

TDE1767, A TDE1787, A

INTERFACE CIRCUIT (RELAY AND LAMP-DRIVER)

- OPEN GROUND PROTECTION
- HIGH OUTPUT CURRENT
- ADJUSTABLE SHORT-CIRCUIT PROTECTION
- INTERNAL THERMAL PROTECTION WITH EXTERNAL RESET
- LARGE SUPPLY VOLTAGE RANGE
- ALARM OUTPUT
- INPUT VOLTAGE CAN BE HIGHER THAN V_{CC}
- OUTPUT VOLTAGE CAN BE LOWER THAN GROUND (V_{CC} V_O \leq V_{CC}[max])

DESCRIPTION

The TDE1767, A/TDE1787, A are a monolithic amplifiers designed for high current and high voltage applications, specifically to drive lamps, relays, stepping motors.

The devices are assentially blow-out proof. The output is prois protected from short-circuits with the positive supply or drive. In addition thermal shut down is provited to keep the IC from overheathing. If internal dissipation becomes too high, the driver will shut down to prevent excessive heating. The output stays null after the overheating is off, if the reset input is low. If high the output will alternatively switch-on and off until the overload is removed.

The devices operates over a wide range voltages from standard 15 V operational amplifier supplies to the single +6V or +48V used for industrial electric systems. Input voltages can be higher than in the V_{CC} .

An alarm output suitable for driving a LED is provited. This LED, normally on (if referred to ground), will die out or flash during an overload depending on the state of the reset input.

The output is low in open ground conditions.

PIN CONNECTION (top view)

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th (j} - c)	Maximum Junction-case Thermal Resistance	30	°C/W
R _{th (j} - a)	Maximum Junction-ambient Thermal Resistence	80	°C/W

* Devices bonded on a 40 cm2 glass-epoxy printed circuit 0.15 cm thick with 4 cm2 of copper.

TDE1767,A-TDE1787,A

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	TDE1767A/TDE1787A	TDE1767/TDE1787	Unit
Vcc	Supply Voltage	60	50	V
VID	Input Differential Voltage	60	50	V
VI	Input Voltage	- 10 to + 60	- 10 to + 50	V
Ιo	Output Current	1.3	1.2	А
V _{I(reset)}	Reset Input Voltage	- 0.5 to + 60	- 0.5 to + 50	V
IOA	Alarm Output Current	- 10 to + 20	- 10 to + 20	mA
Ptot	Power Dissipation	Internally	mW	
Toper	Operating Ambient Temperature Range	- 25 to + 85	- 25 to + 85	°C
T _{stg}	Storage Temperature Range	- 65 to + 150	- 65 to + 150	°C

SCHEMATIC DIAGRAM

EQUIVALENT SCHEMATIC

SGS-THOMSON

2/10

ELECTRICAL CHARACTERISTICS (Unless otherwise specified)

 $\begin{array}{l} \textbf{TDE1767A:} - 25 \ ^\circ C \leq T_{amb} \leq + 85 \ ^\circ C, \ + 6 \ V \leq V_{CC} \leq + 55 \ V, \ I_o \leq 500 \ mA, \ T_j \leq + 150 \ ^\circ C \\ \textbf{TDE1767:} \quad - 25 \ ^\circ C \leq T_{amb} \leq + 85 \ ^\circ C, \ + 6 \ V \leq V_{CC} \leq + 45 \ V, \ I_o \leq 500 \ mA, \ T_j \leq + 150 \ ^\circ C \\ \textbf{TDE1787A:} - 25 \ ^\circ C \leq T_{amb} \leq + 85 \ ^\circ C, \ + 6 \ V \leq V_{CC} \leq + 55 \ V, \ I_o \leq 300 \ mA, \ T_j \leq + 150 \ ^\circ C \\ \textbf{TDE1767A:} - 25 \ ^\circ C \leq T_{amb} \leq + 85 \ ^\circ C, \ + 6 \ V \leq V_{CC} \leq + 45 \ V, \ I_o \leq 300 \ mA, \ T_j \leq + 150 \ ^\circ C \\ \textbf{TDE1767A:} - 25 \ ^\circ C \leq T_{amb} \leq + 85 \ ^\circ C, \ + 6 \ V \leq V_{CC} \leq + 45 \ V, \ I_o \leq 300 \ mA, \ T_j \leq + 150 \ ^\circ C \\ \textbf{TDE1767A:} - 25 \ ^\circ C \leq T_{amb} \leq + 85 \ ^\circ C, \ + 6 \ V \leq V_{CC} \leq + 45 \ V, \ I_o \leq 300 \ mA, \ T_j \leq + 150 \ ^\circ C \\ \textbf{TDE1767A:} - 25 \ ^\circ C \leq T_{amb} \leq + 85 \ ^\circ C, \ + 6 \ V \leq V_{CC} \leq + 45 \ V, \ I_o \leq 300 \ mA, \ T_j \leq + 150 \ ^\circ C \\ \textbf{TDE1767A:} - 25 \ ^\circ C \leq T_{amb} \leq + 85 \ ^\circ C, \ + 6 \ V \leq V_{CC} \leq + 45 \ V, \ I_o \leq 300 \ mA, \ T_j \leq + 150 \ ^\circ C \\ \textbf{TDE1767A:} - 25 \ ^\circ C \leq T_{amb} \leq + 85 \ ^\circ C, \ + 6 \ V \leq V_{CC} \leq + 45 \ V, \ I_o \leq 300 \ mA, \ T_j \leq + 150 \ ^\circ C \\ \textbf{TDE1767A:} - 25 \ ^\circ C \leq T_{amb} \leq + 85 \ ^\circ C, \ + 6 \ V \leq V_{CC} \leq + 45 \ V, \ I_o \leq 300 \ mA, \ T_j \leq + 150 \ ^\circ C \\ \textbf{TDE1767A:} - 25 \ ^\circ C \leq T_{amb} \leq + 85 \ ^\circ C, \ + 6 \ V \leq V_{CC} \leq + 45 \ ^\circ C, \ T_o \leq 300 \ mA, \ T_j \leq + 150 \ ^\circ C \\ \textbf{TDE1767A:} = 50 \ ^\circ C \leq T_{amb} \leq + 85 \ ^\circ C, \ T_o \leq T_o < T_o <$

Symbol	Parameter			Тур.	Max.	Unit
VIO	Input Offset Voltage - (note 1)			2	50	mV
Icc	Power Supply Current (measured on pin 4)					mA
	Output High (T _{amb} = + 25 °C)		-	5.8	8	
	Output High (V _{CC} = V _{CC(max)} , T_j = + 150 °C)		-	5	7	
	Output Low (V _{CC} = V _{CC(max)} , T _{amb} = + 25 °C)		-	1.5	4	
I _{IB}	Input Bias Current		-	15	100	μA
V _{СМ}	Common-mode Input Voltage Range	DE1787A, TDE1767A DE1787, TDE1767	1		60 45	V
VI	Input Voltage Range ($V_{ref} \ge + 1 V$) T (figure 1, note 2) T	DE1787A, TDE1767A DE1787, TDE1767	0	-	60 45	V
I _{SC}	Short-circuit Output Current $(V_{CC} = + 35 V, t = 10 ms)$					mA
		DE1767A DE1787A	-	700 380	-	
V _{sense}	Output Limit Sense Voltage : $V_0 = V_{CC} - 2 V$, t = 10ms ($V_0 = V_{CC} - 2 V$) : $V_0 = 0 V$, t = 10 ms			150 140	170 165	mV
V _{O(sat)}	Output Saturation Voltage (output high $V_1^+ - V_1^- \ge 50$ mV, R _{SC} = 0, V _{CC} = + 30 V)					V
	T _j = + 25°C T	DE1787A, TDE1767A	-	1	1.1	
	Τ	DE1787, TDE1767	-	1	1.2	
	$T_{j} = +150$ °C T	DE1787, TDE1767	-	1.1	1.2	
IOL	Output Leakage Current (output low)			-	100	μA
IA	Available Alarm Output Current					mA
	Output Source Current (VAH = V_{CC} - 2.5 V) Output SInk Current (in thermal shut-down) V _A =	= 1.4 V	-4 5	-5 10	-	
Ireset	Reset Input Current		-	2	40	μA
V _{th (reset)}	Reset Threshold		-	1.4	-	V
-	Output Leakage Current (open ground)			10	-	μA

Notes: 1. The offset voltage given is the maximum value of different input voltage reguired to drive the output voltage whitin 2 V of the ground or the supply voltage.
2. Input voltage range is indipendent of the supply voltage.

SGS-THOMSON

Figure 4. POWER SUPPLY CURRENT (pin 4).

LIMITING RESISTOR (1)

Fig.ure 5. OUTPUT SATURATION VOLTAGE vs OUTPUT CURRENT.

OUTPUT CURRENT (A)

Figure 7. NORMAL OPERATING AREA (short circuit protected)

SGS-THOMSON

Figure 3. AVAILABLE OUTPUT CURRENT vs

ALARM OUTPUT CAPABILITY CURRENT

Figure 12 : Test Circuit.

TDE1767,A-TDE1787,A

TYPICAL APPLICATION

Figure 13. Open Load Detection.

Figure 14. Driving Lamps, Relays, Etc...

Figure 15. Common Reset.

USING ALARM OUTPUT

47/

TDE1767,A-TDE1787,A

Figure 20. Interface between High oltage and Low Voltage System.

Figure 21. Increasing Current Up to 10 A.

DIM	mm			inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А		3.32			0.131		
a1	0.51			0.020			
В	1.15		1.65	0.045		0.065	
b	0.356		0.55	0.014		0.022	
b1	0.204		0.304	0.008		0.012	
D			10.92			0.430	
E	7.95		9.75	0.313		0.384	
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			6.6			0.260	
I			5.08			0.200	
L	3.18		3.81	0.125		0.150	
Z			1.52			0.060	

MINIDIP PACKAGE MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

