEW** 

PRELIMINARY

**ISSUE 1: OCTOBER 1997** 

TECHNICAL OVERVIEW
PMC-971016



PM7346 S/UNI-QJET

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW



PMC PMC-Sierra, Inc.

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

### **CONTENTS**

| 1 | INTRODUCTION 1 |                            |      |  |  |  |  |  |  |  |  |
|---|----------------|----------------------------|------|--|--|--|--|--|--|--|--|
| 2 | APPL           | ICATION EXAMPLES           | 3    |  |  |  |  |  |  |  |  |
| 3 | FUNC           | TIONAL OVERVIEW            | 5    |  |  |  |  |  |  |  |  |
|   | 3.1            | RECEIVE OPERATION          | 6    |  |  |  |  |  |  |  |  |
|   | 3.2            | TRANSMIT OPERATION         | 7    |  |  |  |  |  |  |  |  |
|   | 3.3            | AUXILIARY BLOCKS           | 8    |  |  |  |  |  |  |  |  |
| 4 | J2/E3          | /T3 FRAMER OVERVIEW        | . 10 |  |  |  |  |  |  |  |  |
|   | 4.1            | T3 FRAMER OPERATION        | . 10 |  |  |  |  |  |  |  |  |
|   | 4.2            | E3 FRAMER OPERATION        | . 12 |  |  |  |  |  |  |  |  |
|   | 4.3            | J2 FRAMER OPERATION        | . 16 |  |  |  |  |  |  |  |  |
| 5 | ATM (          | CELL DELINEATION           | . 18 |  |  |  |  |  |  |  |  |
| 6 | PLCP           | FRAME PROCESSING           | . 20 |  |  |  |  |  |  |  |  |
|   | 6.1            | T3 PLCP FRAME FORMAT       | . 20 |  |  |  |  |  |  |  |  |
|   | 6.2            | DS1 PLCP FRAME FORMAT      | . 21 |  |  |  |  |  |  |  |  |
|   | 6.3            | G.751 E3 PLCP FRAME FORMAT | . 21 |  |  |  |  |  |  |  |  |
|   | 6.4            | E1 PLCP FRAME FORMAT       | . 22 |  |  |  |  |  |  |  |  |
|   | 6.5            | PLCP OVERHEAD PROCESSING   | . 23 |  |  |  |  |  |  |  |  |

TECHNICAL OVERVIEW PMC-971016

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

#### 1 INTRODUCTION

This document provides an overview of PM7346 S/UNI-QJET. Please refer to PMC-960835 S/UNI-QJET Data Sheet for a detailed description of this device.

The S/UNI-QJET is a versatile four-channel device that can be used in cell-based and packet-based applications. Each channel has integrated J2, E3, T3 framers and direct cell-mapped or Physical Layer Convergence Protocol (PLCP) framed ATM cell processors as shown in Figure 1:



Figure 1: S/UNI-QJET Functional Overview.

The flexibility offered by S/UNI-QJET allows each channel to be independently configured as an ATM physical layer device, as a framer, or as a cell delineation device. As an ATM physical layer device, S/UNI-QJET supports T3, E3 and J2 rates using an internal framer in conjunction with either PLCP-framed or direct cell-mapped ATM cell processor. Other rates, such as T1 and E1, can be supported using external framers such as T1XC, TQUAD, TOCTL, E1XC or EQUAD.

In the receive direction, the ATM cell processor performs cell descrambling, HCS error detection, idle cell filtering, header descrambling and accumulates the number of idle and assigned cells in one second saturating counters. In the transmit direction, the cell processor performs optional ATM cell scrambling, header scrambling, HCS generation and programmable idle cell insertion.

The S/UNI-QJET supports a 50 MHz 8 or 16-bit wide UTOPIA Level 2 compliant interface with parity support and multi-PHY control signals. For each channel, rate decoupling between the line and ATM layer device is provided by a four cell FIFO in transmit and receive directions.





PM7346 S/UNI-QJET

S/UNI-QJET TECHNICAL OVERVIEW

As a quad J2/E3/T3 framer, the S/UNI-QJET can generate gapped transmit and receive clocks to allow for a glueless interface to a data link layer device, such as PM7366 FREEDM-8, that access payload data bits only. The S/UNI-QJET provides integral transmit and receive HDLC controllers, with a deep 128 byte FIFO, to process data link messages carry in the T3 C-bit parity, E3 G.832 or J2 G.704 framing format.

The S/UNI-QJET can be used as a quad ATM cell delineation device when the internal J2/E3/T3 framers are bypassed and only the cell processing blocks are activated. In this mode, each channel of the S/UNI-QJET can individually support cell rates up to 52 Mbit/s.

The available modes are summarized in Table 1:

ISSUE 1

| Rate              | Format       | Framer<br>Only | SMDS PLCP<br>Mapping | ATM Direct<br>Mapping |
|-------------------|--------------|----------------|----------------------|-----------------------|
| Т3                | C-bit Parity | 1              | ✓                    | ✓                     |
| (44.736 Mbit/s)   | M23          | 1              | 1                    | ✓                     |
| E3                | G.751        | $\checkmark$   | $\checkmark$         | 1                     |
| (34.368 Mbit/s)   | G.832        | ✓              | n/a                  | ✓                     |
| J2                | G.704 & NTT  | 1              | n/a                  | $\checkmark$          |
| (6.312 Mbit/s)    |              |                |                      |                       |
| E1                | CRC-4        | external       | 1                    | 1                     |
| (2 Mbit/s)        | PCM30        | external       | ✓                    | ✓                     |
| T1                | ESF          | external       | ✓                    | ✓                     |
| (1.544 Mbit/s)    | SF           | external       | ✓                    | ✓                     |
| Arbitrary Cell    |              | bypass         | n/a                  | ✓                     |
| Rate              |              |                |                      |                       |
| (up to 52 Mbit/s) |              |                |                      |                       |

#### Table 1: Valid S/UNI-QJET Operational Modes.

The S/UNI-QJET provides an 8-bit microprocessor interface for configuration, control, and status monitoring. It supports a standard five signal P1149.1 JTAG test port for boundary scan board test purposes. The SUNI-QJET is implemented using low power 3.3V CMOS technology with 5V tolerant inputs. It is available in a high-density 256 pin Super Ball Grid Array (SBGA) package with a physical dimension of 27mm by 27mm.

TECHNICAL OVERVIEW
PMC-971016



**ISSUE 1** 

PM7346 S/UNI-QJET

S/UNI-QJET TECHNICAL OVERVIEW

#### 2 APPLICATION EXAMPLES

The S/UNI-QJET can be configured as an ATM physical layer device. On the line side, it connects to one or more J2/E3/T3 line interface units and on the system side, the S/UNI-QJET interfaces to the ATM layer device, such as PM7322 RCMP-800, over an 8 or 16 bit wide UTOPIA Level 2 interface (as shown in Figure 2).



Figure 2: S/UNI-QJET, as an ATM PHY, in an ATM Switch.

S/UNI-QJET can be configured as a quad J2/E3/T3 framer for use in router, frame relay switch and multiplexer applications (as shown in Figure 3). In an unchannelized J2/E3/T3 line card, S/UNI-QJET interfaces directly to one or more PM7366 FREEDM-8 HDLC controllers. Each FREEDM-8 can process two high-speed links, such as T3 and E3, or it can process up to eight lower speed links such as J2. The S/UNI-QJET can gap all the overhead bits such that only the payload data is passed to and from FREEDM-8. On the line side, S/UNI-QJET is connected to one or more J2/E3/T3 line interface units. On the system side, S/UNI-QJET interfaces with a data link device over a serial bit interface.

In a PPP-Over-SONET application, the S/UNI-QJET interfaces to PM5342 SPECTRA-155 to map three T3 data streams onto three corresponding STS-1 services that are collectively carried over an OC-3 link.





Figure 3: S/UNI-QJET, as a Quad Framer Device, in a Frame Relay Equipment.

The S/UNI-QJET can be configured as a cell processor to provide cell mapping functions for xDSL modems in an ATM based Digital Subscriber Loop Access Multiplexer (DSLAM) equipment. As shown in Figure 4, each S/UNI-QJET provides four cell processors. Two S/UNI-QJETs are required in an 8 port xDSL line card.



Figure 4: S/UNI-QJET, as a Cell Processor, in a DSLAM Equipment.

TECHNICAL OVERVIEW PMC-971016



PM7346 S/UNI-QJET

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

### 3 FUNCTIONAL OVERVIEW

This section describes the major functional blocks of S/UNI-QJET. A simplified block diagram of S/UNI-QJET is show in Figure 5.



Figure 5: S/UNI-QJET Block Diagram.



PM7346 S/UNI-QJET

TECHNICAL OVERVIEW PMC-971016

ISSUE 1

#### 3.1 Receive Operation

The steps in the receive operation are summarized below:

| Block Name          | Functional Overview                                                                    |  |  |  |  |  |  |
|---------------------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| FRMR:               | The receive framer consists of three independent                                       |  |  |  |  |  |  |
| Receive Framer:     | framers:                                                                               |  |  |  |  |  |  |
|                     | • T3-FRMR to decode a T3 frame in either M23 or                                        |  |  |  |  |  |  |
|                     | C-bit parity formats.                                                                  |  |  |  |  |  |  |
|                     | • E3-FRMR to decode an E3 frame in either G.751                                        |  |  |  |  |  |  |
|                     | or G.832 formats.                                                                      |  |  |  |  |  |  |
|                     | • J2-FRMR to decode a J2 frame in either G.704 or                                      |  |  |  |  |  |  |
|                     | NTT formats.                                                                           |  |  |  |  |  |  |
|                     | The operations of the FRMR are further described in                                    |  |  |  |  |  |  |
|                     | Section 4: J2/E3/13 framer overview.                                                   |  |  |  |  |  |  |
| Overnead Extract    | I ne Overnead Extract block consists of several sub-                                   |  |  |  |  |  |  |
|                     | blocks that complement the FRIVIR in performing                                        |  |  |  |  |  |  |
|                     | Tramer decoding functions:                                                             |  |  |  |  |  |  |
|                     | ROUC. The bit-Oriented Code Detector is only used in T2 C bit parity. PROC detects the |  |  |  |  |  |  |
|                     | presence of 63 of the 64 possible bit-oriented                                         |  |  |  |  |  |  |
|                     | codes contained in the T3 C-bit parity far end                                         |  |  |  |  |  |  |
|                     | alarm and control (FEAC) channel. The 64 <sup>th</sup> code                            |  |  |  |  |  |  |
|                     | (111111b) is similar to the HDI C flag sequence                                        |  |  |  |  |  |  |
|                     | and is ignored.                                                                        |  |  |  |  |  |  |
|                     | RDLC: This block receives LAPD/HDLC frames                                             |  |  |  |  |  |  |
|                     | on any serial HDLC bit stream such as the T3 C-                                        |  |  |  |  |  |  |
|                     | bit parity Path Maintenance Data Link, the E3                                          |  |  |  |  |  |  |
|                     | G.832 Network Requirement byte or the General                                          |  |  |  |  |  |  |
|                     | Purpose data link, the E3 G.751 Network Use bit,                                       |  |  |  |  |  |  |
|                     | or the J2 m-bit data link. A 128 byte FIFO is                                          |  |  |  |  |  |  |
|                     | provided to buffer the received HDLC messages                                          |  |  |  |  |  |  |
|                     | in between microprocessor accesses.                                                    |  |  |  |  |  |  |
|                     | PMON: The Performance Monitor Accumulator                                              |  |  |  |  |  |  |
|                     | interfaces with FRMR to count framing errors.                                          |  |  |  |  |  |  |
|                     | • Rx O/H Access: Extracts the receive J2/E3/T3                                         |  |  |  |  |  |  |
|                     | overhead bits on the ROH[x], ROHFP[x], and                                             |  |  |  |  |  |  |
|                     | ROHCLK[x] pins.                                                                        |  |  |  |  |  |  |
| AIME:               | I NE AI WE BIOCK PROVIDES HUS-based cell delineation                                   |  |  |  |  |  |  |
| AIN CEIL DEIINEATOR | I OF NON-PLOP DASED TRANSMISSION TORMATS. I HIS DIOCK                                  |  |  |  |  |  |  |
|                     | The SPLP block supports DS1 T2 E1 and C 751 E2                                         |  |  |  |  |  |  |
| JFLR.               | 1 The SPER block supports DST, 13, ET and G.751 E3                                     |  |  |  |  |  |  |



PM7346 S/UNI-QJET

TECHNICAL OVERVIEW PMC-971016

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

| Block Name          | Functional Overview                                      |
|---------------------|----------------------------------------------------------|
| PLCP Layer Receiver | PLCP frame processing. This block is described in        |
|                     | Section 6: PLCP Frame Processing.                        |
| CPPM:               | The CPPM block interfaces directly to the SPLR to        |
| Cell and PLCP       | accumulate PLCP error events:                            |
| Performance Monitor | <ul> <li>bit interleaved parity error events,</li> </ul> |
|                     | <ul> <li>framing octet error events,</li> </ul>          |
|                     | <ul> <li>far end block error events.</li> </ul>          |
| RCXP_50:            | The RXCP_50 block supports optional cell payload         |
| Receive Cell        | unscrambling, optional cell header unscrambling,         |
| Processor           | header check sequence (HCS) verification, idle cell      |
|                     | filtering and performance monitoring.                    |
|                     | For PLCP based systems, cell delineation is performed    |
|                     | by the SPLR block. For non-PLCP based systems, cell      |
|                     | delineation is performed by the ATMF block.              |
| RXFF:               | The RXFF provides FIFO management and the receive        |
| Receive FIFO        | cell interface. The receive FIFO contains four cells and |
|                     | provides the cell rate decoupling function between the   |
|                     | transmission system physical layer and the ATM layer.    |
|                     | The FIFO interface is UTOPIA Level 2 compliant.          |

## 3.2 Transmit Operation

The steps in the transmit operation are summarized below:

| Block Name                              | Functional Overview                                                                                                                                                                                                                                                             |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TXFF:<br>Transmit FIFO                  | The TXFF block provides FIFO management and the transmit cell interface. The transmit FIFO contains four cells and provides the cell rate decoupling function between the transmission system physical layer and the ATM layer. The FIFO interface is UTOPIA Level 2 compliant. |
| TXCP_50:<br>Transmit Cell<br>Processor  | The TXCP_50 block supports ATM cell payload scrambling, header check sequence (HCS) generation and idle/unassigned cell generation.                                                                                                                                             |
| SPLT:<br>SMDS PLCP Layer<br>Transmitter | The SPLT block supports DS1, T3, E1 and G.751 E3<br>based PLCP frame insertion.<br>This block is described in Section 6: PLCP Frame<br>Processing.                                                                                                                              |
| Overhead Insert                         | <ul> <li>The Overhead Insert block consists of several sub-<br/>blocks that complement the TRAN in performing frame<br/>encode functions:</li> <li>XBOC: The Bit Oriented Code Generator</li> </ul>                                                                             |

7



PM7346 S/UNI-QJET

TECHNICAL OVERVIEW PMC-971016

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

| Block Name               | Functional Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | <ul> <li>transmit 63 of the possible 64 bit oriented codes (BOC) in the C-bit parity Far End Alarm and Control (FEAC) channel. It can be used to automatically transmit J2 RAI.</li> <li>TDPR: The Facility Data Link Transmitter provides a serial data link for the C-bit parity path maintenance data link in T3, the serial Network Operator byte or the General Purpose datalink in G.832 E3, the National Use bit datalink in G.751 E3 or the m-bit datalink in J2.</li> <li>Tx O/H Access: Can be programmed to insert the transmit J2/E3/T3 overhead bits from the TOH[x], TOHFP[x], and TOHCLK[x] pins.</li> </ul> |
| TRAN:<br>Transmit Framer | <ul> <li>The transmit framer consists of three independent framers:</li> <li>T3-TRAN to transmit a T3 frame in either M23 or C-bit parity formats.</li> <li>E3-TRAN to transmit an E3 frame in either G.751 or G.832 formats.</li> <li>J2-TRAN to transmit a J2 frame in G.704 and NTT formats.</li> <li>The operations of the TRAN are described in Section 4: J2/E3/T3 framer overview.</li> </ul>                                                                                                                                                                                                                        |

## 3.3 Auxiliary Blocks

| Block Name         | Functional Overview                                                                  |
|--------------------|--------------------------------------------------------------------------------------|
| PRGD:              | The PRGD block is a software programmable test                                       |
| Pseudo-Random      | pattern generator, receive and analyzer that may be                                  |
| Sequence           | used to send and receive pseudo-random binary                                        |
| Generator/Detector | sequence (PRBS) patterns to and from the                                             |
|                    | transmission line. The PRGD block can be                                             |
|                    | programmed to generate any PRBS with length up to                                    |
|                    | 32 bits or any user programmable bit pattern from 1 to                               |
|                    | 32 bits in length. In addition, the PRGD can insert                                  |
|                    | single bit errors or a bit error rate between 10 <sup>-1</sup> to 10 <sup>-7</sup> . |
| JTAG Test Access   | The JTAG Test Access Port provides JTAG support for                                  |
| Port               | boundary scan purposes. The standard JTAG                                            |
|                    | EXTEST, SAMPLE, BYPASS, IDCODE and STCTEST                                           |
|                    | instructions are supported. The S/UNI-QJET                                           |

TECHNICAL OVERVIEW

PMC-971016



PM7346 S/UNI-QJET

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

| Block Name                  | Functional Overview                                                                                                                                                                                                                                                                     |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | identification code is 073460CD hexadecimal.                                                                                                                                                                                                                                            |
| Microprocessor<br>Interface | The microprocessor interface block provides normal<br>and test mode registers and the logic required to<br>connect to a microprocessor. The normal mode<br>registers are required for normal operation and test<br>mode registers are used to enhance the testability of<br>the device. |



TECHNICAL OVERVIEW PMC-971016

ISSUE 1

#### 4 J2/E3/T3 FRAMER OVERVIEW

#### 4.1 T3 Framer Operation

The S/UNI-QJET supports both M23 and C-bit parity T3 framing formats. This format can be extended to support direct byte mapping or PLCP mapping of ATM cells. An overview of the T3 frame format is shown in Figure 6.

|          |                |         |                |         |                |         | 6              | 680 bits (8 | bloc           | ks of 84+ | 1 bits         | )       |    |         |                |         |
|----------|----------------|---------|----------------|---------|----------------|---------|----------------|-------------|----------------|-----------|----------------|---------|----|---------|----------------|---------|
| M-subfra | me             |         |                |         |                |         |                |             |                |           |                |         |    |         |                |         |
| 1        | x <sub>1</sub> | Payload | F <sub>1</sub> | Payload | с <sub>1</sub> | Payload | F <sub>2</sub> | Payload     | с <sub>2</sub> | Payload   | $F_3$          | Payload | C3 | Payload | F <sub>4</sub> | Payload |
| 2        | x <sub>2</sub> | Payload | F <sub>1</sub> | Payload | с <sub>1</sub> | Payload | F <sub>2</sub> | Payload     | с <sub>2</sub> | Payload   | F <sub>3</sub> | Payload | C3 | Payload | $F_4$          | Payload |
| 3        | P <sub>1</sub> | Payload | F <sub>1</sub> | Payload | с <sub>1</sub> | Payload | F <sub>2</sub> | Payload     | C <sub>2</sub> | Payload   | $F_3$          | Payload | C3 | Payload | F <sub>4</sub> | Payload |
| 4        | P <sub>2</sub> | Payload | F <sub>1</sub> | Payload | с <sub>1</sub> | Payload | F <sub>2</sub> | Payload     | с <sub>2</sub> | Payload   | $F_3$          | Payload | C3 | Payload | F <sub>4</sub> | Payload |
| 5        | M <sub>1</sub> | Payload | F <sub>1</sub> | Payload | с <sub>1</sub> | Payload | F <sub>2</sub> | Payload     | с <sub>2</sub> | Payload   | $F_3$          | Payload | C3 | Payload | F <sub>4</sub> | Payload |
| 6        | M2             | Payload | F <sub>1</sub> | Payload | с <sub>1</sub> | Payload | F <sub>2</sub> | Payload     | C <sub>2</sub> | Payload   | $F_3$          | Payload | C3 | Payload | F <sub>4</sub> | Payload |
| 7        | м3             | Payload | F <sub>1</sub> | Payload | с <sub>1</sub> | Payload | F <sub>2</sub> | Payload     | c <sub>2</sub> | Payload   | $F_3$          | Payload | C3 | Payload | F <sub>4</sub> | Payload |
|          |                | 84 bits |                |         |                |         |                |             |                |           |                |         |    |         |                |         |



The T3 receiver decodes a B3ZS-encoded signal and provides indications of line code violations (LCVs). The B3ZS decoding algorithm and the LCV definition are software selectable.

While in-frame, the T3 receiver continuously checks for line code violations, M-bit or F-bit framing bit errors, and P-bit parity errors. When C-bit parity mode is selected, both C-bit parity errors and far end block errors are accumulated.

When the C-bit parity framing format is detected, both the far end alarm and control (FEAC) channel and the path maintenance data link are extracted. HDLC messages in the Path Maintenance Data Link are received by an internal data link receiver.

The T3 transmitter allows for the insertion of the overhead bits into a T3 bit stream and produces a B3ZS-encoded signal. Status signals such as far end receive failure (FERF), the alarm indication signal (AIS) and the idle signal can be inserted when the transmission of these signals is enabled



PMC-Sierra, Inc.

PM7346 S/UNI-QJET

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

The processing of the overhead bits in the T3 frame is described in the following table. In the transmit direction, the overhead bits can be inserted on a bit-by-bit basis from a user supplied data stream.

| Control Bit                              | Transmit Operation                                                                                                                                                                                                                                                                                                                                            | Receive Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Xx:<br>X-Bit Channel                     | Inserts the FERF signal on the X-bits.                                                                                                                                                                                                                                                                                                                        | Monitors and detects changes in the state of the FERF signal on the X-bits.                                                                                                                                                                                                                                                                                                                                                                                                     |
| Px:<br>P-Bit Channel                     | Calculates the parity for the<br>payload data over the<br>previous M-frame and inserts<br>it into the P1 and P2 bit<br>positions.                                                                                                                                                                                                                             | Calculates the parity for the received payload. Errors are accumulated in internal registers.                                                                                                                                                                                                                                                                                                                                                                                   |
| Mx:<br>M-Frame<br>Alignment<br>Signal    | Generates the M-frame<br>alignment signal (M1=0,<br>M2=1, M3=0).                                                                                                                                                                                                                                                                                              | Finds the M-frame alignment by<br>searching for the F-bits and the M-<br>bits. Out-of-frame is removed if the<br>M-bits are correct for three<br>consecutive M-frames while no<br>discrepancies have occurred in the<br>F-bits.                                                                                                                                                                                                                                                 |
| Fx:<br>M-subframe<br>Alignment<br>Signal | Generates the M-subframe<br>signal (F1=1, F2=0, F3=0,<br>F4=1).                                                                                                                                                                                                                                                                                               | Finds M-frame alignment by<br>searching for the F-bits and the M-<br>bits. Out-of-frame is removed if the<br>M-bits are correct for three<br>consecutive M-frames while no<br>discrepancies have occurred in the<br>F-bits.                                                                                                                                                                                                                                                     |
| Cx:<br>C-Bit Channels                    | M23 Operation:The C bits are passedthrough transparently in M23framer only mode except forthe C-bit Parity ID bit whichtoggles every M-frame.C-bit Parity Operation:The C-bit Parity ID bit isforced to logic 1. The secondC-bit in M-subframe 1 is setto logic 1. The third C-bit inM-subframe 1 provides a far-end alarm and control(FEAC) signal. The FEAC | The state of the C-bit parity ID bit<br>is stored in a register. This bit<br>indicates whether an M23 or C-bit<br>parity format is received.<br><u>C-bit Parity Operation:</u><br>The FEAC channel on the third C-<br>bit in M-subframe 1 is detected by<br>the RBOC block. Path parity errors<br>and FEBEs on the C-bits in M-<br>subframes 3 and 4 are<br>accumulated in counters. The path<br>maintenance datalink signal is<br>extracted by the receive HDLC<br>controller. |



TECHNICAL OVERVIEW PMC-971016

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

| Control Bit | Transmit Operation              | Receive Operation |
|-------------|---------------------------------|-------------------|
|             | channel is sourced by the       |                   |
|             | XBOC block. The 3 C-bits in     |                   |
|             | M-subframe 3 carry path         |                   |
|             | parity information. The value   |                   |
|             | of these 3 C-bits is the same   |                   |
|             | as that of the P-bits. The 3 C- |                   |
|             | bits in M-subframe 4 are the    |                   |
|             | FEBE bits. The 3 C-bits in M-   |                   |
|             | subframe 5 contain the 28.2     |                   |
|             | Kbit/s path maintenance         |                   |
|             | datalink. The remaining C-      |                   |
|             | bits are unused and set to      |                   |
|             | logic 1.                        |                   |

#### 4.2 E3 Framer Operation

The E3 framer decodes an HDB3-encoded signal and frames to the E3 bit stream. The E3 framer supports both G.751 and G.832 frame formats.

The E3 Framer searches for frame alignment in the incoming serial stream based on G.751 or G.832 format. For the G.751 format, the E3 framer expects to see the correct framing pattern error-free for three consecutive frames before declaring an in-frame condition. For the G.832 format, the E3 framer expects to see the correct framing pattern error free for two consecutive frames before declaring an in-frame condition. Once the frame alignment is established, the incoming data is continuously monitored for framing bit errors and byte interleaved parity errors (in G.832 format).

The E3 transmitter generates the frame alignment signal and inserts it into the incoming serial stream based on G.751 or G.832 format. All overhead and status bits in each frame format can be individually controlled by register bits or by transmit overhead insertion pins.

#### 4.2.1 G.751 E3 Framer Operation

The S/UNI-QJET provides support for the G.751 E3 frame format. This format can be extended to allow for direct byte mapping or PLCP mapping of ATM cells. The G.751 E3 frame format is shown in Figure 7.

TECHNICAL OVERVIEW

PMC-971016



PM7346 S/UNI-QJET

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

| 1               | 1               | 1               | 1               | 0              | 1              | 0  | 0              | 0 | 0 | RAI | Na | 372 Payload bits | $\Pi$ |  |
|-----------------|-----------------|-----------------|-----------------|----------------|----------------|----|----------------|---|---|-----|----|------------------|-------|--|
| C <sub>11</sub> | C <sub>21</sub> | C <sub>31</sub> | C <sub>41</sub> |                |                |    |                |   |   |     |    | 380 Payload bits | 1/    |  |
| C <sub>12</sub> | C <sub>22</sub> | C <sub>32</sub> | C <sub>42</sub> |                |                |    |                |   |   |     |    | 380 Payload bits | /     |  |
| C <sub>13</sub> | C <sub>23</sub> | C <sub>33</sub> | C <sub>43</sub> | J <sub>1</sub> | J <sub>2</sub> | J3 | J <sub>4</sub> |   |   |     |    | 376 Payload bits | ł     |  |

Figure 7: G.751 E3 Frame Fromat

The processing of the overhead bits in the G.751 E3 frame is described in the following table. In the transmit direction, the overhead bits can be inserted on a bit-by-bit basis from a user supplied data stream.

| Control Bit                           | Transmit Operation                                                                                                                                                                                                                                                                                                     | Receive Operation                                                                                                                                                                                                                                                                          |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frame<br>Alignment<br>Signal          | Inserts the frame alignment<br>signal 1111010000b.                                                                                                                                                                                                                                                                     | Finds frame alignment by<br>searching for the frame alignment<br>signal. When the pattern has been<br>detected for three consecutive<br>frames, an in-frame condition is<br>declared. When errors are<br>detected in four consecutive<br>frames, an out-of-frame condition<br>is declared. |
| RAI:<br>Remote Alarm<br>Indication    | Optionally asserts the RAI<br>signal under a register control<br>or when LOS, OOF, AIS and<br>LCD conditions are detected.                                                                                                                                                                                             | Extracts the RAI signal and<br>outputs it on the ROH output pin.<br>The state of the RAI signal is also<br>written to a register bit.                                                                                                                                                      |
| Na:<br>National Use Bit               | Asserts the National Use bit<br>under a register control or<br>from the internal HDLC<br>controller.                                                                                                                                                                                                                   | Extracts the National Use bit and stores the value in a register bit.                                                                                                                                                                                                                      |
| Cjk:<br>Justification<br>Service Bits | When the device is<br>configured as an E3 G.751<br>framer device, the<br>Justification Service Bits can<br>be inserted on the TDATI[x]<br>input pin the same way as<br>normal payload data.<br>When the device is<br>configured for ATM<br>application, the Justification<br>Service Bits are used as<br>payload bits. | Extracts the Justification Service<br>Bits on the ROH output pin when<br>the Cjk bits are configured as<br>overhead.                                                                                                                                                                       |
| Jk: Tributary                         | When the device is                                                                                                                                                                                                                                                                                                     | Extracts the Tributary Justification                                                                                                                                                                                                                                                       |



TECHNICAL OVERVIEW PMC-971016

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

| Control Bit        | Transmit Operation                                                                                                                                                                                                                        | Receive Operation                                                             |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Justification Bits | configured as a E3 G.751<br>framer, the Tributary<br>Justification Bits can be<br>inserted on the TDATI[x] input<br>pin the same way as normal<br>payload data.<br>When the device is<br>configured for ATM<br>application, the Tributary | Bits on the ROH output pin when<br>the Pk bits are configured as<br>overhead. |
|                    | payload bits.                                                                                                                                                                                                                             |                                                                               |

#### 4.2.2 G.832 E3 Framer Operation

The S/UNI-QJET provides support for the G.832 E3 frame format. This format can be extended to allow for direct byte mapping or PLCP mapping of ATM cells. The G.832 E3 frame format is shown in Figure 8.



Figure 8: G.832 E3 Overhead Processing

The processing of the overhead bits in the G.832 E3 frame is described in the following table. In the transmit direction, the overhead bits can be inserted on a bit-by-bit basis from a user supplied data stream.



PM7346 S/UNI-QJET

TECHNICAL OVERVIEW PMC-971016

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

| Control        | Transmit Operation                | Receive Operation                      |
|----------------|-----------------------------------|----------------------------------------|
| FA1, FA2:      | Inserts the G.832 E3 frame        | Searches the receive stream for        |
| Frame          | alignment pattern (F628H).        | the G.832 E3 frame alignment           |
| Alignment      |                                   | pattern. When the pattern is           |
| Pattern        |                                   | detected for two consecutive           |
|                |                                   | frames, an in-frame condition is       |
|                |                                   | declared. Note that there is no        |
|                |                                   | ATM cell alignment with the G.832      |
|                |                                   | E3 frame. Therefore cell               |
|                |                                   | delineation must be performed to       |
|                |                                   | locate the ATM cell boundaries.        |
| EM:            | Inserts the calculated BIP-8      | Computes the incoming BIP-8            |
| Error Monitor, | by computing even parity over     | value over one 125 µs frame. The       |
| BIP-8          | all transmit bits, including the  | result is held and compared            |
|                | overhead bits of the previous     | against the value in the EM byte of    |
|                | 125 µs frame.                     | the subsequent frame.                  |
| TR:            | Inserts the 16 byte trail         | Extracts the repetitive trail access   |
| Trail Trace    | access point identifier           | point identifier and verifies that the |
|                | specified in internal registers.  | same pattern is received.              |
|                |                                   | Compares the received pattern to       |
|                |                                   | the expected pattern programmed        |
|                |                                   | in a register.                         |
| MA:            | Inserts the FERF, FEBE,           | Extracts and reports the FERF bit      |
| Maintenance    | Payload Type bits, Tributary      | value when it has been the same        |
| and Adaptation | Unit Multiframe Indicator bits    | for 3 or 5 consecutive frames.         |
| Byte           | and the Timing Marker bit as      | S/UNI-QJET also extracts and           |
|                | programmed in a register or       | accumulates FEBE occurrences           |
|                | as indicated by detection of      | and extracts the Payload Type,         |
|                | receive OOF or BIP-8 errors.      | Tributary Unit Multiframe, and         |
|                |                                   | I iming Market indicator bits and      |
|                |                                   | reports them through                   |
|                |                                   | microprocessor accessible              |
|                |                                   | registers.                             |
| NK:            | Inserts the Network Operator      | Extracts the Network Operator byte     |
|                | byte from the TOH overnead        | and outputs it on KOH or optionally    |
| Operator Byte  | TDDD. When not configured         | terminates it in the KDLC. When        |
|                | for Tandom Connection             | Connection Maintenance, all 9 hits     |
|                | Maintonanae all 9 hite of the     | of the Network Operator byte are       |
|                | Namenance, all 8 bits of the      | or the Network Operator byte are       |
|                | incurrent of the TOLL of the term | extracted and presented on ROH         |
|                |                                   |                                        |
| CC.            | Inc IDFR.                         | Extracts the GC byte and outputs it    |
| 00.            |                                   |                                        |



PM7346 S/UNI-QJET

TECHNICAL OVERVIEW PMC-971016

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

| Control       | Transmit Operation       | Receive Operation                  |
|---------------|--------------------------|------------------------------------|
| General       | TOH overhead stream or   | on ROH or optionally terminates it |
| Purpose       | optionally from the TDPR | in the RDLC block.                 |
| Communication | block.                   |                                    |
| Channel       |                          |                                    |

#### 4.3 J2 Framer Operation

The S/UNI-QJET supports the G.704 and NTT J2 frame format. This format can be extended to allow for direct byte mapping of ATM cells as specified in G.804. The J2 format consists of 789 bit frames each 125  $\mu$ s long, consisting of 96 bytes of payload, 2 reserved bytes and 5 F-bits. The frames are grouped into 4 frame multiframes as shown in Figure 9.

|         | -   | 125 uS                   |       |       |    |        |             |             |             |      |     |     |     |     |     |
|---------|-----|--------------------------|-------|-------|----|--------|-------------|-------------|-------------|------|-----|-----|-----|-----|-----|
| r       |     |                          | 1     |       | I  |        | 1           | -           |             | 777  |     |     |     |     |     |
| Bit #   | 1-8 | 9-16                     | 17-24 | 25-32 |    | ; ;    | 752-<br>760 | 761-<br>768 | 769-<br>776 | 784  | 785 | 786 | 787 | 788 | 789 |
| Frame 1 | TS1 | TS2                      | тѕз   | TS4   | Ŀ  |        | TS95        | TS96        | TS97        | TS98 | 1   | 1   | 0   | 0   | m   |
| Frame 2 | TS1 | TS2                      | TS3   | TS4   | [] | í      | TS95        | TS96        | TS97        | TS98 | 1   | 0   | 1   | 0   | 0   |
| Frame 3 | TS1 | TS2                      | TS3   | TS4   | [] | Ē      | TS95        | TS96        | TS97        | TS98 | x1  | x2  | x3  | а   | m   |
| Frame 4 | TS1 | TS2                      | TS3   | TS4   | [  | Г<br>I | TS95        | TS96        | TS97        | TS98 | e1  | e2  | e3  | e4  | e5  |
|         |     |                          |       |       |    |        | _           |             |             |      |     |     |     |     |     |
|         |     | 96 Octets of byte inter- |       |       |    |        |             |             |             |      |     |     |     |     |     |

leaved payload

Figure 9: G.704 J2 Frame Format

The J2 framer decodes a unipolar or B8ZS encoded signal and frames to the resulting 6,312 Kbit/s J2 bit stream. Once in frame, the J2 framer provides indications of frame and multiframe boundaries and marks overhead bits, x-bits, m-bits and reserved channels (TS97 and TS98). Indications of loss of signal, bipolar violations, excessive zeroes, change of frame alignment, framing errors, and CRC errors are provided and accumulated in internal counters.

The J2 transmitter inserts the overhead bits into a J2 bit stream and produces a B8ZS-encoded signal. The J2 transmitter adheres to the framing format specified in G.704 and NTT Technical Reference for High Speed Digital Leased Circuit Services.





PM7346 S/UNI-QJET

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

The processing of the overhead bits in the J2 frame is described in the following table. In the transmit direction, the overhead bits can be inserted on a bit-by-bit basis from a user supplied data stream.

| Control          | Transmit Operation             | Receive Operation                   |
|------------------|--------------------------------|-------------------------------------|
| TS1-TS96:        | Inserts the ATM cells into TS1 | Extracts the ATM cell octet payload |
| Byte Interleaved | to TS96 octets.                | and performs cell delineation.      |
| Payload          |                                |                                     |
| TS97-TS98:       | Inserts the signaling bytes    | Extracts signaling bytes on the     |
| Signaling        | from either register bits or   | ROH output.                         |
| channels         | from the TOH and TOHINS        |                                     |
|                  | inputs. These bits can be      |                                     |
|                  | optionally inserted via TDATI  |                                     |
|                  | input when in framer only      |                                     |
|                  | mode.                          |                                     |
| Frame            | Inserts the frame alignment    | Finds J2 frame alignment by         |
| Alignment        | signal automatically.          | searching for the frame alignment   |
| Signal           |                                | signal.                             |
| M-bits:          | Inserts the 4 KHz data link    | Extracts the 4 KHz data link signal |
| 4kHz Data Link   | signal from the internal HDLC  | for the internal HDLC controller.   |
|                  | controller or from the bit     |                                     |
|                  | oriented code generator.       |                                     |
| X-bits:          | Inserts the spare bits via     | Extracts and presents the x-bits on |
| Spare Bits       | register bits or via IOH and   | register bits. The X-bit states can |
|                  | IOHINS input pins.             | be debounced and presented on       |
|                  |                                | the ROH output pin. An interrupt    |
|                  |                                | change can be generated to signal   |
|                  |                                | a change in the X-bit state.        |
| A-bit:           | Inserts the A-bit via register | Extracts and presents the A-bit on  |
| Remote Loss of   | bit. The A-bit can be          | a register bit. The A-bit state can |
| Frame            | optionally be asserted when    | be debounced and presented on       |
| Indication       | the J2 framer is in loss of    | the ROH output pin. An interrupt    |
|                  | frame condition.               | can be generated to signal a        |
|                  |                                | change in the A-bit state.          |
| E1-E5:           | Automatically calculates and   | Calculates the CRC-5 check          |
|                  |                                | sequence for the received data      |
| Sequence         | sequence.                      | stream. Discrepancies with the      |
|                  |                                | received UKU-5 code can be          |
|                  |                                | interrupt CDC 5 errors are          |
|                  |                                | interrupt. CRC-5 errors are         |
|                  |                                | accumulated in an internal counter. |

TECHNICAL OVERVIEW PMC-971016



S/UNI-QJET TECHNICAL OVERVIEW

### 5 ATM CELL DELINEATION

The S/UNI-QJET's ATM Cell Delinator (ATMF) block performs header check sequence (HCS) based cell delineation for non-PLCP based transmission formats. The ATMF block accepts a bit serial cell stream and performs cell delineation to locate cell boundaries.

Cell delineation is the process of framing to ATM cell boundaries using the HCS field in the ATM cell header as shown in Figure 10. The HCS is a CRC-8 calculation over the first 4 octets of the ATM cell header. When performing delineation correct HCS calculations are assumed to indicate cell boundaries.



Figure 10: Cell delineation State Diagram..

The ATMF performs a sequential bit-by-bit, nibble-by-nibble (for T3 direct mapped) or a byte-by-byte (J2 and E3 direct mapped) hunt for a correct HCS sequence. This state is referred to as the HUNT state. When receiving a bit serial cell stream from an upstream transmission system, the bit, nibble or byte boundaries are determined from the location of the overhead.

When a correct HCS is found, the ATMF locks on the particular cell boundary and assumes the PRESYNC state. This state verifies that the previously detected HCS pattern was not a false indication. If the HCS pattern was a false indication then an incorrect HCS should be received within the next DELTA cells. At that point a transition back to the HUNT state is executed. If an incorrect HCS is not found in this PRESYNC period then a transition to the SYNC state is

TECHNICAL OVERVIEW
PMC-971016



ISSUE 1

PM7346 S/UNI-QJET

S/UNI-QJET TECHNICAL OVERVIEW

made. In this state synchronization is not relinquished until ALPHA consecutive incorrect HCS patterns are found. In such an event a transition is made back to the HUNT state

The values of ALPHA and DELTA determine the robustness of the delineation method. ALPHA determines the robustness against false misalignments due to bit errors. DELTA determines the robustness against false delineation in the synchronization process. ALPHA is chosen to be 7 and DELTA is chosen to be 6 as recommended in ITU-T Recommendation I.432. These values result in a maximum average time to frame of 127  $\mu$ s for a T3 stream carrying ATM cells directly mapped into the T3 information payload.

Loss of cell delineation (LCD) is detected by counting the number of incorrect cells while in the HUNT state. The count value which determines when LCD is declared can be set in an internal register.

TECHNICAL OVERVIEW PMC-971016



PM7346 S/UNI-QJET

S/UNI-QJET TECHNICAL OVERVIEW

### 6 PLCP FRAME PROCESSING

The S/UNI-QJET provides support for four different PLCP frame formats:

- T3 PLCP frame format,
- DS1 PLCP frame format,
- G.751 E3 PLCP frame format,

ISSUE 1

• E1 PLCP frame format.

## 6.1 T3 PLCP Frame Format

The T3 PLCP frame (as shown in Figure 11) provides the transmission of 12 ATM cells every 125  $\mu$ s. The PLCP frame is nibble aligned to the overhead bits in the T3 frame. There is no relationship between the start of the PLCP frame and the start of the T3 M-frame. A trailer is inserted at the end of each PLCP frame. The number of nibbles inserted (13 or 14) varies continuously such that the resulting PLCP frame rate can be locked on to an 8 kHz reference clock.

| A 1 | A2      | P11 | Z6  | ATM Cell  |                  |
|-----|---------|-----|-----|-----------|------------------|
| A 1 | A2      | P10 | Z5  | ATM Cell  |                  |
| A 1 | A2      | P9  | Z4  | ATM Cell  |                  |
| A 1 | A2      | P8  | Z3  | ATM Cell  |                  |
| A 1 | A2      | Ρ7  | Z2  | ATM Cell  |                  |
| A 1 | A2      | P6  | Z1  | ATM Cell  |                  |
| A 1 | A2      | Ρ5  | F1  | ATM Cell  |                  |
| A 1 | A2      | Ρ4  | B1  | ATM Cell  |                  |
| A 1 | A2      | P3  | G1  | ATM Cell  |                  |
| A 1 | A2      | P2  | M2  | ATM Cell  |                  |
| A 1 | A2      | P1  | M 1 | ATM Cell  |                  |
| A 1 | A2      | P0  | C1  | ATM Cell  | Trailer          |
|     |         |     |     |           |                  |
| F   | ramin   | g   |     | 53 octets | 13 or 14 nibbles |
| (3  | 3 octet | s)  | POH |           | -                |

Figure 11: T3 PLCP Frame Format (with a Frame Rate of 125 µs).





ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

#### 6.2 DS1 PLCP Frame Format

The DS1 PLCP frame provides the transmission of 10 ATM cells every 3 ms. The PLCP frame (as shown in Figure 12) is octet aligned to the framing bit in the DS1 frame. There is no relationship between the start of the PLCP frame and the start of the DS1 frame. A trailer is inserted at the end of each PLCP frame. The number of octets inserted is fixed at six.

| A1 | A2         | P9 | Z4  | ATM Cell  |          |
|----|------------|----|-----|-----------|----------|
| A1 | A2         | P8 | Z3  | ATM Cell  |          |
| A1 | A2         | Ρ7 | Z2  | ATM Cell  |          |
| A1 | A2         | P6 | Z1  | ATM Cell  |          |
| A1 | A2         | Ρ5 | F1  | ATM Cell  |          |
| A1 | A2         | Ρ4 | B1  | ATM Cell  |          |
| A1 | A2         | Ρ3 | G1  | ATM Cell  |          |
| A1 | A2         | P2 | M2  | ATM Cell  |          |
| A1 | A2         | P1 | M1  | ATM Cell  |          |
| A1 | A2         | P0 | C1  | ATM Cell  | Trailer  |
|    |            |    |     |           |          |
| F  | -<br>ramin | g  |     | 53 octets | 6 octets |
| (: | 3 octet    | s) | РОН |           |          |

Figure 12: DS1 PLCP Frame Format (with a Frame Rate of 3 ms).

#### 6.3 G.751 E3 PLCP Frame Format

The G.751 E3 PLCP frame provides the transmission of 9 ATM cells every 125  $\mu$ s. The PLCP frame (as shown in Figure 13) is octet aligned to the 16 overhead bits in the G.751 E3 frame. There is no relationship between the start of the PLCP frame and the start of the E3 frame. A trailer is inserted at the end of each PLCP frame. The number of octets inserted is nominally 18, 19, or 20 and is based on the number of E3 overhead octets (4, 5 or 6) that have been inserted during the PLCP frame period. The nominal octet stuffing can be varied by ±1 octet to allow the E3 PLCP frame to be locked to an external 8 KHz reference clock. Thus the trailer can be 17, 18, 19, 20 or 21 octets in length.



PM7346 S/UNI-QJET

TECHNICAL OVERVIEW PMC-971016

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW



Figure 13: G.751 E3 PLCP Frame Format (with a Frame Rate of 125 µs).

## 6.4 E1 PLCP Frame Format

The E1 PLCP frame provides the transmission of 10 ATM cells every 2.375 ms. Thirty of the thirty-two available E1 channels are used for transporting the PLCP frame (as shown in Figure 14). The remaining two channels are reserved for E1 framing and signaling functions. The PLCP frame is octet aligned to the channel boundaries in the E1 frame. The PLCP frame is aligned to the 125  $\mu$ s E1 frame (the A1 octet of the first row of the PLCP frame is inserted in timeslot 1 of the E1 frame).

| A1 | A2      | P9 | Z4  | ATM Cell  |
|----|---------|----|-----|-----------|
| A1 | A2      | P8 | Z3  | ATM Cell  |
| A1 | A2      | Ρ7 | Z2  | ATM Cell  |
| A1 | A2      | P6 | Z1  | ATM Cell  |
| A1 | A2      | Ρ5 | F1  | ATM Cell  |
| A1 | A2      | Ρ4 | B1  | ATM Cell  |
| A1 | A2      | P3 | G1  | ATM Cell  |
| A1 | A2      | P2 | M2  | ATM Cell  |
| A1 | A2      | P1 | M 1 | ATM Cell  |
| A1 | A2      | P0 | C1  | ATM Cell  |
|    |         |    |     |           |
| F  | ramin   | g  |     | 53 octets |
| (: | 3 octet | s) | РОН |           |

Figure 14: E1 PLCP Frame Format (with a frame rate of 2.375 ms).



TECHNICAL OVERVIEW PMC-971016

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

## 6.5 PLCP Overhead Processing

## Table 2: PLCP Overhead Processing

| <b>Overhead Field</b> | Transmit Operation              | Receive Operation                   |
|-----------------------|---------------------------------|-------------------------------------|
| A1, A2:               | Inserts the PLCP frame          | Searches the receive stream for     |
| Frame                 | alignment pattern (F628H)       | the PLCP frame alignment pattern.   |
| Alignment             |                                 |                                     |
| Pattern               |                                 |                                     |
| PO-P11:               | Inserts the path overhead       | Identifies the PLCP path overhead   |
| Path Overhead         | identifier codes in accordance  | bytes by monitoring the sequence    |
| Identifier            | with the PLCP frame             | of the POI bytes.                   |
|                       | alignment.                      |                                     |
| Z1-Z6:                | These octets are unused and     | These octets are ignored and are    |
| Growth:               | are nominally programmed        | extracted on the RPOH pin.          |
|                       | with all zeros. Access to       |                                     |
|                       | these octets is provided by     |                                     |
|                       | the PLCP transmit overhead      |                                     |
|                       | access port.                    |                                     |
| F1:                   | This octet is unused and the    | This octet is ignored and is        |
| User Channel          | value inserted in this octet is | extracted on the RPOH pin.          |
|                       | controlled by an internal       |                                     |
|                       | register or by TPOH pin.        |                                     |
| B1:                   | This octet contains an 8-bit    | The bit interleaved parity is       |
| Bit Interleaved       | interleaved parity (BIP)        | calculated for the current frame    |
| Parity                | calculated across the entire    | and stored. The B1 octet            |
|                       | PLCP frame (excluding the       | contained in the subsequent frame   |
|                       | A1, A, Pn octets and the        | is extracted and compared against   |
|                       | trailer). The B1 value is       | the calculated value. Differences   |
|                       | calculated based on even        | between the two values provide an   |
|                       | parity and the value inserted   | indication of the end-to-end bit    |
|                       | in the current frame is the BIP | error rate. These differences are   |
|                       | result calculated for the       | accumulated in an internal counter. |
|                       | previous frame.                 |                                     |
| G1:                   | The first four bit positions    | The G1 byte provides the PLCP       |
| Path Status           | provide a PLCP far end block    | FEBE function and is accumulated    |
|                       | error function and indicates    | in an internal counter. PLCP        |
|                       | the number of B1 errors         | yellow alarm is detected or         |
|                       | detected at the near end.       | removed when the yellow bit is set  |
|                       | The FEBE field has nine legal   | to logic one or zero for ten        |
|                       | values (0000b-1000b)            | consecutive frames. The yellow      |
|                       | indicating between zero and     | alarm state and the link status     |
|                       | eight B1 errors.                | signal state are contained in an    |



PM7346 S/UNI-QJET

TECHNICAL OVERVIEW PMC-971016

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

| <b>Overhead Field</b>             | Transmit Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Receive Operation                                                                                            |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|                                   | The fifth bit position is used<br>to transmit PLCP yellow<br>alarm. The last three bit<br>positions provide the link<br>status signal used in IEEE-<br>802.6 DQDB<br>implementations. Yellow<br>alarm and link status signal<br>insertion is controlled by the<br>internal registers or by TPOH<br>pin.                                                                                                                                                                                                                                                                                                                                                                                | internal register.                                                                                           |
| M1, M2:<br>Control<br>Information | These octets carry the DQDB<br>layer management<br>information. Internal register<br>controls the nominal value<br>inserted in these octets.<br>These octets are unused in<br>ATM Forum T3 UNI<br>specification and should be<br>programmed with all zeros.                                                                                                                                                                                                                                                                                                                                                                                                                            | These octets are ignored and are extracted on the RPOH pin.                                                  |
| C1:<br>Cycle/Stuff<br>Counter     | The coding of this octet<br>depends on the PLCP frame<br>format. For DS1 and E3<br>PLCP formats, this octet is<br>programmed with all zeros.<br>For the T3 PLCP format, this<br>octet indicates the number of<br>stuff nibbles (13 or 14) at the<br>end of each PLCP frame.<br>The C1 value is varied in a<br>three frame cycle where the<br>first frame always contains 13<br>stuff nibbles, the second<br>frame always contains 14<br>nibbles, and the third frame<br>contains 13 or 14 nibbles.<br>For the G.751 E3 PLCP<br>format, this octet indicates<br>the number of stuff octets (17<br>to 21) at the end of the PLCP<br>frame. Depending on the<br>alignment of the G.751 E3 | Interprets the trailer length<br>according to the selected PLCP<br>frame format and the received C1<br>code. |



PM7346 S/UNI-QJET

TECHNICAL OVERVIEW PMC-971016

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

| <b>Overhead Field</b> | Transmit Operation                                                                                                                                                                                                  | Receive Operation |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                       | frame to the E3 PLCP frame,<br>18, 19 or 20 octets are<br>nominally stuffed. The<br>stuffing may be varied by ±1<br>octet so that the PLCP frame<br>rate can be locked to an<br>external 8 KHz timing<br>reference. |                   |

TECHNICAL OVERVIEW PMC-971016



PM7346 S/UNI-QJET

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

**NOTES** 

TECHNICAL OVERVIEW PMC-971016

PMC-Sierra, Inc.

PM7346 S/UNI-QJET

ISSUE 1

S/UNI-QJET TECHNICAL OVERVIEW

#### **CONTACTING PMC-SIERRA, INC.**

PMC-Sierra, Inc. 105-8555 Baxter Place Burnaby, BC Canada V5A 4V7

Tel: (604) 415-6000

Fax: (604) 415-6200

Document Information: Corporate Information: Application Information: Web Site: document@pmc-sierra.com info@pmc-sierra.com apps@pmc-sierra.com http://www.pmc-sierra.com

None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency, fitness or suitability for a particular purpose of any such information or the fitness, or suitability for a particular purpose, merchantability, performance, compatibility with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this document. PMC-Sierra, Inc. expressly disclaims all representations and warranties of any kind regarding the contents or use of the information, including, but not limited to, express and implied warranties of accuracy, completeness, merchantability, fitness for a particular use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to, lost profits, lost business or lost data resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has been advised of the possibility of such damage.

© 1997 PMC-Sierra, Inc.

PM-971016 (R1) ref PMC-960835 (R3)

Issue date: October 1997