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TSCG691E RT Integer Unit

1. Introduction

This document presents the specification of the TSC691E Radiation Tolerant Integer Unit. It is organized in three main
chapters:

e Standard IUTSC691E Functions (Chapter 3)
® Fault MECHANISM and Test MECHANISM (Chapter 4)
e FElectrical and Mechanical Specification (Chapter 5)

Chapter 3 presents the SPARC RISC USER’S GUIDE from Cypress Semiconductor including some adaptations due
to the introduction of fault tolerant MECHANISMs, without losing the full binary compatibility with the entire SPARC
V7.0 application software base.

Chapter 4 and Chapter 5 deal with the new added functions introduced in the TSC691E to improve the reliability of
space applications. These new functions also do not impact the SPARC V7.0 compatibility.
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2. TSC691E Overview

2.1. SPARC RISC STANDARD FUNCTIONS :

Full binary compatibility with entire SPARC V7.0 application software base
Architecture efficiency that sustains 1.25 to 1.5 clocks per instruction
Large windowed register file

Tightly coupled floating-point interface

User/supervisor modes for multitasking

Semaphore instructions and alternate address spaces for multiprocessing

2.2. Fault Tolerant and Test Mechanism Improvements:

Parity checking on 98.7% of the total number of latches with hardware error traps
Parity checking of address, data pads and control pads

Program flow control

Master/Checker operation

IEEE Standard Test Access Port & Boundary-Scan Architecture

Possibility to disable the bus parity checking

Manufactured using TEMIC Space hardenedBSCMOS RT TECHNOLOGY
Part of the ERC32 high performance 32-bit computing core

To support applications requiring an extremely high level of reliability, the following improvements were introduced
in the standard SPARC RISC processor TSC691E:

e Several independent fault detection MECHANISMs to support the design of fault tolerant systems
Such as odd parity checking, Program Flow Control and Master/Checker operations.

Support of sophisticated PC board level test using the IEEE Standard Test Access Port and
Boundary Scan Architecture

Hardening of the process by construction, applying restricted full static CMOS design rules for

all critical blocks of the circuit such as register file, PLAs, ROMs etc...

Hardened device processing using the TEMIQUIBSCMOS-RT TECHNOLOGY.

Thanks to careful handling of the improvements, the introduced modifications have neither reduced the performance
of the device nor changed the full binary compatibility with the entire SPARC V7.0 application software.

2.3. Presentation of the ERC32 computing core

The TSC691E Integer Unit is, with the TSC692E Floating Point Unit and the TSC693E Memory controller, a part of
the ERC32 computing core.

2.3.1. Concept

The objective of the ERC32 is to provide a high performance 32-bit computing core, with which computers for
on-board embedded real-time applications can be built. The core will be characterized by low circuit complexity and
power consumption. Extensive concurrent error detection and support for fault tolerance and reconsideration will also
be emphasized.

In addition to the main objective the ERC32 core should be possible to use for performance demanding research
applications in deep space probes. The radiation tolerance and error masking are therefore important. For the real-time
applications the system might be fail-operational rather than fail-safe. By including support for reconfiguration of the
error-handling the different demands from the applications can be optimized for the best purpose in each case.

2
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The ERC32 will be used as a building block only requiring memory and application specific peripherals to be added
to form a complete on-board computer. All other system support functions are provided by the core.

2.3.2. Functional Description

The ERC32 incorporates the followings functions:

® Processor, which consists of one integer unit (IU-TSC691E) and one floating point unit (FPU-TSC692E). The
processor includes concurrent error detection facilities.

e Memory controller (MEC-TSC693E), which is a unit consisting of all necessary support functions such as memory
control and protection, EDAC, wait state generator, timers, interrupt handler, watch dog, UARTs and test and debug
support. The unit also includes concurrent error detection facilities.

® Oscillator (optional).
e Buffers necessary to interface with memory and peripherals.

Figure 1 schematically shows the ERC32 architecture and external functions added to form a complete system.

~g—P |/O Port

AV| [AV]

Data o—p <P Memory Port
; g—P ]
Floating Address
Point Unit >E| P> Address Port
TSC692E | —
[ p» Chip Select
- p WE
L p OE
L p» 1/O Select
Memory L p I/IOR/W
Controller
Integer —p ——— I1/10 Ready
Unit TSC693E |@q——— IRQ
[ p» IRQACck
TSC691E > _
<@¢—p EDAC checkbit
V V —P TX/RX
DMA Port

Figure 1. ERC32 Architecture
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3. Standard IU Function

3.1. Introduction

This section describes the workings of the TSC691E RT Integer processing Unit (IU), the main computing engine in
the SPARC architecture. The TSCE91E is based on the SPARC 32-bit RISC architecture, which defines a processor
capable of execution at a rate approaching one instruction per clock cycle. The TSC691E supports a tightly-coupled
Floating-Point coprocessor Unit (FPU) and a second, system-specific coprocessor, all three of which may operate
concurrently. The TSC691E executes all instructions except floating-point-operate and coprocessor-operate
instructions.

A block diagram of the TSC691E is shown in Figure 2 . The processor is organized around the ALU and the shift unit.
These are both two-operand units, accepting 32-bit information from either source 1 or source 2 of the register file,
the program counters, or the instruction decoder. ALU or shift unit results may be passed to the register file, address
bus, program counters, control registers, or back to themselves. One of the characteristics of the SPARC load/store
architecture is that neither the ALU nor the shift unit directly pass results to the instruction/data bus. Memory data
moves in and out of the register file through alignment units to and from the instruction/data bus. Instructions are taken
directly from the bus and fed to a four-stage instruction pipeline.

Destination
Register File
136 x 32-hits
Source 1 Source P
Arithmetic - -
& Logic Unit Shift Unit
PC Adder + +
L Program >I
Counters Align
Processor State Instruction
Window Invalid Decode
Trap Base
Multiply Step *
v
Address Instruction/ Data

Figure 2. Integer Unit Block Diagram

The SPARC architecture uses a “windowed” register file model in which the file is divided up into groups of registers
called windows. This windowed register model simplifies compiler design, speeds procedure calls, and efficiently
supports A/l programming languages such as Prolog, LISP and Smalltalk.

4
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A unique pair of coprocessor interfaces and a common connection to the system data and virtual address busses form
the physical interface between the IU, the FPU, and a coprocessor. The coprocessor interfaces provide the

synchronization and error handling that enable all three processors to operate concurrently. A common interface to the

virtual address bus and data bus permits the U to provide all addresses for floating—point and coprocessor load and
store instructions.

3.2. Description Of Parts

The integer unit TSC691E contains a 136 x 32 register file divided into eight overlapping windows. It is supplied in
256-pins MQFP packages, which allows 32-bit address and data busses, an eight-bit ASI bus, a number of control lines,
and floating-point—coprocessor, second coprocessor interfaces and 29 signals supporting fault tolerance and test
MECHANISM.

3.3. Programming Model

This section describes the TSC691E's register model, register window MECHANISM, processor states,
supervisor/user modes, control/status registers, and data types. The concepts and properties explained here are centr:
to an understanding of the TSC691E’s operation.

The register set shown in Figure 3 is a snapshot of the registers the TSC691E sees at any given moment. The working
registers constitute the current window on the register file. Registers within the shaded area are accessible only in the
supervisor mode.

IlU REGISTER FPU Registers (optional) Coprocessor Registers (optional)
FLOATING POINT QUEUE COPROCESSOR QUEUE
|PROCESSOR STATE REG (PS.iR (FPQ) (# 2) (CPOQ)
SUPERVISOR
ONLY | TRAP BASE REG (TBR) |
WINDOW INVALID MASK
(WIM)
MULTIPLY STEP (Y) FLOATING POINT STATUS COPROCESSOR STATUS
(FSR) (CSR)

WORKING OUTS (#8)

REGISTERS INS (# 8) FLOATING-POINT REGISTER$ COPROCESSOR REGISTERS
Current window LOCALS (#8) (# 32) (# 32)

within set of

_ GLOBALS (#8)
136 Registers -

Figure 3. SPARC Register Model

Working registers are used for normal operations and are cabgisters in the TSC691Eregisters in the FPU, and
c registers in the coprocessor. The various control/status registers keep track of and/or control the state of each
processor.

3.3.1. Register Windows

The 136r registers of the TSC691E are 32-bits wide and are divided into a set of 128 window registers and a set of
eight global registers. The 128 window registers are grouped into eight setsrefy&ters called windows.
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Table 1. Register Addressing

Register numbers Name
r[24] to r[31] ins
r[16] to r[23] locals
r[8] to r[15] outs

r[0] to r[7] globals

The SPARC architecture supports a maximum of 32 windows. The currently active window (the window visible to the
programmer) is identified by the Current Window Pointer (CWP), a 5-bit field in the Processor State Register (PSR)
(see Section 3.3.4.2).

At any given time, a program can address 32 active registers: 24 window registers and tieleitshBy software
convention, the window registers are divided intm® 8 locals and 8outs Registers are addressed as shown in
Table 1.

The current window pointer (CWP) acts as an index pointer within the stack of 128 window registers. Changing the
current window pointer by one offseteegister addressing by 16. Sincer 2dgisters can be addressed by a single CWP
value, incrementing or decrementing the CWP results in an eight register overlap between windows. This overlap of
window registers is used to pass parameters from one window to the next.

3.3.1.1. Windowing

The register file is implemented as a circular stack, with the highest numbered window joined to the lowest. In the
TSC691E, window 7 adjoins window 0 (see Figure 4).

Cwp

RESTORE

w1l

SAVE

Figure 4. Circular Stack of Overlapping Windows
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Previous Window (CWP + 1)
' 31 Save

—).
: ins
r 24 Restore
r23 <
: locals _
ri6 Current Window (CWP)
ri15 r3l
: outs : ins
rs r24
r23
r 16 locals Next Window (CWP - 1)
r15 r3l
outs INS
rs r24
r23
. locals
ri6
ri15
: outs
r8
r7
. globals
ro

Figure 5. Overlapping Windows

Note that each window sharesiits andoutswith adjacent windows (refer to Figure Butsfrom a previous window
(CWP + 1) are théns of the current window, and theuts of the current window are thias of the next window
(CWP - 1). While only adjacent windows shame andouts globalsare shared by all windows. A windowtals
on the other hand, are not shared at all, belonging only to that window.

After power—on reset, the state of the current window pointer and the WIM register (see Section 3.3.4.3) are undefined.
The power—on reset trap routine must initialize the CWP and WIM register for correct operation.

3.3.1.1.1. Parameter Passing

Register window overlap provides an efficient means of passing parameters during procedure calls and returns. One
method of implementing a procedure call that takes advantage of the overlap is to have the calling procedure move
the parameters to be passed intooitss registers, then execute a CALL instruction. A SAVE instruction then
decrements the CWP to activate the next window. The calling procedurts’secome the called proceduré's,

making the passed parameters directly accessible.

When a called procedure is ready to return results to the procedure that called it, those results are movesl into its
registers and it then executes a return, usually with a JMPL instruction. A RESTORE instruction increments the CWP
to activate the previous window. The called procedurssre still the calling procedure&its thus the results are
available to the calling procedure. Note that the tén:iandoutsare defined relative to calling, not returning.

If the calling procedure must pass more parameters than can be accommodateitsatitglobals the additional
parameters must be passed on the memory stack. One method of handling the stack pointer is to dedregistan

in the current window to hold the stack pointer (see Figure 6 ). After a call, this pointer (which is nomsiregister)

can be used as the frame pointer for the called procedure. The SAVE instruction, in addition to decrementing the CWP,
also performs an ADD using registers from the current window and placing the result in a register in the next window.
This feature can be used to set a new stack pointer for the called procedure from the old pointer in the calling procedure.
RESTORE also performs an ADD, using registers in the current window and placing the result in the previous window.
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r3l1 (i7)  return address
r30 (FP) frame pointer

r29 (i5) incoming param reg b
in r28 (i4) incoming param reg #
r27 (i3) incoming param reg B
r26 (i2) incoming param reg P
r25 (i1) incoming param reg [L
r24 (i0) incoming param reg p
r23 (17) local 7
r22 (16) local 6
r21 (15) local 5
local r20 (14) local 4
r19 (13) local 3
rig (12) local 2
r17 (11) local 1
ri6 (10) local O
r1s (o7) temp
ri4 (SP) stack pointer
rl3 (05) outgoing param reg p
out ri2 (o4) outgoing param reg ¢
ril (03) outgoing param reg B
rlo (02) outgoing param reg P
r9 (01) outgoing param reg L
r8 (00) outgoing param reg P

r7 (97) global 7
ré (g6) global 6
r5 (g5) global 5
global r4 (g4) global 4
r3 (g3) global 3
r2 (92) global 2
rl (91) global 1

ro (g0) 0

f31 floating—point valug
floating
point

fo floating—point value

Figure 6. Registers as Seen by a Procedure

3.3.1.1.2. Window Overflow and Underflow

No matter how many windows a register file has, it is possible that at some point the program will try to use more than
are available. Since the register file is a circular stack, something must be done to prevent overwriting the oldest
window as the stack wraps around.

The TSC691E handles this by allowing bits in the Window Invalid Mask (WIM) register to be set, which are used to
mark windows that will trigger an underflow or overflow trap (see Section 3.3.4.3). If a SAVE instruction points the

8
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CWP to a marked window, a window overflow trap is generated. This means that in the TSC691E, only seven of the
eight windows are available for calls, because the last window must be saved for the trap handler. However, since a
typical overflow trap handler would transparently save one or more of the oldest windows to memory, the program sees
an apparently infinite number of windows.

The TSC691E automatically decrements the CWP upon encountering a trap. This happens without generating another
window overflow trap, regardless of the state of the WIM register. By setting at least one window as masked by the
WIM register, the system is assured of at least one window for use by the trap handler.

A RESTORE instruction will cause a window underflow trap if it attempts to restore to a window invalidated by the
WIM register. Execution of a return from Trap (RETT) instruction under the same circumstances will also generate
an under trap. SAVE, RESTORE, and RETT always check the WIM register before completing their actions.

As an example, in Figure 4 , if the procedure using the window labeled w0 executes a CALL and SAVE sequence, a
window overflow trap will occur (assuming WIM bit 7 is set). The overflow trap handler may safely use dobatbe
of w7, because w7igs are w0’soutsand w7’soutsare w6’sins.

Active window =0 CWP =0

Previous window = 1 CWP+1=1

Next window = 7 CWP-1=7

Trap window =7 WIM = 100000Q@hse2)

The overflow trap handler is responsible for saving one or more of the least recently used windows to the memory stack.
Simulations of register file management methods show that saving and restoring one window at a time is the simplest
and most effective algorithm for handling overflow and underflow. The stack pointer to the window-save area must
be aligned to a word boundary in valid memory and, for efficiency, should be doubleword aligned. This is because it
is faster to load and store doublewords than to load and store words.

A linear sequence of doubleword loads and stores is also used to speed up context switches. In a context switch, only
the windows containing valid data are saved, and on average this is about half the number of TSC691E windows, minus
one for the reserved trap window.

3.3.1.1.3. Alternate Register Window Usage

Although the windowing layout is particularly well suited to procedure calls and returns, hardware does not force their
use for that purpose alone. Except for the eight-register overlap and the partial fixing of the function of several registers
by the instruction set (see Section 3.3.1.2), register windows can be viewed and manipulated as needed to fit the
application at hand.

For example, the register set can be treated as a flat register file. Access to any particular register in any window is
obtained by writing its window value into the current window pointer located in the processor state register. Moreover,
windows naturally segment registers into blocks that could be dedicated to specific purposes and accessed through the
CWP. Register saving and parameter passing could be done with a standard push/pop stack in memory, although this
would substantially increase bus traffic.

For real-time and embedded controller systems, where fast context switching may be more important than procedure
calling, the register file can easily be divided into banks of registers separated by trap handling windows set up by the
WIM register (see Section 3.3.4.3). Switching from one register bank to another is accomplished by writing to the CWP
field of the processor state register. Figure 7 shows the TSC691E register file divided into four banks, each with its
own trap handler window of eight local regist&ssobalsare accessible by all processes.

3.3.1.2. Special Registers

In general, the window registers seen at any given time can be used in any manner desired, while keeping in mind that
windows overlap at both ends. However, the instruction set does fix the use of r[0] and patrtially fixes the use of r[15].

Global register r[0] always returns the value 0 when read, making the most frequently used constant easily available
at all times. In addition, when addressed as a destination operand, r[0] discards the value written to it.

The CALL instruction writes its own address into register r[d5if (egister 7) of the calling procedure’s window. If

a SAVE instruction then activates a new window, r[15] of the old window becomes irf3g(ster 7) of the new

window and serves as the return address to the calling procedure. However, if the register is needed for some other
purpose, the return address can be saved to a stack or simply overwritten.
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WIM Register
& [ o 1o rfof 1] o] 1]
124 7 6 5 4 3 2 1 0
Register Bank 3 r23 The WIM register is used to separate
(Window 7) . ther registers into register banks. Register
rié banks are switched by writing into the CWP
rl5 r31 field of the processor state register (PSR).
. . RESERVED
rg r24
re3 Trap registers for bank 3
: (Window 6)
rl6
r31 rl5 . .
UNUSED The TSC691E automatically enters the next window
'24 ' s (CWP-1) upon encountering a trap, regardless of the state of
r23 r the WIM register. This feature is used to reserve windows for
Register Bank 2 r a trap handler.
Wi ’
(Window 5) 16
ris r31
. . RESERVED
8 r24
r23 Trap registers for bank 2
. (Window 4)
r1l6
r3l ris
. . UNUSED
r24 8
; r23
I?,s‘gl(sjter 2ank 1 . The upper eight registers of the trap window are reserved for
(Window 3) 16 parameter passing from the register bank, if desired.
ris r31
. . RESERVED
r8 r24
r23 Trap registers for bank 1
. (Window 2)
rl6
r31 rl5
. . UNUSED
24 . \ The lower eight registers of the trap window are unused, since
) 23 they are shared with the next register bank. These can be used
Register Bank 0 to pass parameters to the next register bank, if desired.
(Window 1) :
rl6
r15 r31
. ) RESERVED
8 r24
r23 Trap registers for bank 0
. (Window 0)
rl6
r7
r1s UNUSED GLOBAL
: REGISTERS
8 .
r0
Figure 7. Register Banks for Fast Context Switching
10
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Two other registers are also used by hardware to save information during a trap. Registers r[17] éochifli8h0d

2) of the trap window (not the trapping procedure’s window) are used to save the contents of the program counters (PC
and nPC) at the time the trap is taken. Because the trap wlndalsare all a trap handler is allowed to use (unless

it saves to the system stack), this limits the trap handler’'s usable registers to six.

3.3.2. Processor States

The TSCG691E is always in one of three possible states: execute mode, reset mode, or error mode. Execute mode is the
normal operating mode.

The processor enters error mode (at which point it halts and asserts ERRG@fchronous trap is generated while
traps are disabled (see Section 3.8). The TSC691E remains in error mode until thesRBSET asserted, whereupon
it enters reset mode. The external system is responsible for asserting REStEVer the error mode signal, ERROR
is detected.

Reset mode is entered whenever the RESBiial is asserted (see Section 3.5). The processor remains in that mode
until RESETis deasserted. RESET signal must be asserted nine clocks at least. Upon deassertion, the processor enter:
execute mode, where the first instruction address to be executed is address 0 in the supervisor instruction address spac
(see Sections 3.3.3 and 3.4.2.6).

The TSC691E fetches instructions in the execute mode. If the instruction belongs to the floating-point unit or second
coprocessor, execution is directed to the appropriate coprocessor. Otherwise, the instruction is executed by the integer
unit.

3.3.3. Supervisor/User Modes

In support of multitasking, the TSC691E employs a supervisor/user model of operation. The processor is in supervisor
mode when the S bit in the Processor State Register (PSR) is set, and in user mode when S is reset (see Section 3.3.4.2
The state of this bit determines which address space is accessed with the ASI bits (see Section 3.4.2.6) and whethel
or not privileged instructions may be used. Privileged instructions restrict control register access to supervisor software,
preventing user programs from accidentally altering the state of the machine.

In non-multitasking situations, such as embedded systems, user (application) code would probably run in supervisor
mode to gain access to the PSR’s CWP field and other control registers. The only way a program running in user mode
may enter supervisor mode is to encounter a software or hardware trap. A return to user mode is accomplished by
executing a Return from Trap (RETT) instruction, which restores the state of the S bit to what it was before the trap
was taken. A commonly used trap return is the JIMPL, RETT delayed control transfer couple (refer to Section 3.4.3.4.4).
This restores both the PC and nPC and the previous state of the S bit.

3.3.4. Control/Status Registers

TSCG691E control/status registers are all 32 bits wide. The two program counters can only be read to and written to
indirectly using such instructions as a CALL, JMPL, software trap (Ticc), and Return from Trap (RETT). The Processor
State Register (PSR), Window Invalid Mask (WIM), Trap Base Register (TBR), and multiply-step register (Y), are all
read/write registers. Read/write instructions that access the PSR, WIM, and TBR are privileged and thus may only be
used in supervisor mode.

Two of these registers, the PSR and TBR, have both read-only status fields and programmable read/write mode fields.
In Figure 8 and Figure 10, the read-only status fields appear in lower case italic (for exapiphehile the writable
mode fields appear in UPPER CASE (for example, PIL).

3.3.4.1. Program Counters (PC and nPC)

The Program Counter (PC) contains the address of the instruction currently being executed by the TSC691E, and the
next Program Counter (nPC) holds the address (PC + 4) of the next instruction to be executed (assuming there is no
control transfer and a trap does not occur). The nPC is necessary to implement delayed control transfers, wherein the
instruction that immediately follows a control transfer may be executed before control is transferred to the target
address (see Section 3.4.3.4). Having both the PC and nPC available to the trap handler allows a trap handler to choose
between retrying the instruction causing the trap (after the trap condition has been eliminated) or resuming program
execution after the trap causing instruction.
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Semiconductors

3.3.4.2. Processor State Register (PSR)

Trap Enable (ET) —
Previous Supervisor Mode (PS)
Supervisor Mode (S)
Enable Floating-Point Unit (EF)
Enable Coprocessor (EC)*

U . U Integer Processor Current
Implementation Version  Condition Interrupt Window
Number Number Codes Level Pointer
(impl) (ver) (ICC) Reserved (PIL) (Cwp)
I 1 L} 1 I 1 I4 1 1 le 1 I I- 1 I6 1 1 | 1 | 1 I 1 ‘I‘ 1 I 1 I 1 I 1 I 1 1 5! 1 I
31 2827 24 14 13 1211 8 7 6 ™ 0
negative ro oyerflow carr
ol I IRGIE ICE
23 22 21 20

Figure 8. Processor State Register

This is the TSC691E’s key status and control register, containing fields that report the status of processor operations
or control processor operations. Instructions that modify its fields include SAVE, RESTORE, Ticc, RETT, and any
instruction that modifies the condition code fieldc]. Any hardware or software action that generates a trap will
modify the S, PS, and ET fields. The PSR may be read or written directly using the privileged instructions RDPSR and
WRPSR. The PSR is made up of the following fields:

impl—Implementation
Bits 28 through 31 contain the processor’s implementation number. The implementation numbérS@adeE
is 000%. Writting PSR (WRPSR) does not modify this field.

ver—\ersion
Bits 24 through 27 contain ti&SC691Es version number. Writting PSR (WRPSR) does not modify this field. The
current version number for tH&SC691Eis 0004,

icc—Integer Condition Codes
Bits 20 through 23 hold the integer unit’s condition codes. These bits are modified by arithmetic and logical instruc-
tions whose names end with the lettecgfor example, ANDcc), and can be overwritten by the Writting PSR in-
struction. The Bicc and Ticc instructions base their control transfer on these bits, which are defined as follows:

N—Negative
Bit 23 indicates whether the ALU result was negative for the last icc-modifying instruction.
0 = not negative
1 = negative
Z—Zero
Bit 22 indicates whether the ALU result was zero for the last icc-modifying instruction.
0 = result was nonzero
1 = result was zero
V—Overflow

Bit 21 indicates whether an arithmetic overflow occurred during thadeashodifying instruction. The
overflow bit is also set if a tagged operation (TADDcc, TSUBcc, etc.) is performed on non-tagged operands
(refer to Section 3.4.3.2.3). Logical instructions that modify the icc field always set the overflow bit to 0.

0 = arithmetic overflow did not occur
1 = arithmetic overflow did occur
C—Carry
Bit 20 indicates whether an arithmetic carry out of result bit 31 occurred from the last icc-modifying addition

or if a borrow into bit 31 resulted from the last icc-modifying subtraction. Logical instructions that modify
the icc field always set the carry bit to O.

0 = a carry/borrow did not occur
1 = a carry/borrow did occur
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Reserved
Bits 14 through 19 are reserved. A WRPSR should write only 0s to this field.

EC—Coprocessor Enabled
This bit determines whether the optional second coprocessor is enabled or disabled.

0 = disabled
1 = enabled

If the coprocessor is either disabled or enabled but not present, a CPop, CBccc, or coprocessor load/store instruction
will cause a coprocessor-disabled trap. When the CP is disabled, it retains that state until it is re—enabled or reset.
Even when disabled, the coprocessor can continue to execute instructions if it contains a queue.

EF—Floating-Point Unit Enabled
Bit 12 determines whether the FPU is enabled or disabled.

0 = disabled
1 = enabled

If the FPU is either disabled or enabled but not present, an FPop, FBfcc, or floating-point load/store instruction will
cause a floating-point-disabled trap. When disabled, the FPU retains that state until it is re—enabled or reset. Even
when disabled, it can continue to execute any instructions in its queue.

PIL—Processor Interrupt Level
Bits 8 through 11 identify the processor’s external interrupt priority level. The processor will only accept external
interrupts whose interrupt level is greater than the value in PIL. Bit 11 of the PIL is the MSB and bit 8 is the LSB.

S—Supervisor
Bit 7 determines whether the processor is in supervisor or user mode. Because WRPSR is privileged and only avail-
able in the supervisor mode, supervisor mode can only be entered by a software or hardware trap.

0 = user mode
1 = supervisor mode

PS—Previous Supervisor
Bit 6 holds the value that was in the S bit at the time the most recent trap was taken.

ET—Enable Traps
Bit 5 determines whether traps are enabled. If traps are disabled, all asynchronous traps are ignored. If a synchro-
nous or floating-point/coprocessor trap occurs while traps are disableBS@&91E halts and enters the error
mode (see Section 3.8).

0 = traps disabled
1 = traps enabled

CWP—Current Window Pointer
Bits 0 through 4 contain a pointer to the currently active register file window. CWP is decremented by traps and the
SAVE instruction, and is incremented by RESTORE and RETT instructions.

The Floating-Point Enabled (EF) bit can be used by the programmer to control FPU use when running multiple
processes. By disabling the EF bit while running a process that doesn'’t require the FPU, software would not have to
save and restore the FPU's registers across context switches. If the FPU is not present, as signaled by the input signal
FP, the EF bit can be used to provoke floating-point instruction set emulation by generating a floating-point-disabled
trap if execution of a floating-point instruction is attempted. This technique may be used with the coprocessor as well.

If it is necessary for the software to manually disable traps, care must be taken when changing the ET bit from enabled
(ET=1) to disabled (ET=0), since the RDPSR, WRPSR instruction sequence is interruptible. One way to handle that
is to write all interrupt trap handlers so that before they return program control to the supervisor software that was
interrupted, they restore the PSR to the value it had before the interrupt was taken. This will guarantee a correct result
when the interrupted RDPSR, WRPSR sequence continues. The only PSR bit that cannot be restored is the PS bit, which
is overwritten when the trap is taken.

An alternative to the RDPSR-WRPSR sequence is to generate a “trap instruction” trap with a Ticc instruction. A taken
trap automatically sets ET to O, disabling further traps.

13
Rev. | — September 23, 1998



TSCB91E TEMIC

3.3.4.3. Window Invalid Mask Register (WIM)
Window 0
Window 1
\(/jVindow 2
Window 3
i indow3 = |

31 7 6 5 4 3 210

----- Future Expansion for Additional Windows

Figure 9. Window Invalid Mask

This register designates which window(s) will cause generation of an underflow or overflow trap when pointed to by
the CWP as the result of a SAVE, RESTORE, or RETT instruction.

Each bit in the WIM register (see Figure 9 ) corresponds to a window; if a bit is set to 1, the window corresponding
to that bit is marked as invalid. If a SAVE, RESTORE, or RETT instruction would cause the CWP to point to a window
whose WIM bit equals 1, a window overflow (SAVE) or window underflow (RESTORE, RETT) trap is generated. The
trap handler uses thecal registers of the invalidated window.

A WIM bit is usually set by the operating system software to identify the boundary between the oldest and newest
window. The overflow or underflow trap prevents previous windows from being overwritten or restores previous
windows from memory. WIM can also be used to mark off register banks for fast context switching (see Section
3.3.1.1.3).

WIM is read by the RDWIM instruction, and written by the WRWIM instruction. Bits corresponding to unimplemented
windows read as zeros and are unaffected by writes.

Note:

The WIM register is NOT cleared during reset. It must be initialized by software.

3.3.4.4. Trap Base Register (TBR)

Trap Base Address(TBA) Trap Type (tt)
20 8 ojojojo
31 1211 4 3 2 1 0

Figure 10. Trap Base Register

When a trap occurs, the program counter (PC) is loaded with the contents of the trap base register. The TBR contains
two fields that together constitute a pointer into the trap table, which in turn contains the trap handler address (see
Figure 10 ). RDTBR can read the entire register; however, the WRTBR instruction can write only to the Trap Base
Address field. Only hardware can write to the Trap Type field, and bits O through 3 are zeros and are unaffected by
a write. The Trap Type field can be directly manipulated using the Ticc instruction. For more information on trap
operation, see Section 3.8.

TBA—Trap Base Address

Bits 12 through 31 contain the most-significant 20 bits of the trap table address. This field applies to all trap types except
reset, which forces address 0. The TBA is software controlled.

tt—Trap Type

Bits 4 through 11 comprise the Trap Type field, an eight-bit value that provides an offset into the trap table based on
the type of trap being taken (see Section 3.8.5.3). This field retains its value until the next trap is taken.
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3.3.4.5. Y Register

The Y register is used by the multiply step instruction (MULScc) to create 64-bit products. This register is read and
written using the non-privileged RDY and WRY instructions.

3.3.5. Data Types

The TSC691E supports ten data types (eleven with extended-precision floating-point, see Section 3.3.5.3). Integer
types include byte, unsigned byte, halfword, unsigned halfword, word, unsigned word, doubleword, and tagged data.
ANSI |IEEE 754-1985 floating-point types include single- and double-precision. A byte is 8 bits wide, halfwords are
16 bits, words and single-precision floating-point are 32 bits, doublewords and double-precision floating-point are 64
bits. Table 2 shows the formats for single-precision and double-precision floating—point numbers.

Table 2. Floating—Point Formats

Single—Precision Floating—Point Format

s =sign (1)
e = biased exponent (8)
f = fraction (23)

normalized number (0 < e < 255): @ry2e-127x 1 f

subnormal (e = 0): $0 (-1p* 2-126x o f

zero (e = 0): 172X0) (-1p¥* 0

signaling NaN: 50 s = u; e = 255 (max); f = .Ouwu
(at least one bit must be nonzero)

quiet NaN: f#0 s =u; e = 255 (max); f = .1uwu

infinity: s =0 or 1, depending upon sign;

e = 255 (max); f = .0000 (all zeros)

Double—Precision Floating—Point Format

s =sign (1)
e = biased exponent (11)
f = fraction (52)

normalized number (0 < e < 2047 ): £1)2e-1023% 1 f

subnormal (e =0): $0 (-1p* 2-1022x o f

zero (e = 0): &0 (-1p* 0

signaling NaN: 50 s = u; e = 2047 (max); f = .0uwu
(at least one bit must be nonzero)

quiet NaN: f#£0 s = u; e = 2047 (max); f = .luwu

infinity: s =0 or 1, depending upon sign;

e = 2047 (max); f = .0000 (all zeros)

3.3.5.1. Data Organization In Registers

The organization of the ten data types when loaded into registers is shown in Figure 11 .
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BYTE | SSS it sss [s] Byt |

31 8 76 0
UNSIGNED [ 000................. ooo [ BytE |

31 8 7 0
HALFWORD | SSS.......... sss [s| waLFworD |

31 16 15 14 0
UNSIGNED 000.......... 000
HALFWORD |31 16| — HALFWORD o|
SIGNED
WORD s WORD o|

31
UNSIGNED
WORD |31 WORD o|
HSSEP | WORD | TAG|

31 2 10
DOUBLE WORD 0 (MOST SIGNIFICANT WORD) rIN]
WORD WORD 1 (LEAST SIGNIFICANT WORD) r [N+1]

31 0
SINGLE
PRECISION FP |331| — EXPONENT 23| > FRACTION 0|
DOUBLE- s| EXPONENT |HIGH-ORDER BITS OF FRACTION f[N]
PRECISION FP LOW-ORDER BITS OF FRACTION fN+1]

31 30 20 19 0

Figure 11. Processor Data Types

When moving memory data to or from the registers, byte operands are always loaded to or extracted from the lower
eight bits of a register. On a load, bits 8 through 31 are sign-extended for a byte or zero-extended for an unsigned byte.
Halfwords are always loaded to or extracted from the lower 16 bits of a register. Bits 16 through 31 are sign-extended
for a halfword or zero-extended for an unsigned halfword during a load. All 32 bits of a signed or unsigned word are
loaded from or stored to memory. Stores of byte and halfword data are not sign—extended. Tagged data is handled as
an unsigned word. Doubleword operands load to and store from two contiguous registers, r[n] and r[n+1], with r[n]
containing the most significant word. Figure 12 illustrates the relationship between the way data is stored in memory
and the way it is loaded into registers.

For single-precision, floating-point operands, bit 31 contains the sign bit, bits 23 through 30 contain the eight bits of
exponent, and bits 0 through 22 contain the 23-bit fraction. Double-precision operands require a register pair, with the
upper-order register r[n] containing the sign bit, 11-bit exponent, and the high-order bits of the fraction. The
lower-order register r[n+1] contains the low-order bits of the fraction. Total fraction size is 52 bits.

When loading doublewords or double-precision operands from memory to the working registers (githethe

destination register must be at an even address or the hardware will force such an address. For example, an attempted
load double to register r[9] would be forced to r[8], so that the most significant word would be loaded in r[8] and the
least significant word in r[9]. A load double to r[0] would result in the loss of the most significant word.

16
Rev. | — September 23, 1998



TEMIC TSCB91E

Address N N+1 N+2 N+3
Memory location  [31 24|23 1615 8|7 0l
Destination Register |31 Zeros or Sign Extension 8|7 0|
Byte Load Example (From Address N+1)
Address N N+1 N+2 N+3
DataBus  [31 24]23 16]15 8|7 ol
S ! e
Source Register |31 Don’'t Care 8 | 7 0|

(*) The irrelevant bytes of the data bus are filled with the stored data byte (idem for halfword).

Byte Store Example (To Address N+2)

Figure 12. Byte Operand Load and Store

3.3.5.2. Data Organization In Memory

Organization and addressing of data in memory follows the “Big-Endian” convention wherein lower addresses contain
the higher-order bytes (see Figure 13).

For a stored word, address N corresponds to the most significant byte of the word, and address N+3 corresponds to the
least significant byte. The address of a halfword, word, or doubleword is also the address of its most significant byte.
A halfword datum must be located on a halfword boundary (address bit [0] = 0), which is evenly divisible by 2.
Similarly, a word must be located on a word boundary (address bits [1:0] = 0) evenly divisible by 4, and a doubleword
must be located on a doubleword boundary (address bits [2:0] = 0) evenly divisible by 8. Attempting to access
misaligned data will generate a “memory_address_not_aligned” trap.

63 Doubleword 0
31 Word ol 31 Word 0
15 Halfword ol 15 Halfword ol 15 Halfword ol 15 Halfword 0
7 Byte 5|, Byte 4|, Byte |7 Byte g| 7 Byte g| 7 Byte 4| ; Byte 7 Byte g
Address N N+1 N+2 N+3 N+4 N+5 N+6 N+7

Figure 13. Data Organization in Memory

3.3.5.3. Extended Precision

The SPARC architecture supports another data type, an ANSI/IEEE 754-1985 extended-precision floating-point type
with a width of 128 bits (see Table 3 ). When loaded to the working registers, extended-precision operands require a
register quadruple (see Figure 14 ). The upper-order register r[N] contains the sign bit, a 15-bit exponent, and a 16-bit
reserved field. The next register r[N+1] contains the one-bit integer part and 31 high-order bits of the fraction. The next
register r[N+2] holds the 32 low-order bits of the fraction. Total fraction size is 63 bits. The fourth extended-precision
register r[N+3] is reserved. As with double-precision operands, when loading an extended-precision operand, the
destination register must be at an even address or the hardware will force an even address.

The memory address of an extended-precision datum is also the address of its most significant byte (see Figure 15).
An extended-precision datum must be located on an extended-precision boundary (address bits [3:0] = 0), which is
evenly divisible by 16.
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Table 3. Extended—Precision Floating—Point Format

s =sign (1)

e = biased exponent (15)

j = integer part (1)

f-msb f-Isb = f = fraction (63)

normalized number (0 <e < 32767 ;j=1): $41p ©-16383« j f
subnormal number (e =0;j =0 )& 0): 15* 2-16382« j ¢
zero(s=0;e=0)(F#0)(j#0): 1P* 0

signaling NaN: 50 S =u; e=232767 (max);j=u;
f=.0 uu--uu (at least one bit must be
must be nonzero)

(_
(_

quiet NaN: 20 s=u;e=232767 (max); j=u;
f=.1uu-uu
infinity: s =0 or 1, depending upon sign;

e = 32767 (max); j = u;
f=.00-. 00 (all zeros)

EXTENDED PRECISIONFP | EXPONENT RESERVED
e L2 HIGHORDER BITS OF FRACTION
N2 LOWORDER BITS OF FRACTION
N3] RESERVED
3130 16 15 0

Figure 14. Extended—Precision Data Organization in Registers

128 Extended — Precision Data 0

63 Doubleword 0|63 Doubleword 0

31 Word 0| 31 Word 031 Word 0|31 Word 0
AddressN N+4 N+8 N+12

Figure 15. Extended—Precision Data Organization in Memory

3.4. Instruction Set

This section describes the TSC691E instruction set as defined by the SPARC architecture. Included are subsections
on instruction formats, addressing, instruction types, and an op code summary. A specific document, SPARC V7.0
Instruction Set contains a description of the assembly language syntax and a complete set of instruction definitions.

3.4.1. Instruction Formats

There are only three basic instruction formats plus three subformats. Format 1 is used for the CALL instruction, format
2 for the SETHI and Branch instructions, and format 3 for the remaining integer and floating-point/coprocessor
instructions. Figure 16 shows each format with its fields, bit positions, and the instructions that use that format. All
instructions are one word long and aligned on word boundaries in memory. For most instructions, operands are located
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in source registers (represented$fyandrs?). The remaining instructions use one source register plus a displacement
or immediate operand contained within the instruction itself.

Note:

See chapter 4.2 for application of this instruction in Program Flow Control.

FORMAT 1

FORMAT 2

FORMAT 3

asi

cond
disp22

disp30

imm22

op

op2
op3
opc

opf

rd

CALL
d oo .
0?88) e 30-Bit Displacement (disp30)
31 30 0
— SETHI
opcode it opcode 29-Bit | ; imm22
(op) Destination (rd) 0p2) it Immediate (imm22)
31 30 25 22 0
BRANCH
opcode opcode g -
?op) a| Test Cond. op2) 22-Bit Displacement (disp22)
31 3029 25 22 0
_ OTHER INTEGER INSTRUCTIONS
opcode —— opcode ;
(op) Destination (rd) op3) Source 1 (rs1) 0| Alternate Space (asi)| Source 2 (rs2)
o?gg)de Destination (rd) o(;;gie Source 1 (rs1) 1 13-Bit Immediate (simm13)
31 30 25 19 14 13 5 0
FLOATING POINT/COPROCESSOR OPERATIONS
opcode M opcode FP Opcode (opf)
(op) Destination (rd) 0p3) Source 1 (rsl) CP Opcode (0pd) Source 2 (rs2)
= 31 30 25 19 14 5 0

Figure 16. Instruction Format Summary

Thea (annul) bit is used in branch instructions to control the execution of the delay instruction that imme-
diately follows a control transfer instruction (see Section 3.4.3.4.3).

The address space identifier is an eight-bit field used in load/store alternate instructions. See Section
3.4.2.6.

This field identifies the condition code used for a branch instruction.

This field contains the 22-bit displacement value used for PC-relative addressing for a taken branch. It is
sign extended to full-word size when used.

This field contains the 30-bit displacement used for the PC-relative addressing of a CALL instruction.

Thei (immediate) bit determines whether the second ALU operand (for non-FPop instructions) will be
rirs2] (i = 0), or a sign-extendesimm13(i = 1).

This field contains the 22-bit constant used by the SETHI instruction. (See Chapter 4.2 for Program Flow
Control)

Theop field selects the instruction format as shown in Table 4 .
Theop2field (Table 5) contains the instruction opcode for format 2 instructions (op=0).
The 6-bitop3field contains the instruction opcode for a format 3 instruction (op = 2 or 3).

The 9-bitopcidentifies a coprocessor—operate (CPop) instruction. The relationship betwepnftakl
and CPop instructions is described in Section 3.4.3.6.

The 9-bitopfidentifies a floating-point-operate (FPop) instruction. The relationship betweepftield
and FPop instructions is described in Section 3.4.3.6.

Ther register (or register pair) of register (off register pair) specified in thd field serves as the source

during store instructions. For all other instructions, the identified register (register pair) serves as the des-
tination. Note that r[0] as a source supplies the value 0, and as a destination causes the result to be dis-
carded. Note thatl must be a register for integer instructions and must beegister for floating—point
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instructions.
rsl The 5-bitrs1 field identifies the register containing the first source operand. The sourcedgister for
integer instructions, Bregisterfor floating—point instructions, or@registerfor coprocessor instructions.
rs2 The 5-bitrs2field identifies the register containing the second source operand. The sounagistar for

integer instructions, fregisterfor floating—point instructions, or@register for coprocessor instructions.

simm13  This field holds the 13-bit immediate value used as the second ALU operand wheni = 1. It is sign-extended
to full-word size when used.

Table 4. op field Coding

op Value Instruction
00 Bicc, FBfcc, CBccc, SETHI
01 Call
10or11 Other

Table 5. op2 Field Coding

op2 Value Instruction
000 Unimplemented
010 Bicc
100 SETHI
110 FBfcc
111 CBccc

Unused (reserved) bit patterns which are used inghep2, op3¢ri (wrong bit used) fields of instructions will cause

an illegal_instruction trap. Fields that are not used for a particular instruction are ignored and so will not cause a trap,
regardless of the bit pattern placed in that field. Unused or reserved bit patterns useapfrothapc fields of a
floating—point or coprocessor instruction cause an fp exception or a cp exception.

3.4.2. Addressing

Because it uses a load/store architecture, the TSC691E needs only four address modes. Memory address generation
is done only for load and store instructions and is byte oriented. Program counter-relative addressing is generated only
for calls and branches and is word-boundary oriented because it is addressing instructions. Register-indirect addressing
applies to jumps, returns, and traps and is also word-boundary oriented. Address generation is illustrated in Figure 17 .

3.4.2.1. Two—Register

Two-register addressing uses tb& andrs2 fields (instruction format 3) to specify two source registers whose 32-bit
contents are added together to create a memory address. This is a load/store (or register-indirect) addressing mode.

3.4.2.2. Register Plus 13-Bit Immediate

This addressing mode is used where an immediate value is required as one of the sources. The address is generated
by adding the 32-bit source register specifieddiy(format 3) to a 13-bit, sign-extended immediate value contained
in the instruction. This is a load/store (or register-indirect) addressing mode.

3.4.2.3. 13-Bit Immediate

Immediate addressing is a special case of register-plus-immediate addressing. In this cslsspéuified register

is r[0] (whose value is 0), which means the address is generated using only the 13-bit immediate value. Use of this
special case allows absolute addressing of the upper and lower 4 kbytes of a memory (or instruction) space with the
13-bit immediate value. Immediate addressing is the simplest method of addressing because no registers need be set
up beforehand.
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31 0
Register Source 1
a1 0 Memory Address
- (Program Counter)
Register Source 2
31 0
I Register Source 1
Memory Address
E - - = - - : (Program Counter)
Sign Extension 13-Bit Immediate
31 13 0
Sign Extension 13-Bit Immediate [—— Memory Address

(Program Counter)
LOAD/STORE(JMPL, RETT)

31

o

Program Counter + 4

Program Counter

1S
o -
= I

30-Bit Displacement
CALL

31 0
Program Counter + 4

a1 ” 51 o Program Counter

Sign Extension 22-Bit Displacement (0] [0]
BRANCH

Figure 17. Address Generation

3.4.2.4. CALL

Address generation for the CALL instruction is program counter-relative, that is, the target address is based on the
program counter. Because the TSC691E is a delayed-control-transfer machine (see Section 3.4.3.4), before the addres:
is calculated, the PC is replaced by the nPC, so the calculation is actually done with PC + 4 (see Figure 17 ).

An address is generated by adding this PC + 4 value to the 30-bit word displacement contained in the CALL instruction.
The displacement is formed by appending two zeros to the 30-bit value from the instruction. This allows control
transfers to any word-boundary location in the virtual memory instruction space. The result of the address generation
becomes the new nPC.

3.4.2.5. Branch

Branch instructions also use PC-relative addressing, but in this case, the value added to PC + 4 is a sign-extended 22-bi
word displacement. Again, the displacement is formed by appending two zeros to the 22-bit value contained in the
branch instruction and then sign extending out to 32 bits. This allows a branching range of 8 Mbytes on word
boundaries. The generated address becomes the new nPC.
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Table 6. ASI Assignments

TSC691E Address Space ldentifier (ASI) Address Space
00001000 (08 H) User Instruction
00001010 (0OA H) User Data
00001001 (09 H) Supervisor Instruction
00001011 (OB H) Supervisor Data

3.4.2.6. ASI

In addition to the 32 bits of address output by the processor, an additional eight bits of Address Space Identifier (ASI)

is also sent to system memory during a memory access. These ASI bits control access to 256 32-bit address spaces,
which may or may not overlap depending upon the designer’s implementation. The SPARC architecture defines four
ASI values for user instructions, user data, supervisor instructions, and supervisor data (see Table 6 ). These four ASI
values all map to the same 32-bit address space, and are used to implement access—level protection. ASI values are
commonly used to identify user/supervisor accesses, to identify special protected memory accesses such as boot
PROM, and to access resources such as TSC693E control registers, TLB entries, cache tag entries, etc...

The ASI value is supplied by the TSC691E for each instruction fetch and each data access encountered. The TSC690
family assigns a number of these ASI values to the TSC693E and a number are reserved for future assignment.
Nevertheless, nearly 80 are left unassigned for use by the system.

3.4.3. Instruction Types

TSCG691E instructions fall into six functional categories: load/store, arithmetic/logical/shift, control transfer,
read/write control register, floating-point-operate/coprocessor-operate, and miscellaneous. For complete information
on each instruction, refer to its definition in SPARC V7.0 Instruction Set.

3.4.3.1. Load/Store

Load and store instructions (see Table 7) move bytes, halfwords, words, and doublewords between the
byte-addressable main memory and a register in either the IU, FPU, or CP. They are the only instructions that access
data memory. For floating-point and coprocessor loads and stores, the TSC691E generates the memory address and
the FPU or CP receives or supplies the data.

The TSC691E implements a hardware-interlocked delay when an instruction immediately following a load tries to read
the register being loaded. The data will be supplied, but only after a one-cycle delay.

Load and store instructions use two-register, register-plus-immediate, and immediate addressing modes. In addition
to the 32-bit address, the TSC691E also generates an eight-bit address space identifier.

3.4.3.1.1. ASI

The Address Space Identifier (ASI) is used by the external system to ascertain which of the 256 available address spaces
to access for the load or store being executed. Access to these alternate spaces can be gained directly by using the “load
from alternate space” and “store to alternate space” instructions. These instructions use two-register addressing and
theasifield in instruction format 3. The address space specified iadilield overrides the automatic ASI assignment

made by the processor, giving access to such resources as system control registers that are invisible to the user. Because
the ASI is intended for use by the system operating software, the alternate space instructions are privileged and can
only be executed in supervisor mode.
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Table 7. Load/Store Instructions

Name Operation Cycles
LDSB (LDSBA¥*) Load Signed Byte (from Alternate Space) 2
LDSH (LDSHAY) Load Signed Halfword (from Alternate Space) 2
LDUB (LDUBAY) Load Unsigned Byte (from Alternate Space) 2
LDUH (LDUHAY*) Load Unsigned Halfword (from Alternate Space) 2
LD (LDAY¥) Load Word (from Alternate Space) 2
LDD (LDDA¥) Load Doubleword (from Alternate Space) 3
LDF Load Floating—Point 2
LDDF Load Double Floating—Point 3
LDFSR Load Floating—Point Status 2
LDC Load Coprocessor 2
LDDC Load Double Coprocessor 3
LDCSR Load Coprocessor Status Register 2
STB (STBA¥*) Store Byte (into Alternate Space) 3
STH (STHA¥) Store Halfword (into Alternate Space) 3
ST (STA%) Store Word (into Alternate Space) 3
STD (STDA¥) Store Doubleword (into Alternate Space) 4
STF Store Floating—Point 3
STDF Store Double Floating—Point 4
STFSR Store Floating—Point Status Register 3
STDFQ* Store Double Floating—Point Queue 4
STC Store Coprocessor 3
STDC Store Double Coprocessor 4
STCSR Store Coprocessor State Register 3
STDCQ* Store Double Coprocessor Queue 4
LDSTUB (LDSTUBAY) Atomic Load—Store Unsigned Byte (in Alternate Space) 4
SWAP (SWAPA¥*) Swapr Register with Memory (in Alternate Space) 4

* denotes supervisor instruction

3.4.3.1.2. Multiprocessing Instructions

In addition to alternate address spaces, the TSC691E provides two uninterruptible instructions, SWAP and LDSTUB
(atomic load and store unsigned byte), to support tightly coupled multiprocessing.

The SWAP instruction exchanges the contents ofragister with a word from a memory location without allowing
asynchronous traps or other memory accesses during the exchange.

The LDSTUB instruction reads a byte from memory into eegister and then overwrites the memory byte to all ones.
As with SWAP, LDSTUB prevents asynchronous traps and other memory accesses during its execution. LDSTUB is
used to construct semaphores.
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Multiple processors attempting to simultaneously execute SWAP or LDSTUB to the same memory location are
guaranteed that the competing instructions will execute in serial order.

3.4.3.2. Arithmetic/Logical/Shift

This class of instructions performs a computation on two source operands and writes the result into a destination register
r[rd]. One of the source operands is always a register, r[rs1], and the other depends on the state of the instruction’s “i"
(immediate) bit. If i = 0, the second operand is register r[rs2]. Ifi = 1, the operand is the 13-bit, sign-extended constant
in the instruction’simm13field. SETHI! is a special case because it is a single—operand instruction.

Table 8. Arithmetic/Logical/Shift Instructions

Name Operation Cycles
ADD (ADDcc) Add (and modify icc) 1
ADDX (ADDXcc) Add with Carry (and modify icc) 1
TADDcc (TADDccTV) Tagged Add and modify icc (and Trap on oVerflow) 1
SuB (SUBcc) Subtract (and modify icc) 1
SUBX (SUBXcc) Subtract with Carry (and modify icc) 1
TSUBcc (TSUBccTV) Tagged Subtract and modify icc (and Trap on oVerflow) 1
MULScc Multiply Step and modify icc 1
AND (ANDcc) And (and modify icc) 1
ANDN (ANDNcc) And Not (and modify icc) 1
OR (ORcc) Inclusive Or (and modify icc) 1
ORN (ORNcc) Inclusive Or Not (and modify icc) 1
XOR (XORcc) Exclusive Or (and modify icc) 1
XNOR (XNORcc) Exclusive Nor (and modify icc) 1
SLL Shift Left Logical 1
SRL Shift Right Logical 1
SRA Shift Right Arithmetic 1
SETHIM Set High 22 Bits of Register 1

For most arithmetic and logical instructions, there is both a version that modifies the integer condition codes and one
that doesn'’t (see Table 8).

Shift instructions shift left or right by a distance specified in either a register or an immediate value in the instruction.

The multiply step instruction, MULScc, is used to generate the signed or unsigned 64-bit product of two 32-bit integers.
For more information on MULScc, refer to its definition in SPARC V7.0 Instruction Set.
Note (1. See section 4.2 for application of this instruction in Program Flow Control.

3.4.3.2.1. Register r[0]

Because register r[0] reads as a 0 and discards any result written to it as a destination, it can be used with some
instructions to create syntactically familiar pseudoinstructions. For example, an integer COMPARE instruction is
created using the SUBcc (subtract and set condition codes) with r[0] as its desthafioREST instruction uses

SUBcc with r[0] as both the destination and one of the sources. A register-to-register MOVE is accomplished using
an ADD or OR instruction with r[0] as one of the source registers. A negation is done with SUB and r[0] as one source.
If the assembler being used supports pseudoinstructions, it translates the pseudoinstruction into the equivalent
instruction in the native assembly language. Refer to your assembly language manual for details.

Note [1]: Refer to Program Flow Control for more information. (see section 4.2)
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3.4.3.2.2. SETHI

SETHI is a special instruction that can be combined with another arithmetic instruction (such as an OR immediate)
to construct a 32-bit constant. SETHI loads a 22-bit immediate value into the upper 22 bits of the destination register
and clears the lower 10 bits. The arithmetic immediate instruction which follows is used to load the lower 10 bits. Note
that the 13-bit immediate value gives a 3 bit overlap with the 22-bit SETHI value. SETHI can also be combined with

a load or store instruction to construct a 32-bit memory address.

SETHI can also be used in Program Flow Control to compare the precomputed checksum given as a special SETHI
instruction (SETHI 0,%SUM) with the checksum. This special SETHI instruction can be inserted after every branch,
call, and before every branch-in point.

3.4.3.2.3. Tagged Arithmetic

The tagged arithmetic instructions are useful for languages that employ tags, such as LISP, Smalltalk, or Prolog. For
efficient support of such languages, the SPARC architecture defines tagged data as a data type. Tagged data are assume
to be 30 bits wide with the tag bits (the least two significant bits) set to zero (see Figure 18 ). A tagged add (TADDcc)
or subtract (TSUBcc) will set the overflow bit if either of the operands has a nonzero tag or if a normal overflow occurs.

TAGGED | WORD [d d
DATA 31 210

At least one bit
OTHER |31 WORD 2| f' 8(| must be non—zero.

Figure 18. Tagged Data Example

Tagged add or subtract instructions are normally followed by a conditional branch. If the overflow bit is set during a
tagged add or subtract operation, control is commonly transferred to a routine that checks the operand types. In order
to expedite this software construct, the SPARC architecture provides two trap on overflow instructions: TADDccTV
and TSUBccTV, which automatically trap if the overflow bit is set during their execution.

3.4.3.3. Control Transfer

Control transfer instructions are those that change the values of the PC and nPC. These include conditional branches
(Bicc, FBfcc, CBccc), a call (CALL), a jump (JMPL), conditional traps (Ticc), and a return from trap (RETT). Also
included are the SAVE and RESTORE instructions, which don'’t transfer control but are used to save or restore windows
during a call to a new procedure or a return to a calling procedure (see Table 9).

Table 9. Control Transfer Instructions

Name Operation Cycles
SAVE SAVE caller’s window 1
RESTORE RESTORE caller’s window 1
Bicc Branch on integer condition codes 1*
FBfcc Branch on floating—point condition codes 1*
CBccc Branch on coprocessor condition codes 1*
CALL Call 1*
JMPL JuMP and Link 2*
RETT RETurn from Trap 2%
Ticc Trap on integer condition codes 1 (4 if taken)

* assumes delay slot is filled with a useful instruction
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In the TSC691E, control transfer is usually delayed so that the instruction immediately following the control-transfer
instruction (called the delay instruction) can be executed before control transfers to the target address. The delay
instruction is always fetched. However, the annu bit in conditional branch instructions can cause the instruction

to be annulled (i.e., prevent execution) if the branch is not taken (or always annulled in the case of BA, FBA, and CBA).
If a branch is taken, the delay instruction is always executed (except for BA, FBA, and CBA, see Section 3.4.3.4.3).
Table 10shows the characteristics of each control transfer type.

Table 10. Control Transfer Instruction Characteristics

Instructions Addressing Mode Delayed Annul Bit
Conditional Branch Program Counter Relative yes yes
Call Program Counter Relative yes yes
Jump Register Indirect yes no
Return Register Indirect yes no
Trap Register Indirect no no

Program Counter Relative

PC-relative addressing computes the target address by adding a displacement to the program counter. See Section
3.4.2.

Register-Indirect

Register-indirect addressing computes the target address as either r[rs1] + r[rs2] if i = 0, osifned] 3if i = 1.
See Section 3.4.2.

Delayed

A control-transfer instruction is delayed if it transfers control to the target address after a one-instruction delay. See
Section 3.4.3.4.

Annul Bit
In an instruction with an annul bit, the delay instruction that follows may be annulled. See Section 3.4.3.4.3.

3.4.3.3.1. Branching and the Condition Codes

The condition code bits in thec, fcc, andcccfields, are located (respectively) in the PSR (Processor State Register),
FSR (Floating-point State Register), and CSR (Coprocessor State Register). The integer condition code bits are
modified by arithmetic and logical instructions whose names end with the ttensthey may be written directly

with WRPSR. The floating-point condition codes are modified by the floating-point compare instructions, FCMP and
FCMPE, or directly with the STFSR instruction. Modification of the coprocessor condition codes is done directly with
STCSR or by operations defined by the particular coprocessor implementation.

Except for BA (Branch Always) and BN (Branch Never), a Bicc instruction evaluates the integer condition codes as

specified in theondfield. If the tested condition evaluates as true, the branch is taken, causing a PC-relative delayed

transfer to the address [(PC + 4) + sign extnd(disp22)]. If the evaluation result is false, the branch is not taken. For BA
and BN, there is no evaluation; the result is simply forced to true for BA and false for BN.

If the branch is not taken, then the annul bit is checked. If the “a” bit is set, the delay instruction is annulled. If “a” is
not set, the delay instruction is executed. If the branch is taken, the annul bit is ignored and the delay instruction is
executed. For more information on delayed control transfer and the annul bit, see Section 3.4.3.4.

BN, of course, never branches, and therefore executes like a NOP (but is not recommended as a NOP instruction).
However, as far as the annul bit is concerned, BN acts like a normal branch instruction, annulling the delay instruction
ifa=1 and executing itifa = 0.

BA, on the other hand, always branches, so the annul bit would normally be ignored. But for BA, FBA, and CBA, the
effect of the annul bit is changed. See Section 3.4.3.4.3 for detalils.

As illustrated in Table 11 , Bicc and Ticc instructions test for the same conditions and use thersHie&l codes
during their evaluations.

An FBfcc instruction operates in the same way as a Bicc, except it tests the FCC[1:0] signals output by the
floating—point unit (see Table 12 ). The FCCJ[1:0] signals are floating—point condition codes which are set by executing

26
Rev. | — September 23, 1998



TEMIC TSCB91E

a floating—point compare instruction. A CBccc instruction behaves in the same manner as a FBfcc, except it tests the
CCCJ1:0] signals supplied by the coprocessor (see Table 13 ). Both FBN and CBN behave in the same way as BN.

Table 11. Bicc and Ticc Condition Codes

Condition Test Condition Test
0000 Never 1000 Always
0001 Equal to 1001 Not equal to
0010 Less than or equal 1010 Greater than
0011 Less than 1011 Greater than or equal to
0100 Less than or equal to, unsigned 1100 Greater than, unsigned
0101 Carry set (less than, unsigned) 1101 Carry clear (greater than or equal to, unsigned)
0110 Negative 1110 Positive
0111 Overflow set 1111 Overflow clear

Table 12. FBfcc Condition Codes

Condition Test Condition Test
0000 Never 1000 Always
0001 Not equal to 1001 Equal to
0010 Less than or greater than 1010 Unordered or equal to
0011 Unordered or less than 1011 Greater than or equal to
0100 Less than 1100 Unordered or greater than or equal to
0101 Unordered or greater than 1101 Less than or equal to
0110 Greater than 1110 Unordered or less than or equal to
0111 Unordered 1111 Ordered

Table 13. CBccc Condition Codes

Opcode Condition CCC[1:0] Test Opcode Condition CCCJ1:0] Test

CBN 0000 Never CBA 1000 Always

CB123 0001 lor2or3 CBO 1001 0

CB12 0010 lor2 CBO03 1010 Oor3

CB13 0011 lor3 CB02 1011 Oor2

CB1 0100 1 CB023 1100 Oor2or3

CB23 0101 20r3 CB01 1101 Oorl

CB2 0110 2 CB013 1110 Oorlor3

CB3 0111 3 CB012 1111 Oorlor2

3.4.3.3.2. Trap Instructions

The “Trap on integer condition codes” (Ticc) instruction evaluates the condition codes specifiedbg(itondition)
field. If the result is true, a trap is immediately taken (no delay instruction). If the condition codes evaluate to false,
Ticc executes as a NOP.

Once the Ticc is taken, it identifies which software trap type caused it by writing its trap number + 128 (the offset for
trap instructions) into tht field of the Trap Base Register (TBR), as illustrated in Figure 19 . The trap number is the
least significant seven bits of either “r[rs1] + r[rs2]” if thigeld is zero, or “r[rs1] + sign extnd(simm13)” if théeld

is one. The processor then disables traps (ET=0), saves the state of S into PS, decrements the CWP, saves PC and nF
into thelocalsr[17] and r[18] (respectively) of the new window, enters supervisor mode (S=1), and writes the trap base
register to the PC and TBR + 4 to nPC.
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Trap Base Register |  Trap Base Address (TBA) | Trap Type(tt) Jo o o of

31 12 11 4 3 0
22 : 128
%%%W 7-Bit operand 6:0 0
43/,,,7 6 o [6:0] + [7:0] tt field of Trap Base Register

/WW /¥3-Bit Inmediate

bit of Ticc instruction =

7 2 128

WZ%W 7-Bit operand _ )
) [6:0] N [7:0 tt field of Trap Base Register
Wﬁﬁ/ A 7-Bit operand

bit of Ticc instruction =

Figure 19. Ticc Trap Address Generation

Ticc can be used to implement kernel calls, breakpointing, and tracing. It can also be used for run-time checks, such
as out-of-range array indices, integer overflow, etc.

Return from a trap is accomplished using the delayed control transfer couple, JMPL, RETT. RETT first increments
the CWP by one, calculates the return address (using register-indirect addressing), and then checks for a number of
trap conditions before it allows a return. An illegal_instruction trap is generated if traps are enabled (ET=1) when RETT
is executed. If ET=0, RETT checks for other trap conditions and will generate a reset trap and enter error mode for
the following conditions: S=0, the new CWP would cause a window underflow, or the return address is not word
aligned. If none of these conditions exist, RETT enables traps (ET=1), restores the previous supervisor state to the S
bit, and writes the target address into the nPC.

3.4.3.3.3. Calls and Returns

Calling a subroutine or procedure can be done in one of two ways. A CALL instruction computes its target address
using a PC-relative displacement of 30-bits. The JuMP and Link (JMPL) instruction uses register-indirect addressing
(the sum of two registers or the sum of a register and a 13-bit signed immediate value) to compute its target address.
Either instruction allows control transfer to any arbitrary instruction address.

Control transfer to a procedure that requires its own register window is done with either a CALL or JMPL instruction
and a SAVE instruction. A procedure that does not need a new window, a so-called “leaf” routine, is invoked with only
the CALL or JMPL.

The CALL instruction stores its return address (the current PCliroregister r[15]. When the new window is
activated, this becomaess register r[31] (see Figure 5). The JMPL instruction stores its return address (the contents
of PC, which is the Link) into theregister specified in the destination field,

The primary purpose of the SAVE instruction is to “save” the caller’s window by decrementing the Current Window
Pointer (CWP) by one, thereby activating the next window and making the current window into the previous window.
SAVE also performs a normal ADD, using source registers from the caller's window, but writing the result into a
destination register in the new window. This can be used to set a new stack pointer from the previous one (see Section
3.3.1.1.1).

Return from a procedure requiring its own window is done with a RESTORE and a JMPL instruction. A leaf procedure
returns by executing a JMPL only. The target address for the return is normally that of the instruction following the
CALL's or JMPL's delay instruction; that is, the return address + 8. The RESTORE instruction restores the caller’s
window by incrementing the CWP by one, causing the previous window to become the current window. As with SAVE,
RESTORE performs an ADD using source registers from the called (new) window and writing the result into the calling
(previous) window.

Both SAVE and RESTORE compare the new CWP against the Window Invalid Mask (WIM) to check for window
overflow or underflow. They may also be used to atomically change the CWP while establishing a new memory stack
pointer in arr register.
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3.4.3.4. Delayed Control Transfer

Traditional architectures usually execute the target instruction of a control transfer immediately after the control
transfer instruction. However, in a pipelined RISC architecture, this type of transfer would require flushing the
instruction that follows the control transfer instruction. To avoid creating a hole or bubble in the pipeline, the TSC691E
delays execution of the target instruction until the instruction following the control transfer instruction is executed. The
instruction in this delay slot is called the delay instruction.

Table 14. Delayed Control Transfer Instruction Example

PC nPC Instruction
8 12 Non-control transfer
12 16 Control transfer (target = 40)
16 40 Non-control transfer (delay instruction)
(Transfers control to 40)
40 44
Table 15. Effect of Annul Bit Reset é=0)
PC nPC Instruction Action
8 12 Non-control transfer Executed
12 16 Bicc (a =0) 40 Not Taken
16 20 Delay slot instruction Executed
20 24 Executed
Table 16. Effect of Annul Bit Reseté=1)
PC nPC Instruction Action
8 12 Non-control transfer Executed
12 16 Bicc (a=1) 40 Not Taken
16 20 Delay slot instruction (annuled) Not Executed
20 24 Executed

3.4.3.4.1. PC and nPC

The Program Counter (PC) contains the address of the instruction currently being executed by the TSC691E, and the
next Program Counter (nPC) holds the address (PC + 4) of the next instruction to be executed (assuming a control
transfer or a trap does not occur).

Most instructions end by copying the contents of the nPC into the PC and then they either increment nPC by four or
write a computed control transfer target address into nPC. At this point, the PC points to the instruction that is about
to begin execution and the nPC points to the instruction that will be executed after that, i.e. the second instruction after
the currently executing instruction. It is the existence of the nPC that allows the execution of the delay instruction
before transfer of control to the target instruction.

3.4.3.4.2. Delay Instruction

The instruction pointed to by the nPC when the PC is pointing to a delayed-control-transfer instruction is called the
delay instruction. Normally, this is the next sequential instruction in the code stream. However, if the instruction that
preceded the delayed control transfer was itself a delayed control transfer, the target of the preceding control transfer
becomes the delay instruction (that's where the nPC will point). For more on delayed control transfer couples, see
Section 3.4.3.4.4.

Table 14shows the order of execution for a simple (not back-to-back) delayed control transfer. The order of execution
is 8, 12, 16, 40. If the delayed-control-transfer instruction were not taken, the order would be 8, 12, 16, 20.

3.4.3.4.3. Annul Bit

Thea (annul) bit is only available on conditional branch instructions (Bicc, FBfcc, and CBccc), where it changes the
behavior of the delay instruction. dfis set on a conditional branch instruction (except BA, FBA, and CBA) and the
branch isnottaken, the delay instruction is annulled (not executed). An annulled instruction has no effect on the state
of the TSC691E nor can a trap occur during an annulled instruction. If the branch is takebit ithégnored and the

delay instruction is executed. Table 15 and Table 16 show the effect of the annul bit when it is reset or set.
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The “branch always” instructions (BA, FBA, and CBA) are a special case. éfltitas set in these instructions, the

delay instruction is annulled, even though the branch is taken. Effectively, this gives a “traditional” non-delayed
branch. When a = 0 in a “branch always” instruction, it behaves the same as any other conditional branch; the delay
instruction is executed. Figure 20 displays the effectatbé has on any branch for either the set or reset state.
Table 17 summarizes the effect the annul bit has on the execution of delay instructions.

Table 17. Effect of Annul Bit on Delay Instruction

a bit Type of branch Delay instruction executed?
Always No
a=1 Conditional, taken Yes
Conditional, not taken No
Always Yes
a=0 Conditional, taken Yes
Conditional, not taken Yes
annul bit=0 annulbit=1
Code Code

Y Y

Branch IControI Transfer Inst. I

Control Transfer Inst. Untaken
Always t Conditional
Y =
Taken I Delay Inst. I Taken I Delay Inst. |
Conditional Conditional I
- Untaken -«
Conditional +

Figure 20. Delayed Control Transfer

3.4.3.4.4. Delayed Control Transfer Couples

The occurrence of two back-to-back, delayed control transfer instructions is called a delayed control transfer couple,
which the processor handles differently from a simple control transfer. An instruction sequence containing a delayed
control transfer couple is shown in Table 18 , and the order of execution for the six different cases of back-to-back,
delayed control transfer instructions is shown in Table 19 .

The delay slot instruction for a delayed control transfer instruction is the instruction fetched after the delayed control
transfer instruction. For most cases, this instruction is located immediately in the code listing after the delayed control
transfer instruction. However, in the case of a delayed control transfer couple, the target instruction of the first delayed
control transfer instruction is the delay slot instruction for the second delayed control transfer instruction, since that
target instruction is the next instruction to be fetched. The delay slot instruction for the second delayed control transfer
instruction is the next instruction loaded into the instruction pipeline after the second delayed control transfer

instruction.

In the following tables, “delayed control transfer instruction” is abbreviated to “DCTI”. A “Non-DCTI” may be either
a non-control transfer instruction or a control transfer that is not delayed (i.e., a Ticc). Where the annul bit is not
indicated, it may be either 0 or 1.

Case 1 of Table 19 includes the “ JMPL, RETT ” couple, which is the normal method of returning from a trap handler.
The JMPL, RETT couple ensures correct values of PC and nPC are restored upon exiting the trap routine, even in the
case of a trap caused by a delay slot instruction (see Section 3.4.3.4.2). The case of a trap caused by a delay slot
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instruction is one where the nPC will not be PC + 4, thus requiring both PC and nPC to be restored. The JMPL, RETT
couple allows the choice of re—executing the trapped instruction or executing the instruction following the trap
occurrence. Refer to the RETT entry in SPARC V7.0 Instruction Set for further information.

Table 18. Delayed Control Transfer
Couple Instruction Sequence

Address Instruction Target
8: Non DCTI
12: DCTI 40
16: DCTI 60
20: Non DCTI
24:
40: Non DCTI
44:
60: Non DCTI
64:

Table 19. Execution of Delayed Control Transfer Couples

Case DCTI at Location 12 DCTI at Location 16 Order of Execution
1 DCTI Unconditional DCTI Taken 12, 16, 40, 60, 64, ...
2 DCTI Unconditional B*cc (a = 0) Untaken 12, 16, 40, 44, ...
3 DCTI Unconditional B*cc (a = 1) Untaken 12, 16, 44, 48, ... (40 annuled)
4 DCTI Unconditional B*A(a=1) 12, 16, 60, 64, ... (40 annuled)
5 B*A (a=1) any CTI 12, 40, 44, ... (40 annuled)
6 B*cc DCTI Not supported
Definitions:
B*¥AL o BA, FBA, or CBA
B*CC.oviiiieiiiieeeiee e Bicc, FBicc, or CBicc (exceptB\)
DCTIUNcoNd.......cccoevvernennenn CALL, JMPL, RETT, ot 8(a=0)
DCTI Taken.......cccoovvveiiineenns CALL, JMPL, RETTX @& taken, or BA (a=0)

Cases 1-Glescribed in Table 1@re illustrated in Figure 21 . In case 1, the first DCTI is fetched at address 0x12 and
the target address is calculated while the delay slot instruction is fetched. The delay slot instruction for the first DCTI
(located at address 0x16) is another DCTI, which also has a delay slot. The target address of the first DCTI has been
calculated by the time the first delay slot instruction has been fetched, and the target instruction is fetched at address
0x40. The target instruction is the instruction located in the instruction pipeline after the second DCTI, and therefore
it is the delay slot instruction for the second DCTI. The target instruction for the second DCTI (address 0x60) is fetched
after the delay slot instruction for the second DCTI (which is also the target address for the first DCTI) has been fetched.

Case Aiffers from case 1 in that the second DCTI is conditional, and is not taken. In case 2, the instruction at address
0x40 (target for DCTI #1) is the delay slot instruction for the second DCTI. Since the second DCTI does not cause a
branch, the instruction fetch continues to address 0x44.

Case 3s aninteresting case in which the target instruction of the first DCTI is annulled by the second DCTI. This causes
the instruction at address 0x40 to be annulled. Since the second DCTI is an untaken conditional branch, instruction
fetch continues after the annulled target instruction (address 0x44).

Case 4illustrates a DCTI followed by a branch always instruction with the annul bit set. This causes the target
instruction of the first DCTI (address 0x40) to be annulled, and program control is transferred to the target of the second
DCTI at address 0x60.

Case Sillustrates the case where the second DCTI is annulled by the annul bit of the first DCTI. The second DCTI,
since it is annulled, has no effect on instruction fetch. This case is identical to the case of any other annulled delay slot
instruction.

Case 6When the first instruction of a delayed control transfer couple is a conditional branch, control transfer is
undefined. If such a couple is executed, the location where execution continues is within the same address space but
is otherwise undefined. Execution of this sequence does not change any other aspect of the processor state.
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Instruction Case 1 Instruction Case 2 Instruction Ca‘se 3
Address Address Address
ox12 | DCT Inst. 1 ox1i2 | DCT Inst. 1 0x12 | DCT Inst. 1 I
Delay Slot #1 [ y Delay Slot #1| | Delay Slot #1
4% 1/DCT Inst. 2 0x16 B*cc (untaken)

a=0 a=1

B*cc (untaken) || 0x16
|

Delay Slot #2 Delay Slot #2 D #2
oxto || DCT #1 Targe 0x40 | DCT #1 Targetl 0x40 i@@j\}&}i&@éﬁk
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oxeo | DCT #2 Target

ﬁ Instruction Case 4 Instruction Case 5
0x64 Next Inst. Address Address
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0x40 \WWN 0x40

annulled by DCTI #2
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0x60 | DCT #2 Targe]
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Figure 21. Delayed Control Transfer Couples

3.4.3.5. Read/Write Control Registers
This class of instruction reads or writes the contents of the various control registers (see Table 20 ).

Table 20. Read/Write Control Register Instructions

Name Operation Cycles

RDY Read Y Register 1
RDPSR* Read Processor State Register 1
RDWIM* Read Window Invalid Mask 1
RDTBR* Read Trap Base Register 1

WRY Write Y Register 1
WRPSR* Write Processor State Register 1
WRWIM* Write Window Invalid Mask 1
WRTBR* Write Trap Base Register 1

* denotes supervisor instruction
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The source (read) or destination (write) is implied by the instruction name. Read/write instructions are provided for
the PSR, WIM, TBR, FSR, CSR, and the Y register. Reads and writes to the PSR, WIM, and TBR are privileged and
are available in supervisor mode only.

3.4.3.6. Floating-Point-Operate and Coprocessor-Operate

Floating-point calculations are accomplished with floating-point-operate instructions (FPops), which are
register-to-register instructions that compute some result as a function of one or two source operands (see Table 21).
The result is always placed in a destination register (i.e., source operands are not overwritten). The source and
destination registers afeegisters from the FPU'’s register file. If no FPU is present, or if the EF bit of the PSR is not
set, executing a floating—point instruction will generate aisBbled trap.

Coprocessor-operate instructions (FPops) are executed by the attached coprocessor. Coprocessor instructions use th
c registerslocated in the coprocessor's register file as source and destination registers. If there is no attached
coprocessor, attempted execution of a coprocessor instruction generatdisabkeel trap.

Floating-point and coprocessor load/store instructions are not operate instructions; they fall UNe€681Es load
[store instruction category (see Section 3.4.3.1).

Except forop andop3 which specify the particular floating-point-operate or coprocessor-operate instruction to be
executed, the instruction fields of an FPop or CPop are interpreted by the FPU or coprocessor. Floating-point-operate
instructions execute concurrently withRSC691E instructions. FPops can also execute concurrently with both
TSC691Eand FPop instructions if they are designed to do so.

Because th# SC691Eand FPU can execute instructions concurrently, when a floating-point exception occurs, the PC
does contain the address of an FPop instruction, but not the one that caused the exception. However, the front entry
of the floating-point queue contains the offending instruction and its address.

If the coprocessor executes instructions concurrently witi 8@691E the architecture will support a coprocessor
gueue that functions in the same fashion as the floating-point queue.

Table 21. Floating—Point—Operate and Coprocessor—Operate Instructions

Name Operation Cycles
FPop Floating—Point Operations 1 to launch
FPop Coprocessor Operations 1 to launch

3.4.3.7. Miscellaneous

Instructions in this category handle special circumstances within the integer unit (see Table 22 ). Execution of the
UNIMP instruction causes an illegal instruction trap, so its execution is normally avoided except as part of a checking
routine. Details of one possible use for UNIMP are given in its definition in SPARC V7.0 Instruction Set.

The IFLUSH instruction is used to flush a word from an internal (td 8€691F) instruction cache. Current integer
unit implementationsT{SC691E) do not incorporate an internal instruction cache, so IFLUSH would normally execute
as a NOP. However, if there is an external instruction cache, IFLUSH causes an illegal instruction trap gigmalFT

is LOW (see Section 3.5)

Table 22. Miscellaneous Instructions

Name Operation Cycles
UNIMP Unimplemented Instruction 1
IFLUSH Instruction Cache Flush 1

3.4.4. Op Codes

This section contains tables that give a complete list of the instruction opcodes, both by functional groups and in
ascending numeric order.
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3.4.4.1. Load/Store Instructions

Table 23. Load/Store Instruction Opcodes

. Opcodes with Format
Mmemaonic
31 30 29 25 24 19 18 14 13 12 5 4 0
i =0 ignored rs2
LD 11 rd 000000 rsl
i=1 simm13
LDA 11 rd 010000 rsl i=0 asi rs2
i=0 ignored rs2
LDC 11 rd 110000 rsl
i=1 simm13
i=0 ignored rs2
LDCSR 11 rd 110001 rsl
i=1 simm13
i=0 ignored rs2
LDD 11 rd 000011 rsl
i=1 simm13
LDDA 11 rd 010011 rsi i =0 asi rs2
i =0 ignored rs2
LDDC 11 rd 110011 rsl
i=1 simm13
i=0 ignored rs2
LDDF 11 rd 100011 rsl
i=1 simm13
i=0 ignored rs2
LDF 11 rd 100000 rsl
i=1 simm13
i=0 ignored rs2
LDFSR 11 rd 100001 rsl
i=1 simm13
i =0 ignored rs2
LDSB 11 rd 001001 rsl
i=1 simm13
LDSBA 11 rd 011001 rsl i=0 asi rs2
i =0 ignored rs2
LDSH 11 rd 001010 rsl
i=1 simm13
LDSHA 11 rd 011010 rsl i=0 asi rs2
i=0 ignored rs2
LDSTUB 11 rd 001101 rsl
i=1 simm13
LDSTUBA 11 rd 011101 rsl i=0 asi rs2
i=0 ignored rs2
LDUB 11 rd 000001 rsl
i=1 simm13
LDUBA 11 rd 010001 rsl i=0 asi rs2
i=0 ignored rs2
LDUH 11 rd 000010 rsl
i=1 simm13
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. Opcodes with Format
Mnemonic
31 30 29 25 24 19 18 14 13 12 5 4 0
LDUHA 11 rd 010010 rsi i=0 asi rs2
i=0 ignored rs2
ST 11 rd 000100 rsl
i=1 simm13
STA 11 rd 010100 rsi i=0 asi rs2
i=0 ignored rs2
STB 11 rd 000101 rsi
i=1 simm13
STBA 11 rd 010101 rsi i=0 asi rs2
i= ignored rs2
STC 11 rd 110100 rsi
i=1 simm13
i=0 ignored rs2
STCSR 11 rd 110101 rsl
i=1 simm13
i=0 ignored rs2
STD 11 rd 000111 rsl
i=1 simm13
STDA 11 rd 010111 rsi i=0 asi rs2
i=0 ignored rs2
STDC 11 rd 110111 rsi
i=1 simm13
i=0 ignored rs2
STDCQ 11 rd 110110 rsi
i=1 simm13
i=0 ignored rs2
STDF 11 rd 100111 rsi
i=1 simm13
i=0 ignored rs2
STDFQ 11 rd 100110 rsl
i=1 simm13
i=0 ignored rs2
STF 11 rd 100100 rsl
i=1 simm13
i= ignored rs2
STFSR 11 rd 100101 rsl
i=1 simm13
i=0 ignored rs2
STH 11 rd 000110 rsl
i=1 simm13
STHA 11 rd 010110 rsi i=0 asi rs2
i=0 ignored rs2
SWAP 11 rd 001111 rsi
i=1 simm13
SWAPA 11 rd 011111 rsi i=0 asi rs2
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3.4.4.2. Arithmetic/Logical/Shift Instructions

Table 24. Arithmetic/Logical/Shift Instruction Opcodes

. Opcodes with Format
Mmnemaonic
31 30 29 25 24 19 18 14 13 12 5 4 0
i=0 ignored rs2
ADD 10 rd 000000 rsl
i=1 simm13
i=0 ignored rs2
ADDcc 10 rd 010000 rsl
i=1 simm13
i=0 ignored rs2
ADDX 10 rd 001000 rsl
i=1 simm13
i=0 ignored rs2
ADDXcc 10 rd 011000 rsl
i=1 simm13
i=0 ignored rs2
AND 10 rd 000001 rsl
i=1 simm13
i=0 ignored rs2
ANDcc 10 rd 010001 rsl
i=1 simm13
i=0 ignored rs2
ANDN 10 rd 000101 rsl
i=1 simm13
i =0 ignored rs2
ANDNCcc 10 rd 010101 rsl
i=1 simm13
i=0 ignored rs2
MULScc 10 rd 100100 rsl
i=1 simm13
i =0 ignored rs2
OR 10 rd 000010 rsl
i=1 simm13
i=0 ignored rs2
ORcc 10 rd 010010 rsl
i=1 simm13
i=0 ignored rs2
ORN 10 rd 000110 rsl
i=1 simm13
i=0 ignored rs2
ORNCcc 10 rd 010110 rsl
i=1 simm13
i=0 ignored rs2
SLL 10 rd 100101 rsl
i=1 shent
i=0 ignored rs2
SRA 10 rd 100111 rsl
i=1 shent
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. Opcodes with Format
Mnemonic
31 30 29 25 24 19 18 14 13 12 5 4 0
i=0 ignored rs2
SRL 10 rd 100110 rsl
i=1 shent
i=0 ignored rs2
SUB 10 rd 000100 rsl
i=1 simm13
i=0 ignored rs2
SUBcc 10 rd 010100 rsl
i=1 simm13
i= ignored rs2
SUBX 10 rd 001100 rsl
i=1 simm13
i =0 ignored rs2
SUBXcc 10 rd 011100 rsl
i=1 simm13
i=0 ignored rs2
TADDcc 10 rd 100000 rsl
i=1 simm13
i=0 ignored rs2
TADDccTV 10 rd 100010 rsl
i=1 simm13
i=0 ignored rs2
TSUBcc 10 rd 100001 rsl
i=1 simm13
i=0 ignored rs2
TSUBccTV 10 rd 100011 rsl
i=1 simm13
i=0 ignored rs2
XNOR 10 rd 000111 rsl
i=1 simm13
i=0 ignored rs2
XNORcc 10 rd 010111 rsl
i=1 simm13
XOR 10 rd 000011 rsl i=0 ignored rs2
XOR 10 rd 000011 rsl i=1 simm13
i=0 ignored rs2
XORcc 10 rd 010011 rsl
i=1 simm13
31 30 29 25 24 22 21 0
SETHI 00 rd 100 imm22
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3.4.4.3. Control Transfer Instructions

Table 25. Control Transfer Instruction Opcodes

M ic Opcodes with Format
31 30 29 25 24 19 18 14 13 12 5 4 0
i =0 ignored rs2
JMPL 10 rd 111000 rsl
i=1 simm13
i=0 ignored rs2
RESTORE 10 rd 111101 rsl
i=1 simm13
i =0 ignored rs2
RETT 10 ignored 111001 rsl
i=1 simm13
i=0 ignored rs2
SAVE 10 rd 111100 rsl
i=1 simm13
31 30 29 28 25 24 22 21 o]
Bicc 00 | a| cond 010 disp22
CBccc 00 | a| cond 111 disp22
FBfcc 00 | a| cond 110 disp22
31 30 29 28 25 24 19 18 14 13 12 5] 4 0
i=0 ignored rs2
Ticc 10 I* cond 111010 rsl
i=1 simm13
CALL 01 disp30
*| = ignored.

Table 26. Bicc and Ticc Condition Codes

Condition Test
0000 Never
0001 Equal to
0010 Less than or equal to
0011 Less than
0100 Less than or equal to, unsigned
0101 Carry set (less than, unsigned)
0110 Negative
0111 Overflow set
1000 Always
1001 Not equal to
1010 Greater than
1011 Greater than or equal to
1100 Greater than, unsigned
1101 Carry clear (greater than or equal, unsigned)
1110 Positive
1111 Overflow clear
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Table 27. FBfcc Condition Codes

Condition Test

0000 Never

0001 Not equal

0010 Less than or greater to

0011 Unordered or less than

0100 Less than

0101 Unordered or greater than

0110 Greater than

0111 Unordered

1000 Always

1001 Equal

1010 Unordered or equal

1011 Greater than or equal

1100 Unordered or greater than or equal
1101 Less than or equal

1110 Unordered or less than or equal
1111 Ordered

Table 28. CBccc Condition Codes
Opcode Condition Test

CBN 0000 Never
CB123 0001 lor2or3
CB12 0010 lor2

CB13 0011 lor3

CB1 0100 1

CB23 0101 2o0r3

CB2 0110 2

CB3 0111 3

CBA 1000 Always

CBO 1001 0

CBO03 1010 Oor3

CB02 1011 Oor2
CB023 1100 Oor2or3
CBO01 1101 Oor1l
CB013 1110 Oorlor3
CB012 1111 Oorlor2

3.4.4.4. Read/Write Control Register Instructions

Table 29. Read/Write Control Register Instruction Opcodes

Rev. | — September 23, 1998

. Opcodes with Format
Mmermonic
31 30 29 25 24 19 18 14 13 12 0
RDPSR 10 rd 101001 ignored [* ignored
RDTBR 10 rd 101011 ignored I* ignored
RDWIM 10 rd 101010 ignored [* ignored
RDY 10 rd 101000 ignored I* ignored
i =0 ignored rs2
WRPSR 10 ignored 110001 rsl - X
=1 simm13
i=0 ignored rs2
WRTBR 10 ignored 110011 rsl
i=1 simm13
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. Opcodes with Format
Mnemonic
29 24 19 18 14 13
i =0 ignored rs2
WRWIM ignored 110010 rsl
i=1 simm13
i =0 ignored rs2
WRY ignored 110000 rsl
i=1 simm13
*| = ignored.

3.4.4.5. Floating-Point/Coprocessor Instructions

Table 30. Floating—Point /Coprocessor Instruction Opcodes

Mnemonic Opcodes with Format
29 24 19 18 14 13
FPOP1 rd 110110 rsl OPC rs2
FPOP2 rd 110111 rsl OPC rs2
FABSs rd 110100 ignored 0 001001 rs2
FADDs rd 110100 rsl 0 000001 rs2
FADDd rd 110100 rsl 0 000010 rs2
FADDx rd 110100 rsl 0 000011 rs2
FCMPs ignored 110101 rsl 0 010001 rs2
FCMPd ignored 110101 rsl 0 010010 rs2
FCMPx ignored 110101 rsl 0 010011 rs2
FCMPEs ignored 110101 rsl 0 010101 rs2
FCMPEd ignored 110101 rsl 0 010110 rs2
FCMPEXx ignored 110101 rsl 0 010111 rs2
FDIVs rd 110100 rsl 0 001101 rs2
FDIVd rd 110100 rsl 0 001110 rs2
FDIVX rd 110100 rsl 0 001111 rs2
FMOVs rd 110100 ignored 0 000001 rs2
FMULs rd 110100 rsl 0 001001 rs2
FMULd rd 110100 rsl 0 001010 rs2
FMULXx rd 110100 rsl 0 001011 rs2
FNEGs rd 110100 ignored 0 000101 rs2
FSQRTs rd 110100 ignored 0 101001 rs2
FSQRTd rd 110100 ignored 0 101010 rs2
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Mnemonic Opcodes with Format
31 30 29 25 24 19 18 14 13 5 4 0

FSQRTX 10 rd 110100 ignored 000101011 rs2
FSUBs 10 rd 110100 rsl 001000101 rs2
FSUBd 10 rd 110100 rsl 001000110 rs2
FSUBXx 10 rd 110100 rsl 001000111 rs2
FdTOI 10 rd 110100 ignored 011010010 rs2
FdTOs 10 rd 110100 ignored 011000110 rs2
FdTOx 10 rd 110100 ignored 011001110 rs2
FiTOd 10 rd 110100 ignored 011001000 rs2
FiTOs 10 rd 110100 ignored 011000100 rs2
FiTOX 10 rd 110100 ignored 011001100 rs2
FsTOd 10 rd 110100 ignored 011001001 rs2
FsTOI 10 rd 110100 ignored 011010001 rs2
FsTOx 10 rd 110100 ignored 011001101 rs2
FXTOi 10 rd 110100 ignored 011010011 rs2
FXTOs 10 rd 110100 ignored 011000111 rs2
FxTOd 10 rd 110100 ignored 011001011 rs2

3.4.4.6. Miscellaneous Instructions

Table 31. Miscellaneous Instruction Opcodes

. Opcodes with Format
Mmnemonic
31 30 29 25 24 22 21 19 18 14 13 12 5 4 0

i=0 ignored rs2

IFLUSH 10 ignored 111011 rsl
i=1 simm13

UNIMP 00 ignored 000 const22
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3.4.4.7. Opcodes In Ascending Numeric Order

Table 32. Instruction Opcode Numeric Listing

. Opcodes with Format
Mmnemaonic
31 30 29 25 24 22 21 19 18 14 13 12 5 4 0
UNIMP 00 ignored 000 const22
Bicc 00 | a| cond 010 disp22
SETHI 00 rd 100 imm22
FBfcc 00 | a| cond 110 disp22
CBccc 00 a | cond 111 disp22
CALL 01 disp30
i=0 ignored rs2
ADD 10 rd 00000D rsl
i=1 simm13
i=0 ignored rs2
AND 10 rd 000001 rsl
i=1 simm13
i=0 ignored rs2
OR 10 rd 00001D® rsl
i=1 simm13
i=0 ignored rs2
XOR 10 rd 000011 rsl
i=1 simm13
i =0 ignored rs2
SUB 10 rd 000100 rsl
i=1 simm13
i =0 ignored rs2
ANDN 10 rd 000101 rsl
i=1 simm13
i=0 ignored rs2
ORN 10 rd 000110 rsl
i=1 simm13
i =0 ignored rs2
XNOR 10 rd 000111 rsl
i=1 simm13
i=0 ignored rs2
ADDX 10 rd 001000 rsl
i=1 simm13
i=0 ignored rs2
SUBX 10 rd 001100 rsl
i=1 simm13
i =0 ignored rs2
ADDcc 10 rd 010000 rsl
i=1 simm13
i=0 ignored rs2
ANDcc 10 rd 010001 rsl
i=1 simm13
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. Opcodes with Format
Mnemonic
31 30 29 25 24 22 21 19 18 14 13 12 5 4 0
i =0 ignored rs2
ORcc 10 rd 010010 rsl
i=1 simm13
i =0 ignored rs2
XORcc 10 rd 010011 rsl
i=1 simm13
i=0 ignored rs2
SUBcc 10 rd 010100 rsl
i=1 simm13
i=0 ignored rs2
ANDNCcc 10 rd 010101 rsl
i=1 simm13
i =0 ignored rs2
ORNCcc 10 rd 010110 rsl
i=1 simm13
i=0 ignored rs2
XNORcc 10 rd 010111 rsl
i=1 simm13
i=0 ignored rs2
ADDXcc 10 rd 011000 rsl
i=1 simm13
i=0 ignored rs2
SUBXcc 10 rd 011100 rsl
i=1 simm13
i=0 ignored rs2
TADDcc 10 rd 100000 rsl
i=1 simm13
i =0 ignored rs2
TSUBcc 10 rd 100001 rsl
i=1 simm13
i =0 ignored rs2
TADDccTV 10 rd 100010 rsl
i=1 simm13
i =0 ignored rs2
TSUBccTV 10 rd 100011 rsl
i=1 simm13
i=0 ignored rs2
MULScc 10 rd 100100 rsl
i=1 simm13
i =0 ignored rs2
SLL 10 rd 100101 rsl
i=1 shent
i=0 ignored rs2
SRL 10 rd 100110 rsl
i=1 shent
i=0 ignored rs2
SRA 10 rd 100111 rsl
i=1 shent
RDY 10 rd 101000 ignored I* ignored
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. Opcodes with Format
Mnemonic
31 30 29 25 24 22 21 19 18 14 13 12
RDPSR 10 rd 101001 ignored I* ignored
RDWIM 10 rd 101010 ignored I* ignored
RDTBR 10 rd 101011 ignored |* ignored
i=0 ignored rs2
WRY 10 ignored 110000 rsl
i=1 simm13
i=0 ignored rs2
WRPSR 10 ignored 110001 rsl
i=1 simm13
i=0 ignored rs2
WRWIM 10 ignored 110010 rsl
i=1 simm13
i =0 ignored rs2
WRTBR 10 ignored 110011 rsl
i=1 simm13
FPOP1 10 rd 110100 rsl OPF rs2
FMOVs 10 rd 110100 ignored 0 00001 rs2
FNEGs 10 rd 110100 ignored 0 00101 rs2
FABSs 10 rd 110100 ignored 0 01001 rs2
FSQRTs 10 rd 110100 ignored 0 01001 rs2
FSQRTd 10 rd 110100 ignored 0 01010 rs2
FSQRTxX 10 rd 110100 ignored 0 01011 rs2
FADDs 10 rd 110100 rsl 0 00001 rs2
FADDd 10 rd 110100 rsl 0 00010 rs2
FADDx 10 rd 110100 rsl 0 00011 rs2
FSUBs 10 rd 110100 rsl 0 00101 rs2
FSUBd 10 rd 110100 rsl 0 00110 rs2
FSUBX 10 rd 110100 rsl 0 00111 rs2
FMULs 10 rd 110100 rsl 0 01001 rs2
FMULd 10 rd 110100 rsl 0 01010 rs2
FMULXx 10 rd 110100 rsl 0 01011 rs2
FDIVs 10 rd 110100 rsl 0 01101 rs2
FDIVd 10 rd 110100 rsl 0 01110 rs2
FDIVX 10 rd 110100 rsl 0 01111 rs2
FiTOs 10 rd 110100 ignored 1 00100 rs2
FdTOs 10 rd 110100 ignored 1 00110 rs2
FXTOs 10 rd 110100 ignored 1 00111 rs2
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Opcodes with Format

Mnemonic
31 30 29 25 24 22 21 19 18 14 13 12
FiTOd 10 rd 110100 ignored 011001000 rs2
FsTOd 10 rd 110100 ignored 011001001 rs2
FXxTOd 10 rd 110100 ignored 011001011 rs2
FiTOx 10 rd 110100 ignored 011001100 rs2
FsSTOx 10 rd 110100 ignored 011001101 rs2
FATOx 10 rd 110100 ignored 011001110 rs2
FsTOi 10 rd 110100 ignored 011010001 rs2
FdTOI 10 rd 110100 ignored 011010010 rs2
FXTOi 10 rd 110100 ignored 011010011 rs2
FPOP2 10 rd 110101 rsl OPF rs2
FCMPs 10 ignored 110101 rsl 001010001 rs2
FCMPd 10 ignored 110101 rsl 001010010 rs2
FCMPx 10 ignored 110101 rsl 001010011 rs2
FCMPEs 10 ignored 110101 rsl 001010101 rs2
FCMPEd 10 ignored 110101 rsl 001010110 rs2
FCMPEX 10 ignored 110101 rsl 001010111 rs2
FPOP1 10 rd 110110 rsl OPC rs2
FPOP2 10 rd 110111 rsl OPC rs2
i =0 ignored rs2
JMPL 10 rd 111000 rsl
i=1 simm13
i =0 ignored rs2
RETT 10 ignored 111001 rsl
i=1 simm13
i=0 ignored rs2
Ticc 10 I* cond 111010 rsl
i=1 simm13
i=0 ignored rs2
IFLUSH 10 ignored 111011 rsl
i=1 simm13
i=0 ignored rs2
SAVE 10 rd 111100 rsl
i=1 simm13
i=0 ignored rs2
RESTORE 10 rd 111101 rsl
i=1 simm13
i=0 ignored rs2
LD 11 rd 000000 rsl
i=1 simm13

Rev. | — September 23, 1998




TSCB91E TEMIC

. Opcodes with Format
Mnemonic
31 30 29 25 24 22 21 19 18 14 13 12 5 4 0
i =0 ignored rs2
LDUB 11 rd 000001 rs1
i=1 simm13
i =0 ignored rs2
LDUH 11 rd 00001D rsl
i=1 simm13
i=0 ignored rs2
LDD 11 rd 000011 rsl
i=1 simm13
i=0 ignored rs2
ST 11 rd 000100 rsl
i=1 simm13
i =0 ignored rs2
STB 11 rd 000101 rsl
i=1 simm13
i=0 ignored rs2
STH 11 rd 00011D® rs1
i=1 simm13
i=0 ignored rs2
STD 11 rd 000111 rs1
i=1 simml13
i=0 ignored rs2
LDSB 11 rd 001001 rs1
i=1 simm13
i=0 ignored rs2
LDSH 11 001010 rs1
i=1 simm13
i =0 ignored rs2
LDSTUB 11 rd 001101 rs1
i=1 simm13
i =0 ignored rs2
SWAP 11 rd 001111 rs1
i=1 simm13
LDA 11 rd 010000 rsl i=0 asi rs2
LDUBA 11 rd 010001 rsl i=0 asi rs2
LDUHA 11 rd 010010 rsl i=0 asi rs2
LDDA 11 rd 010011 rsl i=0 asi rs2
STA 11 rd 010100 rsl i=0 asi rs2
STBA 11 rd 010101 rsl i=0 asi rs2
STHA 11 rd 010110 rsl i=0 asi rs2
STDA 11 rd 010111 rsl i=0 asi rs2
LDSBA 11 rd 011001 rsl i=0 asi rs2
LDSHA 11 rd 011010 rsl i=0 asi rs2
LDSTUBA 11 rd 011101 rsl i=0 asi rs2
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. Opcodes with Format
Mnemonic
31 30 29 25 24 22 21 19 18 14 13 12 5 4 0
SWAPA 11 rd 011111 rsl i=0 asi rs2
i=0 ignored rs2
LDF 11 rd 100000 rsl
i=1 simm13
i=0 ignored rs2
LDFSR 11 rd 100001 rsl
i=1 simm13
i=0 ignored rs2
LDDF 11 rd 100011 rsl
i=1 simm13
i=0 ignored rs2
STF 11 100100 rsl
i=1 simm13
i=0 ignored rs2
STFSR 11 rd 100101 rsl
i=1 simm13
i =0 ignored rs2
STDFQ 11 rd 100110 rsl
i=1 simm13
i =0 ignored rs2
STDF 11 rd 100111 rsl
i=1 simm13
i =0 ignored rs2
LDC 11 rd 110000 rsl
i=1 simm13
i=0 ignored rs2
LDCSR 11 rd 110001 rsl
i=1 simm13
i =0 ignored rs2
LDDC 11 rd 110011 rsl
i=1 simm13
i=0 ignored rs2
STC 11 rd 110100 rsl
i=1 simm13
i=0 ignored rs2
STCSR 11 rd 110101 rsl
i=1 simm13
i=0 ignored rs2
STDCQ 11 rd 110110 rsl
i=1 simm13
i= ignored rs2
STDC 11 rd 110111 rsl
i=1 simm13
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3.5. Signal Description

This section provides a description of f@C691Es external signals. Functionally, the IU’s external signals can be
divided into four categories: memory subsystem interface, floating-point/coprocessor interface, interrupt and control
signals, and power and clock signals.

APAR/ASPAR/DPAR/IMPAR/IFPAR
A[31:0] FIPAR
HWERROR
ASI[7:0] —
—~——————— o~
SIZE[1:0] FHOLD
< FEXC
MAO FXACK
EEE—— FCC[1:0]
D[31:0] FCCV
= > FINS1
—____MDS | FINS2
MHOLDA EPSYN
MHOLDB
__ BHOLD _| MCERR
TOE CMODE
COE JE—
— COE | FLOW
CL.K TSC691ERT « SOIMODE
—IRLE0] | Integer Unit HALT
INTACK e
MEXC
RESET FLUSH
<i§§ TAP = TCLK/TRSTTMS/TDI/TDO
| ————
|
- W _
WRT FP
DXFER CHOLD
LDSTO CEXC
INULL CXACK
LOCK CCC[L.0]
DOE CCCV
_ AOE | CINS1L
T CINS2

Figure 22. TSC691E External Signals

Signals that are active LOW are marked with an overscore; all others are active HIGH. Figure 22 summarizes the
signals described in this section. Table 33 provides a summary of the external signal$ $@aa&E

Note:
In the descriptions below, and in this manual in general, when a signal is asserted it is active, and when it is déagsactactitWhen a signal
is HIGH, it is a logical 1; when it is LOW, it is a logical 0. This is true regardless of whether it is asserted or deasserted.
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Table 33. TSC691E External Signal Summary

Memory Subsystem Interface Signals:
Signal Name Description Signal Type Active
(Impedance of Three—State Output=20R)
A[31:0] Address Bus Three—State Output
APAR Address Bus Parity Three—State Output HIGH
AOE Address Output Enable Input LOW
ASI[7:0] Address Space Identifier Three—State Output
COE Control Output Enable Input LOW
BHOLD Bus Hold Input LOW
D[31:0] Data Bus Three—State BiDir.
DPAR Data Bus Parity Three-State BiDir. HIGH
DOE Data Output Enable Input LOW
DXFER Data Transfer Three—State Output HIGH
IFT Instruction Cache Flush Trap Input LOW
INULL Integer Unit Nullify Cycle Three—State Output HIGH
LDSTO Atomic Load-Store Three—State Output HIGH
LOCK Bus Lock Three—State Output HIGH
MAO Memory Address Output Input HIGH
MDS Memory Data Strobe Input LOW
MEXC Memory Exception Input LOW
MHOLDA Memory Bus Hold A Input LOW
MHOLDB Memory Bus Hold B Input LOW
RD Read Access Three—State Output HIGH
SIZE[1:0] Bus Transaction Size Three—State Output
ASPAR ASI and SIZE Parity Three—State Output HIGH
WE Write Enable Three—State Output LOW
WRT Advanced Write Three—State Output HIGH
IMPAR IU to MEC [1] Control Parity Three—State Output HIGH
Note 1:
TSC693E= Memory controller system support circuit which contains fault detection and peripheral control function.
Floating—Point / Coprocessor Interface Signals:
Signal Name Description Signal Type Active
(Impedance of Three—State Output=20R)
CCC[1:0] Coprocessor Condition Codes Input
cccv Coprocessor Condition Codes Valid Input HIGH
CEXC Coprocessor Exception Input LOW
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Floating—Point / Coprocessor Interface Signals:

Signal Name Description Signal Type Active
(Impedance of Three—State Output=20R)

CHOLD Coprocessor Hold Input LOW
CINS1 Coprocessor Instruction in Buffer 1 Three—State Output HIGH
CINS2 Coprocessor Instruction in Buffer 2 Three—State Output HIGH
CP Coprocessor Unit Present Input LOW
CXACK Coprocessor Exception Acknowledge Three—State Output HIGH
FCCI[1:0] Floating—Point Condition Codes Input
FCCV Floating—Point Condition Codes Valid Input HIGH
FEXC Floating—Point Exception Input LOW
FHOLD Floating—Point Hold Input LOW
FIPAR FPU to IU Control Parity Input HIGH
FINS1 Floating—Point Instruction in Buffer 1 Three—State Output HIGH
FINS2 Floating—Point Instruction in Buffer 2 Three—State Output HIGH
FLUSH Floating—Point/Coprocessor Instruction Flush Three—State Output HIGH
FP Floating—Point Unit Present Input LOW
FXACK Floating—Point Exception Acknowledge Three—State Output HIGH
INST Instruction Fetch Three—State Output HIGH
IFPAR IU to FPU Control Parity Three-State Output HIGH

Interrupt and Control Signals:

Signal Name Description Signal Type Active

(Impedance of Three-State Output=20R)
IRL[3:0] Interrupt Request Level Input
INTACK Interrupt Acknowledge Three—State Output HIGH
RESET Reset Input LOW
ERROR Error State Three—State Output LOw
HWERROR Hardware error Detected Three—State Output LOW
MCERR Comparison error Three—State Output LOW
FLOW Enable Program Flow Control Input Low
CMODE Checker Mode Input LOW
601MODE Normal601Mode Input LOW
FPSYN Floating—Point Synonym Mode Input HIGH
TOE Test Mode Output Enable Input LOW
HALT Halt Mode Input LOW
50
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Test Access Port Signals:

Signal Name Description Signal Type Active
(Impedance of Three—State Output=20R)
TCLK Test Clock Input
TRST Test reset Input LOW
TMS Test Mode Select Input HIGH
TDI Test Data Input Input
TDO Test Data Output Three-State Output

Power and Clock Signals:

Signal Name Description Signal Type
CLK Clock Input
VCCI Main internal VCC Input
VCCO Output driver VCC Input
VCCT Input circuit VCC Input
VSSI Main internal VSS Input
VSSO Output driver VSS Input
VSST Input circuit VSS Input

3.5.1. Memory Subsystem Interface Signals

Memory interface signals consist of the address lines (40 bits), bidirectional data lines (32 bits), transaction size lines
(2 hits), and various control signals.

3.5.1.1. A[31:0]—Address Bus (output)

The 32-bit address bus carries instruction or data addresses during a fetch or load/store operation. Addresses are ser
out unlatched and must be latched external td 8@691E Assertion of the MAO signal during a cache miss (which

is signaled by pulling one of the MHOLInes low) will force the Integer Unit to place the previous (missed) address

on the address bus. The address bus is three-stated (on chip pull_up resi€pw28k the AOEor TOEsignal is
deasserted (HIGH).

3.5.1.2. APAR—Address Bus Parity (output)

This signal contains the odd parity over the 32-bit address bus and is asserted simultaneously with the memory address.
It is high-Z (on chip pull-up resistor=20 when the AOEor TOEsignal is deasserted.

3.5.1.3. AOE—Address Output Enable (input)

Assertion of this signal enables the output drivers for the address bus, A[31:0], and the ASI bus, ASI[7:0], and is the
normal condition. Deassertion of AQEree-states (on chip pull_up resistor=20khe output drivers and should only
be done when the bus is granted to another bus master (i.e., when either BHRAHODLDA/B is asserted).

3.5.1.4. ASI[7:0]—Address Space Identifier (output)

These 8 bits constitute the Address Space Identifier (ASI), which identifies the memory address space to which the
instruction or data access is being directed. The ASI bits are sent out unlatched—simultaneously with the memory
address—and must be latched externally. Assertion of the MAQO signal during a cache miss (which is signaled by pulling
one of the MHOLDIines low) will force the integer unit to place the previous address space identifier on the ASI[7:0]
pins. The ASI pins are three-stated (on chip pull_up resistoX2®ken the AOBr TOEsignal is deasserted (HIGH).
Encoding of the ASI bits is shown in Table 34.
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Table 34. ASI Assignments

Uetleil= e Address Space
Address Space Identifier (ASI)
00001000 (0x08) User Instruction
00001010 (Ox0a) User Data
00001001 (0x09) Supervisor Instruction
00001011 (Ox0b) Supervisor Data
l 1 l 2 l 3 l 4 ‘ 5 l 6

CLK

wssor (X0 2 X 2 XX A XX 7 XXORX 2 XX
o1 [OCRROCRROOHE PR X RO et XN X KR SX )

ASI[7:0] 0x09 X 0x08

Figure 23. ASI timing with a WRPSR Instruction

3.5.1.5. ASPAR—ASI and SIZE Parity (output)

This signal contains the odd parity over the 8-bit address space identifier and 2 bit Bus Transaction Size. It is asserted
simultaneously with the ASI and SIZE and will be high-Z (on chip pull_up resisto€92@ken the AOECOE or
TOE signal is deasserted.

3.5.1.6. BHOLD—Bus Hold (input)

BHOLD is asserted when an external bus master wants control of the data bus. Assertion of this signal will freeze the
processor pipeline, so after deassertion of BHOE&XIernal logic must guarantee that the data at all inputs to the
TSC691Eis the same as it was before BHOMIas asserted. This signal is tested on the falling edge (midpoint) of

a cycle and must be valid and stable at the processor for the duration of the specified set—up time prior to the falling
edge of CLK. All HOLD signals are latched in t(hR8C691E (transparent latch with clock high) before they are used.
Because MD%ind MEXCsignals are recognized while this input is active, BHGhoOuld only be used for bus access
requests by an external device. BHO&Bbuld not be asserted when LOCK is asserted.

3.5.1.7. COE—Control Output Enable (input)

Assertion of this signal enables the output drivers for SIZE[1:0], RD,WAET, LOCK, LDSTO, and DXFER outputs,
and is the normal condition. Deassertion of Gbee-states (on chip pull_up resistor=20khese output drivers and
should only be done when the bus is granted to another bus master (i.e., when either @& HOHDLDA/B is
asserted).

3.5.1.8. D[31:0]—Data Bus (bidirectional)

These signals form a 32-bit bidirectional data bus that serves as the interface between the integer unit and memory.
The data bus is only driven by thi&€C691Eduring the execution of integer store instructions and the store cycle of
atomic-load-store instructions. Similarly, the FPU drives the data bus only during the execution of floating-point store
instructions.
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Store data is sent out unlatched and must be latched externally before it is used. Once latched, store data is valid during
the second data cycle of a store single access, the second and third data cycle of a store double access, and the thir
data cycle of an atomic-load-store access.

Alignment for load and store instructions is performed by the processor. Doublewords are aligned on 8-byte boundaries,
words on 4-byte boundaries, and halfwords on 2-byte boundaries. If a doubleword, word, or halfword load or store

instruction generates an improperly aligned address, a memory address not aligned trap will occur. Instructions and
operands are always expected to reside in a 32-bit wide memory. D[31] corresponds to the most significant bit of the
most significant byte of a 32-bit word going to or from memory.

The Data bus is three-stated (on chip pull_up resistoi@p@len the DOBbr TOEsignal is deasserted (HIGH)

3.5.1.9.DPAR—Data Bus Parity (bidirectional)
This signal contains the odd parity over the 32-bit bidirectional data bus.

In case of store data operations the parity bit is generated and launched in parallel by the IU. In case of load data
operations the parity is checked by the IU.

This signal will be high-Z (on chip pull_up resistor=2)kwhen the DOEr TOEsignal is deasserted.

3.5.1.10. DOE—Data Output Enable (input)

Assertion of this signal enables the output drivers for the data bus, D[31:0], and is the normal condition. Deassertion
of DOE three-states (on chip pull_up resistor=20khe data bus output drivers and should only be done when the bus
is granted to another bus master (i.e., when either BHQLDHOLDA/B is asserted).

3.5.1.11. DXFER—Data Transfer (output)

DXFER is used to differentiate between the addresses being sent out for instruction fetches and the addresses of date
fetches. DXFER is asserted by the processor during the address cycles of all bus data transfer cycles, including both
cycles of store single and all three cycles of store double and atomic load-store. DXFER is sent out unlatched and must
be latched externally before it is used.

3.5.1.12. IF—Instruction Cache Flush Trap (input)

The state of this signal determines whether or not execution of the IFLUSH instruction generates a tre(,. tHi¢eRT
execution of IFLUSH causes an illegal instruction trap. If4ETthen IFLUSH executes like a NOP with no side
effects.

3.5.1.13. INULL—Integer Unit Nullify Cycle (output)

The processor asserts INULL to indicate that the current memory access is being nullified. It is asserted in the same
cycle in which the address being nullified is active (though no longer on the address bus, the address is held in the
external address latches). INULL is used to prevent a cache miss (in systems with cache memory) and to disable
memory exception generation for the current memory access. This means thahBM&XCshould not be asserted

for a memory access in which INULL=1. INULL is a latched output and should not be latched externally. If a
floating-point unit or coprocessor is present in the system, INULL should be Ored with the FNULL and CNULL signals

to generate a final NULL signal.

INULL is asserted under the following conditions:

1. During the second data cycle of any store instruction (including Atomic Load-Store) to nullify the second occur-
rence of the store address.

2. On all traps, to nullify the third instruction fetch after the trapped instruction. For reset, it nullifies the error-pro-
ducing address.

3. On aload in which the hardware interlock is activated.
4. JMPL and RETT instructions.

3.5.1.14. LDSTO—Atomic Load—-Store (output)

This signal is used to identify an atomic load-store to the system and is asserted by the integer unit during all the data
cycles (the load cycle and both store cycles) of atomic load-store instructions. LDSTO is sent out unlatched and must
be latched externally before it is used.
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3.5.1.15. LOCK—Bus Lock (output)

LOCK is asserted by the processor when it needs to retain control of the bus (address and data) for multiple cycle
transactions (Load Double, Store Single and Double, Atomic Load—Store). The bus will not be granted to another bus
master as long as LOCK is asserted. Note that BHEHdId not be asserted in the processor clock cycle which follows

a cycle in which LOCK is asserted. LOCK is sent out unlatched and must be latched externally before it is used.

3.5.1.16. MAO—Memory Address Output (input)

This signal is asserted during an MHOIcbndition to force the previous (missed) memory access parameters back

on their various busses and control lines. The miss parameters are those that were valid on the rising edge of the clock,
one cycle before the cycle in which MHOMWias asserted. A logic HIGH value at this signal during a cache miss causes

the integer unit to put A[31:0], ASI[7:0], SIZE[1:0], RD, WBVRT, LDSTO, LOCK, and DXFER values
corresponding to the missed memory address on the bus.

Normally, MAO is kept at a LOW level, thereby selecting the access parameters for the current memory address. MAO
should not be used for a cache miss during a store cycle, because it would select the wrong value for WE

MAO must be driven LOW while RESE$ LOW.

3.5.1.17. MDS—Memory Data Strobe (input)

MDS is asserted by the memory system to enable the clock to the integer unit's instruction register (during an
instruction fetch) or to the load result register (during a data fetch) while the pipeline is frozen with an MHOLDA/B

In a system with cache, MDIS used to signal the processor when the missed data (cache miss) is ready on the data
bus. In a system with slow memories, Mfg8s the processor when the read data is available on the bus. During a cache
line replacement, MDS3nay be asserted anywhere within the MHOL{xle and deasserted before MHOLD
released. For example, if a cache miss occurs on word 2 of a 4-word cache linghdiBonly be driven active while

word 2 is being replaced in the cache.

MDS is also used to strobe in the MEXx@mory exception signal. MDi®ay only be asserted when the pipeline is
frozen with MHOLDA/B. TheTSC691Esamples MDSwvith an on-chip transparent latch before it is used.

3.5.1.18. MEXC—Memory Exception (input)

Assertion of this signal by the memory system initiates an instruction access exception or data access exception trap
and indicates to thEeSC691Ethat the memory system was unable to supply a valid instruction or data. If NSEXC
asserted during an instruction fetch cycle, it generates an instruction access exception trap. If asserted during a data
cycle, it generates a data access exception trap.

MEXC is used as a qualifier for the MB®ynal, and must be asserted when both MHOLD&B MDSare already
asserted. If MDSs applied without MEXCthe TSC691E accepts the contents of the data bus as valid. If MEXC
accompanies MDSan exception is generated and the data bus content is ignored.

MEXC is latched in the processor on the rising edge of CLK and is used in the following cycle. MEX®e
deasserted in the same clock cycle in which MHOLD&/Beasserted.

3.5.1.19.MHOLD(A/B)—Memory Holds (inputs)

MHOLDA is used to freeze the clock to both the integer and floating-point units during a cache miss (for systems with
cache memory) or when accessing a slow memory. The processor pipeline is frozen while MisGisBérted and

the TSC691E outputs revert to and maintain the value they had at the rising edge of the clock in the cycle in which
MHOLDA was asserted. This signal is tested on the falling edge (midpoint) of a cycle and must be valid and stable
at the processor for the duration of the specified set—up time prior to the falling edge of CLK.

MHOLDB behaves in the same fashion as MHOLRAd either can be used to stop the processor during a cache miss
or memory exception. The pipeline is actually frozen by a “final” hold signal that is the logical OR of all hold signals
(MHOLDA, MHOLDB, and BHOLD. All HOLD signals are latched in tHESC691E (transparent latch with clock

high) before they are used.

Note that MHOLDmust be driven HIGH while RESE$ LOW.

3.5.1.20. RD—Read Access (output)

RD is sent out during the address portion of an access to specify whether the current memory access is a read (RD=1)
or a write (RD=0) operation. RD is set to “0” only during the address cycles of store instructions. For atomic load-store
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instructions, RD is “1” during the load address cycle and “0” during the two store address cycles. It is sent out unlatched
by the Integer Unit and must be latched externally before it is used.

RD is used in conjunction with SIZE[1:0], ASI[7:0], and LDSTO to determine the type and to check the read/write
access rights of bus transactions. It may also be used to turn off the output drivers of data RAMs during a store operation.
3.5.1.21. SIZE[1:0]—Bus Transaction Size (outputs)

The coding on these pins specifies the size of the data being transferred during an instruction or data fetch. The value
of the size bits during a given cycle relates only to the memory address which appears on pins A[31:0] simultaneously
with the size outputs. It does not apply to data which may be on the data bus during that same cycle.

Size bits are sent out unlatched and must be latched externall®@BO1Ebefore they are used. SIZE[1:0] remains

valid during the data address cycles of loads, stores, load doubles, store doubles, and atomic load-stores. The SIZE[1:0]
pins are three-state (on chip pull_up resistor€?0khen the COBr TOEsignal is deaserted. Encoding of the size

bits is shown in Table 35. For example, during an instruction fetch, SIZE[1:0] is set to “10”, because all instructions
are 32 bits long. For doubleword instructions, SIZE[1:0] is “11” for all data address cycles.

Table 35. SIZE Bit Encoding

SIZE[1] SIZE[0] Data Transfer Type
0 0 Byte
0 1 Halfword
1 0 Word
1 1 Word (Load/Store Double)

3.5.1.22. WE—Write Enable (output)

WE is asserted by the integer unit during the cycle in which the store data is on the data bus. For a store single
instruction, this is during the second store address cycle; the second and third store address cycles of store double
instructions, and the third load-store address cycle of atomic load-store instructions. It is sent out unlatched and must
be latched externally before it is used. To avoid writing to memory during memory exceptiongsMee externally

qualified by the MHOLDA/Bsignals.

3.5.1.23. WRT—Advanced Write (output)

WRT is an early write signal, asserted by the processor during the first store address cycle of integer single or double
store instructions, the first store address cycle of floating-point single or double store instructions, and the second
load-store address cycle of atomic load-store instructions. WRT is sent out unlatched and must be latched externally
before it is used.

3.5.1.24. IMPAR—IU to MEC Control Parity (output)

This signal contains the odd parity over the DXFER, LDSTO, LOCK, RD, al@ WRT bits. The parity bit is
generated by the 1U and will be checked by the MEC.

It will be high-Z (on chip pull_up resistor=208 when the COEBr TOEsignal is deasserted.

3.5.2. Floating-Point/Coprocessor Interface Signals

The IU incorporates a dedicated group of pins that act as direct-connect interfaces between the integer unit and both
the floating-point unit and the coprocessor. Using these connections, no external circuits are required to interface the
IU to the FPU and coprocessor. The interfaces consist of the following signals:

3.5.2.1. CCCJ[1:0]—Coprocessor Condition Codes (input)

These lines represent the current condition code bits from the Coprocessor State Register (CSR), qualified by the
CCCV signal. When CCCV=1, these bits are valid. During the execution of a CBccc instruction, the processor uses
CCCJ1:0] to determine whether or not to take the branch. These bits are latched by the processor before they are used.
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3.5.2.2. CCCV—Coprocessor Condition Codes Valid (input)

This signal is a specialized hold used to synchronize coprocessor compare instructions with coprocessor branch
instructions. It is asserted (the normal condition) whenever the CCC[1:0] bits are valid. A coprocessor would deassert
CCCV (CCCV=0) as soon as a coprocessor compare instruction enters the coprocessor queue, unless an exception is
detected (see Section 3.9). Deasserting CCCV freezes the integer unit pipeline, preventing any further compares from
entering the pipeline. CCCV is reasserted when the compare is completed and the coprocessor condition codes are
valid, thus ensuring that the condition codes match the proper compare instruction. CCCV is latchE8 Q6 &id=

before it is used.

3.5.2.3. CEXCGC—Coprocessor Exception (input)

CEXC is used to signal the integer unit that a coprocessor exception has occurredmOEX€Emain asserted until

the TSC691E takes the trap and acknowledges the coprocessor exception via the CXACK signal. Although
coprocessor exceptions can occur at any time, they are takenli8QB81Eonly during the execution of a subsequent

FPop, a CBfcc instruction, or a coprocessor load or store instruction. A coprocessor implementation should deassert
CHOLD if it detects an exception while CHOLB asserted. In such a case, CEstOuld be asserted one cycle before
CHOLD is deasserted. CEXS latched in th@ SC691Ebefore it is used.

3.5.2.4. CHOLD—Coprocessor Hold (input)

This signal is asserted by the coprocessor if a situation arises in which it cannot continue execution. The coprocessor
checks all dependencies in the decode stage of the instruction and asserts fH@té&ssary) in the next cycle. If

the integer unit receives a CHOLD freezes the instruction pipeline in the same cycle. Once the conditions causing
the CHOLDare resolved, the coprocessor deasserts CH@lBasing the instruction pipeline. CHOL®Ilatched in

the TSC691Ebefore it is used.

The conditions under which the coprocessor asserts CHiD& Dnplementation dependent.

3.5.2.5. CINS1—Coprocessor Instruction in Buffer 1 (output)

CINSL1 is asserted by the integer unit during the decode stage of the coprocessor instruction that is in the D1 buffer of
the coprocessor chip. The coprocessor uses this signal to begin decoding and execution of the D1 instruction, and to
latch it into its execute-stage register. CINS1 and CINS2 are never asserted in the same cycle.

3.5.2.6. CINS2—Coprocessor Instruction in Buffer 2 (output)

CINS2 is asserted by the Integer Unit during the decode stage of the coprocessor instruction that is in the D2 buffer
of the coprocessor chip. The Coprocessor uses this signal to begin decoding and execution of the D2 instruction, and
to latch it into its execute-stage register. CINS1 and CINS2 are never asserted in the same cycle.

3.5.2.7. CP—Coprocessor Unit Present (input)

When pulled low, CRndicates that a coprocessor is available to the system. It is normally pulled up to VDD through
aresistor, and then grounded by connection to the coprocessor. The integer unit will generate a cp disableslitrap if CP
during the execution of an CPop, CBfcc, or coprocessor load or store instruction.

3.5.2.8. CXACK—Coprocessor Exception Acknowledge (output)

CXACK is asserted by the integer unit to inform the coprocessor that a trap has been taken for the currently asserted
CEXC signal. Receipt of the asserted CXACK causes the coprocessor to deassert®EXGn turn causes the to
deassert CXACK. CXACK is a latched output and should not be latched externally.

3.5.2.9. FCC[1.0]—Floating-Point Condition Codes (input)

These lines represent the current condition code bits from the FPU’s Floating-point State Register (FSR), qualified by
the FCCV signal. When FCCV=1, these bits are valid. During the execution of an FBfcc instruction, the processor uses
FCCI1:0] to determine whether or not to take the branch. These bits are latched by the processor before they are used.

3.5.2.10. FCCV—Floating-Point Condition Codes Valid (input)

This signal is a specialized hold used to synchronize FPU compare instructions with floating-point branch instructions.
Itis asserted (the normal condition) whenever the FCCJ[1:0] bits are valid. The FPU deasserts FCCV (FCCV=0) as soon
as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting
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FCCV freezes the integer unit pipeline, preventing any further compares from entering the pipeline. FCCV is reasserted
when the compare is completed and the floating-point condition codes are valid, thus ensuring that the condition codes
match the proper compare instruction. FCCYV is latched it 8@691Ebefore it is used.

3.5.2.11. FEXG—Floating-Point Exception (input)

FEXC is used to signal the integer unit that a floating-point exception has occurred.mirEs{@main asserted until

the TSC691E takes the trap and acknowledges the FPU exception via the FXACK signal. Although floating-point
exceptions can occur at any time, they are taken by$i@691Eonly during the execution of a subsequent FPop, an
FBfcc instruction, or a floating-point load or store instruction. The FPU deasserts FH@Idetects an exception
while FHOLD is asserted. In such a case, FEX@sserted one cycle before FHOlDeasserted. FEXS latched

in theTSC691Ebefore it is used.

3.5.2.12. FHOLD—Floating-Point Hold (input)

This signal is asserted by the FPU if a situation arises in which the FPU cannot continue execution. The FPU checks
all dependencies in the decode stage of the instruction and asserts Kifl@dd@ssary) in the next cycle. If the integer

unit receives an FHOLt freezes the instruction pipeline in the same cycle. Once the conditions causing the FHOLD
are resolved, the FPU deasserts FHOQILdleasing the instruction pipeline. FHOLDlatched in thd SC691Ebefore

it is used.

An FHOLD is asserted if (1) the FPU encounters an STFSR instruction with one or more FPops pending in the queue,
(2) if either a resource or operand dependency exists between the FPop being decoded and any FPops already being
executed, or (3) if the floating-point queue is full.

3.5.2.13. FIPAR—FPU to IU Control Parity (input)

This signal contains the odd parity over the FCC[1:0], FCCV, FBR€CFHOLDDbits. The parity bit is generated by
the FPU and will be checked by the IU.

3.5.2.14. FINS1—Floating-Paint Instruction In Buffer 1 (output)

FINS1 is asserted by the integer unit during the decode stage of the floating-point instruction that is in the D1 buffer
of the floating-point unit. The FPU uses this signal to begin decoding and execution of the D1 instruction, and to latch
it into its execute-stage register. FINS1 and FINS2 are never asserted in the same cycle and both are ignored if (1)
FLUSH is asserted, (2) any HOLD is asserted, or (3) if FCCV or CCCV is deasserted.

3.5.2.15. FINS2—Floating-Poaint Instruction In Buffer 2 (output)

FINS2 is asserted by the integer unit during the decode stage of the floating-point instruction that is in the D2 buffer
of the floating-point unit. The FPU uses this signal to begin decoding and execution of the D2 instruction, and to latch
it into its execute-stage register. FINS1 and FINS2 are never asserted in the same cycle and both are ignored if (1)
FLUSH is asserted, (2) any HOLD is asserted, or (3) if FCCV or CCCV is deasserted.

3.5.2.16. FLUSH—Floating-Point/Coprocessor Instruction Flush (output)

This signal is asserted by the integer unit whenever it takes a trap. FLUSH is used by the FPU (or coprocessor) to flush
the instructions in its instruction buffers. These instructions, as well as the instructions annulletiSC68d Es

pipeline, are restarted after the trap handler is finished. If the trap was not caused by a floating-point (or coprocessor)
exception, instructions already in the floating-point (or coprocessor) queue may continue their execution. If the trap
was caused by a floating-point (or coprocessor) exception, tHerAP queue must be emptied before the FPU
(coprocessor) can resume execution.

3.5.2.17. FRP—Floating-Point Unit Present (input)

When pulled low, FRndicates that a floating-point unit is available to the system. It is normally pulled up to VDD
through a resistor, and then grounded by connection to the FPU. The integer unit will generate an fp disabled trap if
FP=1 during the execution of an FPop, FBfcc, or floating-point load or store instruction.

3.5.2.18. FXACK—Floating-Point Exception Acknowledge (output)

FXACK is asserted by the integer unit to inform the floating-point unit that a trap has been taken for the currently
asserted FEXGignal. Receipt of the asserted FXACK causes the FPU to deassert FEXCK is a latched output
and should not be latched externally.
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3.5.2.19. INST—Instruction Fetch (output)

The INST signal is asserted by the integer unit whenever a new instruction is being fetched. It is used by the
floating-point unit or coprocessor to latch the instruction currently on the data bus into an FPU or coprocessor
instruction buffer. SPARC-compatible floating-point units and coprocessors have two instruction buffers (D1 and D2)
to save the last two fetched instructions. When INST is asserted, a new instruction enters buffer D1 and the instruction
that was in D1 moves to buffer D2. INST is a latched output and should not be latched externally.

3.5.2.20. IFPAR—IU to FPU Control Parity (output)

This signal contains the odd parity over the FINS1, FINS2, FLUSH, FXACK and INST bits. The parity bit is generated
by the IU and will be checked by the FPU. It will be high-Z (on chip pull_up resistof)20ken the TOEsignal is
deasserted.

3.5.3. Interrupt and Control Signals

The following signals are used by the integer unit to control and to receive input from external events.

3.5.3.1. ERROR—Error State (output)

This signal is asserted when the integer unit enterseth@ ‘modé state. This happens if a synchronous trap occurs

while traps are disabled (the PSR’s ET bit =0). Before it enters the error mode sta®C88LE saves the PC and

nPC and sets the trap type (tt) for the trap causing the error mode into the TBR. It then asserts theigRiRai

halts. The only way to restart a processor which is in the error mode state is to trigger a reset by asserting the RESET
signal.

3.5.3.2. HWERROR—Hardware Error (output)

The HWERRORoutputs indicate a parity error occurs, except Master/Checker errors. When asserted low, the U trap
with Trap Type value depending of the internal parity error (see Table 39, page 109). It is deasserted when the parity
error is removed (i.e. by resuming this instruction), or by a reset cycle.

3.5.3.3. FLOW—Enable Flow Control (input)
Forcing this input low will enable the program flow control. It is a static signal and shall not change when running.

3.5.3.4. MCERR—Comparison Error (output)

This signal is asserted low in checker mode when a comparison error occurs on the internal output signals vis-a-vis
the output signal (excepted TAP, MCERRWVERRORand ERRORsignals) of the master IU. It is deasserted when
the error disappears. See chapter 4.4 for more information.

This signal is also asserted in master mode when the output doesn’t match the value of the pin.
This output is high-Z (on chip pull_up resistor=2Dkwhen the TOEignal is deasserted.

3.5.3.5. 601MODE-Normal 601 Mode Operation (input)

Forcing this input low will disable the parity checking of all input signals. This means the IU will operate with the
standard input signals. Nevertheless generation and checking of internal parity bit is still active. Parity on the data bus
is generated internally and parity checking on the control bus is disabled.

3.5.3.6. CMODE—Checker Mode (input)

Assertion of this signal will set the IU to act as a checker to support master/checker operation. All output signals except
ERROR HWERROR MCERRand TAP signals will be high-Z (on chip pull_up resistor=QJKt is a static signal

and shall not change when running. CMOSEIgnal can change when RESEifinal is asserted or when the U is in

halt mode.

3.5.3.7. FPSYN—Floating-Point Synonym Mode (input)

This is a mode signal which will be used to allow execution of additional instructions in future designs. For the
TSC691E it should be kept grounded.
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3.5.3.8. INTACK—Interrupt Acknowledge (output)

INTACK is a latched output that is asserted by the integer unit when an external inteaksgay isot when it is sampled
and latched.

3.5.3.9. IRL[3:0]—Interrupt Request Level (input)

The state of these pins defines the External Interrupt Level (IRL). IRL[3:0]=0000 indicates that no external interrupts
are pending and is the normal state of the IRL pins. IRL[3:0]=1111 signifies a nonmaskable interrupt. All other interrupt
levels are maskable by the Processor Interrupt Level (PIL) field of the Processor State Register (PSR). The integer unit
uses two on-chip synchronizing latches to sample these signals, and a given level must remain valid for two consecutive
cycles to be recognized. External interrupts should be latched and prioritized by external logic before they are passed
to theTSC691E Logic must also keep an interrupt valid until it is taken and acknowledged. External interrupts can
be acknowledged by system software or bytBE691Es INTerrupt ACKnowledge (INTACK) signal.

3.5.3.10. RESE+-Integer Unit reset (input)

Assertion of this signal will reset the integer unit. RES&{st be asserted for a minimum of nine processor clock
cycles. After RESETs deasserted, the integer unit starts fetching from address 0. REBEhed by th& SC691E
before it is used.

The RESETsignal input is protected by a glitch removal filter and pulses which are so short that they are detected only
during one clock period are not influencing the IU. RESijhal is also protected with two-rail coding and an error
detected will lead to error mode.

3.5.3.11. TOE—Test Mode Output Enable (input)

Whendeassertedthis signal will three-state all integer unit output drivers (on chip pull_up resistd®320kus, in
normal operation, this signal should always be asserted (tied to ground). Deassertionisblat@g thef SC691E
from the system for debugging purposes.

3.5.3.12. HALT—Halt (input)

When asserted this input will freeze the IU pipeline and the clock. All information placed in the registers of the 1U
remains unchanged. By deasserting HA¢Xecution of the IU will resume. (see timing section 5.2.2.14, page 127)

When the IU is in halt mode, the TAP is still operating.

3.5.4. TAP signals

The following Test Access Port interface (IEEE standard 1149.1-1990) is used to perform boundary scan for test and
debugging purposes.
3.5.4.1. TCLK—Test Clock (input)

This clock signal permits test data to be shifted into or out of the instruction or test data register cells withouignterferin
with the on chip system logic.The IEEE standards requires that TCLK can be stopped at 0 indefinitely without causing
any change to the state of the test logic.

3.5.4.2. TRSTFTEST Reset (input)

The TAP's test logic is reset when a logical 0 is applied to this port.

3.5.4.3. TMS—Test Mode Select (input)
The TMS input signal is interpreted by the TAP controller to control the test operations.
The received signal is sampled at the rising edge of the TCLK pulses.

3.5.4.4. TDI—Test Data Input (input)

Serial input data applied to this port is fed either into the instruction register or into a test data register, depending on
the sequence previously applied to the TMS input.

The received input data is sampled at the rising edge of the TCLK pulse.
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3.5.4.5. TDO—Test Data Output

Depending on the sequence previously applied to the TMS input, the contents of either the instruction register or the
data register are serially shifted out toward the TDO.

The data out of the TDO is clocked at the falling edge of the TCLK pulses. TDO should be in the inactive state except
when scanning is in progress. (Use of 3 state driver)

3.5.5. Power and Clock Signals

The signals listed below provide clocking and power to the integer unit.

3.5.5.1. CLK—Clock (input)

CLK is a 50%-duty-cycle clock used for clocking the integer unit's pipeline registers. The rising edge of CLK defines
the beginning of each pipeline stage and a processor cycle is equal to a full clock cycle.

3.5.5.2. VCCO, VCCI, VCCT—Power (inputs)

These pins provide +5V power to various sections of the processor. Power is supplied on three different busses to
provide clean, stable power to each section: output drivers, main internal circuitry, and the input circuits. VCCO pins
supply the output driver bus; VCCI pins supply main internal circuitry bus; and VCCT pins supply the input circuit
bus.

3.5.5.3. VSSO, VSSI, VSST—Ground (inputs)

These pins provide ground return for the power signals. Ground is supplied on three different busses to match the power
signals to each section: VSSO pins for the output driver bus; VSSI pins for the main internal circuitry bus; and VSST
pins for the input circuit bus.

3.6. Pipeline and Instruction Execution Timing
One of the major contributing factors to th&€C691Es very high performance is an instruction execution rate

approaching one instruction per clock cycle. To achieve that rate of executidig@e®1E employs a four-stage
instruction pipeline that permits parallel execution of multiple instructions.

B B >
u u D =
e X w
; f f
Instruction e r
Cc P ]
from Memory 2 - ]; - o c It
u
r r cej t b = o e
1 2 € :
]
]
]
]
d

Internally Generated Opcode (IOP)=#-- - -

Figure 24. Processor Instruction Pipeline
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3.6.1.Stages

Instruction execution is broken into four stages corresponding to the stages of the pipeline:
2. Fetch—The processor outputs the instruction address to fetch the instruction.

3. Decode—The instruction is placed in the instruction register and decoded. The processor reads the operands from
the register file and computes the next instruction address.

4. Execute—The processor executes the instruction and saves the results in temporary registers. Pending traps are
prioritized and internal traps taken during this stage.

5. Write—If no trap is taken, the processor writes the result to the destination register.

All four stages operate in parallel, working on up to four different instructions at a time. A basic “single-cycle”
instruction enters the pipeline and completes in four cycles. By the time it reaches the write stage, three more
instructions have entered and are moving through the pipeline behind it. So, after the first four cycles, a single-cycle
instruction exits the pipeline and a single-cycle instruction enters the pipeline on every cycle (see Figure 25).

Of course, a “single-cycle” instruction actually takes four cycles to complete, but they are called single cycle because
with this type of instruction the processor can complete one instruction per cycle after the initial four-cycle delay.

wera ORI XTI XD
o1, (XRRRRRX e X KRR X X KRR

Figure 25. Pipeline with All Single—Cycle Instructions

Fetch ' Inst 1 ' Inst 2 ' Inst 3 ' Inst 4 ' ' '
Decode 1 1 Inst 1 1 Inst 2 1 Inst 3 1 Inst 4 1 l
Execute 1 : : Inst 1 : Inst 2 : Inst 3 : Inst 4 1

Write ! ! ! ! Inst 1 ! Inst 2 ! Inst 3 !

CLK 3

3.6.1.1. Internal Opcodes

Instructions that require extra cycles automatically insert internal opcodes (IOPs) into the decode stage as they move
into the execute stage. These internal opcodes are unique to the instruction that generates them. They move all the way
through the pipeline, performing functions specific to the instruction that created them. For example, in Figure 26 ,
the data load in cycle four can be thought of as the fetch for the IOP that starts in cycle three; together they make a
complete four-cycle instruction that balances out the pipeline. JMPL and RETT also generate an IOP, but have no
external data cycle.

Multicycle instructions may generate up to three IOPs to complete execution. Table 36 lists the instructions that require
IOPs and the number generated.

Because instructions continue to be fetched even though IOPs occupy the decode stage, a two-stage prefetch buffer
is used to hold instructions until they can move into the decode stage (see Figure 24). This enables the processor to
fully utilize the data bus bandwidth and still keep the pipeline full. Only two buffers are required because a maximum

of two cycles are available for instruction fetching for any multicycle instruction.
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Table 36. Internally Generated Opcodes

Instruction Number of Internal Opcodes
Single Loads 1
Double Loads 2
Single Store 2
Double Stores 3
Atomic Load-Store 3
Jump 1
Return from Trap 1

3.6.2. Multicycle Instructions

Multicycle instructions are those that take more than four cycles (one bus cycle plus the three pipeline cycles) to
complete. A double-cycle instruction takes five cycles (two bus cycles), a triple-cycle instruction takes six cycles (three
bus cycles), and so on.

In most cases, the extra cycles required by multicycle instructions result from data bus usage (e.g., a data load or store
to memory) that prevents the processor from fetching the next instruction during those cycles. In Figure 26, the fetch
of instruction Inst 3 is delayed by one cycle for the data load, and in Figure 27, the store sequence delays the Inst 3
fetch by two cycles.

Fetch : Load : Inst 1 : Inst 2 : Load Data : Inst 3 : Inst4
Decode 1 1 Load 1 0Py 1 Inst 1 1 Inst 2 1 Inst3
Execute ! X X Load X I0P; X Inst 1 X Inst 2

Write ! ! ! ! Load ! I0Py ! Inst1

CLK

s owoowoowoo'o'o'om'oo'o'o'o'
SR 2 0 G L G WO ED WO G
o —\_/—

IOP1: InternaloPcodeor Instruction 1

Figure 26. Pipeline with One Double—Cycle Instruction (Load)
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Fetch : Store : Inst 1 : Inst 2 : Tag Check: Store Data : Inst 3

Decode X X Store X 0P X 0P, X Inst1 | Inst 2
Execute : ! ! Store ! 0P, ! I0P> : Inst 1
Write f f f f Store . IoP, . 0P,

ST e I e N e A e A A e O
0 : :- :- R
o E —\___ Y,
T/
oo T
i _ VA z z
N § § N\ S

IOPh; InternaloPcodeor Instruction “n”

D[31:0]

Figure 27. Pipeline with One Triple—Cycle Instruction (Store)
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3.6.2.1. Register Interlocks

The pipeline holds several instructions at any given time, so it is possible that an instruction may try to use the contents
of a particular register which is in the process of being updated by a previous instruction. Special bypass paths in the
pipeline of theTSC691Emake the correct data available to subsequent instructions for all internal register to register
operations, but cannot solve the problem of loads to the registers from external memory. For this case, interlock
hardware prevents an instruction following a load instruction from reading the register being loaded until the load is
complete (see Figure 28). This also applies to a CALL instruction with a delay slot instruction using r[15] and a JMPL
with a delay slot instruction using the same register specified as the r[rd] of the JIMPL. To maximize performance,
compilers and assembly language programmers should avoid loads followed immediately by instructions using the
loaded register’s contents.

Eetch ‘ Load : Inst 1 : Inst 2 : Load Data W Inst 3 : Inst 4
Decode 3 3 Load 3 10P p 3 10Pnt. 3 Inst 1 3 Inst 2 3 Inst 3
Execute : : : Load : 10P, p : 10Pnt. : Inst 1 : Inst 2

Write Load IOP p IOP|t. Inst 1

e [ LI LT LT LML I LI
01 (0 XXROX AL XXX A2 XRXRXE A XXX 3 XXX 23 XKXRH A4 XKXK

\/
A

o0 [OORRRRNCE X XK= X RN = X KRN oK KRN XK= XD
INST 1 : : ] \ 1

DXFER

INULL

IOPLD: InternalOPcodeor Load IOPint.; InternaloPcodefor (hardware)nterlock

Figure 28. Pipeline with Hardware Interlock (Load)
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3.6.2.2. Branching

The TSC691Es delayed-control-transfer mechanism allows branches (taken or untaken) to occur without creating a
bubble in the pipeline (see Figure 29 ). Special parallel hardware enables the processor to evaluate the condition codes
and calculate the effective branch address during the decode stage rather than the execute stage, so that only one dele
instruction is required between the branch and the target instruction (or the next instruction, if the branch is not taken).
See Section 3.4.3.3.1 for a discussion on branching.

If the compiler or programmer cannot place an appropriate instruction in the delay instruction slot, the delay instruction
can be annulled by setting the branch instructiarig. The result is shown in Figure 30 .

Fetch Branch Delay Target Inst 1 Inst 2 Inst 3 Inst 4
Decode 3 3 Branch 3 Delay 3 Target 3 Inst 1 3 Inst 2 3 Inst 3
Execute 3 E E Branch E Delay E Target E Inst 1 E Inst 2
Write 3 3 3 3 Branch 3 Delay 3 Target 3 Inst 1

e [T LT L LI L
s )RR B X RRR X X R XERRX 2 XRRRY 2 XRRRX Z XRRR
oo} (RRRRRRRNE =X KRR X KRN X KR KRR X KRR X

Figure 29. Pipeline During Branch Instruction

Fetch Branch Delay Target Inst 1 Inst 2 Inst 3 Inst 4
Decode Branch Annulled Target Inst 1 Inst 2 Inst 3
Execute : : : Branch : Annulled : Target : Inst 1 : Inst 2

Write : : : : Branch : Annulled : Target : Inst 1

ST e T e A e I e (N e Y e S e
ptav.0 (5 XX B N X KOCRX A X 2 KR A XX e XEXS
otst:0] [XOCRCROOE KRG =X KON ara YR XKt XX KR

Figure 30. Branch with Annulled Delay Instruction

65
Rev. | — September 23, 1998



TSCB91E TEMIC

3.6.3. Pipeline Freezes

Whenever the processor receives an externally generated hold input, such as MH@EBABLD, the instruction
pipeline is frozen. How long it is frozen depends on the type of hold and the external hardware generating the hold.
Figure 31 shows the pipeline frozen by a BHO&®the result of bus arbitration initiated by another bus master in

Fetch Inst 3
Decode Inst O Inst 1 Inst 1 Inst 1 Inst 1 Inst 1 Inst 2
Execute : : Inst O Inst O : Inst O : Inst O : Inst O : Inst 1
Write w : : w ‘ ‘ Inst 0

puso) AL YRR A2 XXXO— 3 }WEW@W

Figure 31. Pipeline Frozen During Bus Arbitration

3.6.4. Traps

Figure 32 shows the pipeline operation when an internally generated trap is taken. Instructions in the pipeline after
detection of the trap are annulled and the first instruction of the trap target routine is executed in the fourth cycle
following detection.
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3.6.5. Traps

Figure 32 shows the pipeline operation when an internally generated trap is taken. Instructions in the pipeline after
detection of the trap are annulled and the first instruction of the trap target routine is executed in the fourth cycle
following detection.

Fetch ns / Trap 1 Trap 2 Trap 3 Trap 4
A p p p p

Decode Annulled Trap 1 Trap 2 Trap 3
u A p p p

7
Execute Trap Detected Annulled Annulled A Trap 1 Trap 2
. 77
Write Annulled Annulled Annulled / Trap 1
Y

CLK

A[31:0]

D[31:0]

INULL

INST \_J
FLUSH /7 _\

Figure 32. Pipeline Operation for Taken Trap (Internal)

3.7. Bus Operation and Timing

This section covers standard and non-standard bus operations. Standard operations include instruction fetch, load
integer, load double integer, load floating-point, load double floating-point, store integer, store double integer, store
floating-point, store double floating-point, atomic load-store unsigned byte, and floating-point operations (FPops).
Non-standard operations include bus arbitration, cache misses, exceptions, and the reset and error conditions.
Coprocessor loads, coprocessor stores, and coprocessor operations are identical in timing to their floating—point
counterpart, and are not repeated as a separate case in this section.

Each of the following sections describes a type of bus transaction along with appropriate timing diagrams. The timing
diagrams show multiple instructions being fetched for the pipeline. Instruction addresses are sent out in the cycle before
the instruction fetch. Instruction fetch cycles begin with the instruction address latched by the memory at the beginning
of the fetch cycle and end with the instruction supplied by the memory. Instruction decode begins with the latching
of the instruction at rising clock edge of the cycle after the fetch cycle. If the instruction is multicycle, or execution
requires an interlock, IOPs are inserted into the pipeline at the decode stage and propagate through the pipeline like
a fetched instruction.

The cross-hatched areas shown in the traces are periods in which the signal is not guaranteed to be asserted o
deasserted; in other words, undefined.
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In general, signals are valid at the beginning of a cycle, i.e., on the rising edge of the clock. In suppbBCH #i¢s
high-speed operation, many signals are sent out unlatched. Refer to Section 3.5 for further d&&iG9¢&signals.

The processor automatically aligns byte (and halfword) transfers as previously shown in Figure 12. Firures 33 & 34
show the relationship between the data transferred during byte, halfword, and word operations and the pins of the data
bus. For byte and halfword data transfers,TBE691Erepeats the byte or halfword on each eight—bit or 16—bit section

of the bus. In other words, the undefined portions of the bus illustrated in Figumee3&tually a repeat of the data

driven onto the bus. However, this feature is not specified in the SPARC Architecture Reference, and may not be
supported on other SPARC processors.

CLK
A1) X+ 0 XXKHXX X+ KXXXK X2 XXXAX X+ 2 XXX
sizeluo)
opgi2g) { BYTE0 X XXX BYTEO X XXX BYTEO X XXX BYTE0 XXK)
bpsel - (avrEL X XXX BYEt X XXX BTEL X XXX BYTEL XXK)
D[15:8] (BTe 2 X XXX BYTE2 X XXX BYTE2 X XXX BYTE2 XX X)
oo (viEs XXX BV X XXX BrTES XXX BY7e 2 XXK)

Byte Data Alignment

X = word boundary address

Not
Note 2 :This illustration depicts data alignment and is not intended to illustrate a timing case.

e 1: The parity bit of undef data in/out must match with the data

Figure 33. Data Bus Contents During Data Transfers (1 of 2)
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L e
azo] X+ 0 XXXIX X2 XXX Azt QXX XXXR
sizerol (1 XXX L XXXK SIZE[1:0]
Dis1ite]  { HWRDOX XXX HWRDOKXX) ~ DIstis) QOOX Hwro oX X X
DIS0]  ( HWRDLX XXX HwRD 1X X X) DI15:0] QUK Hweo X X0

Half Word Data Alignment Word Data Alignment

X = word boundary address
Note 1: The parity bit of undef data in/out must match with the data
Note 2 :This illustration depicts data alignment and is not intended to illustrate a timing case.

Figure 34. Data Bus Contents During Data Transfers (2 of 2)

3.7.1. Instruction Fetch

The instruction fetch cycle is that cycle in which both the instruction address and the data (the instruction itself) are
active on their respective busses (see Figure 35). The instruction address on A[31:0] is actually sent out in the previous
cycle, but is held into the fetch cycle. It should be latched externally. The instruction is returned on the data bus at the
very end of the fetch cycle and is held into the decode cycle. It is latched into the on-chip instruction register at the
beginning of the decode cycle.

| 1 | 2 l 3 | 4 | 5 \

CLK

e (XXX X X A XX XX o)
st (oKX e QR 2RO e X R 2

Figure 35. Instruction Fetch
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Semiconductors

3.7.2. Load

Figure 36 shows the timing for a load single integer instruction. Because the bus is used for a data fetch in the fifth
cycle, this is a double-cycle instruction. Note that DXFER is active in the cycle in which the load data address is sent
out, while INST is inactive in the cycle in which the load data is on the data bus.

1 l 2 l 3 l 4

o LML L L
A[31:0]
ot o CXOCKRIKRXED =GR XXt XX et XK TR
e 3 3 )

Figure 36. Load Single Integer Timing

3.7.3. Load with Interlock

In a load with interlock situation, the instruction following the load tries to use the contents of the load’s destination
register before the load data is available. This requires the insertion of an IOP into the decode stage of the pipeline (see

Section 3.6.5.1) in the fourth cycle, which must be matched by a null bus cycle in the fetch stage to balance the pipeline
(see Figure 37).

1 } 2 } 3 } 4 l 5 l 6

CLK J_l_ I_ | _l | |_|_
st (20 XK A XXX 2 XXX A XXX e XXX 2 XX~ )
o101, [OCKXOCRKED XXt XXXt 2XRXRY Dt XX =~ XKt 3
DXFER /_—\
\ T

Figure 37. Load Single with Interlock Timing
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3.7.4. Load Double

The timing for a load double integer is shown in Figure 38 . The timing is essentially the same as a load single except
for the additional data fetch in the fifth cycle. That makes load double a triple-cycle instruction. The most-significant
word is fetched in cycle four and the least-significant word in cycle five. Note that the size bits are set to 11 during
the address portion of both loads and that the bus is locked to allow the completion of both loads without interruption.

Load single and load double floating-point instructions look identical to their integer counterparts except that the
FINS1/FINS2 signal is active for floating-point operations.

1 ! 2 ! 3 ! 4 ! 5 ‘ 6 ‘

o [ L1 | | L]

a0 o'mo'o'o'oo'o'ox (D nart (XXX (0 s XXX 23 XXXOCA )

Figure 38. Load Double Integer Timing
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3.7.5. Store

Store transactions involve more bus activity than loads, as shown in the store single integer timing in Figure 39 . Store
single is a triple-cycle instruction because it includes an extra tag check cycle in which to check an external cache for
the store address. This extra cycle also gives the processor and the memory system time to three-state (on chip pull_up
resistor=20R)the data bus and turn it around for the store. The store address is sent out again in the fifth cycle to
complete the data transfer. Note that the store data is generated by the processor off the falling edge of CLK and is
therefore only available at the very end of the first data cycle.

Note also that INULL is active during the second application of the store address. If there is a cache miss on the tag
check cycle, INULL prevents an additional miss the second time the address is sent out in the store cycle. Because it
is a triple— cycle instruction, LOCK is asserted to retain control of the busses.

‘ 1 | 2 3 4 5

|_|] 1 | | L [ 1 I_
AB10) wo'om'omoo‘o‘o‘om'owo'o
pi310) 'owo'mWumw&o } owom

g s s
- s —
? —/ -\ f
T i i
oL 1 | | T\

INST : T\ /_

Figure 39. Store Single Integer Timing
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3.7.6. Store Double

The timing for a store double integer is shown in Figure 40 . The timing is essentially the same as store single except
for the additional store cycle in the sixth cycle, making it a four-cycle instruction. The most-significant word is stored

in cycle five and the least-significant word in cycle six. Note that the size bits are set to 11 during the address portion
of all three data cycles and that the bus is locked to allow the completion of both stores without interruption. INULL

is not active for the address of the least-significant store because there cannot be a miss on this cycle if there wasn’t
one on the tag check cycle, unless the cache line is less than two words.

Store single and store double floating-point instructions look identical to their integer counterparts except that the
FINS1/FINS2 signal is active for floating-point operations.

‘ 1 2 3 4 5 6

ck | | | | | | L

o) (SToXQOOK AL QOO A2 XXX STt (XX STasst (O STa2 0000 A4 )
Di31:0] PUXXKXAXRET XXX Inst: XXXt 9 ST Data 1K ST Data 2)——

| O\ ? /S
w | | T\ VA

DXFER ! / ! ! ! \_l_
Lock | | | | —\ |
wrr 3 T\ | |

INULL 1 1 l l l /—\__
INST ‘ ‘ ‘ ‘ \ l

Figure 40. Store Double Integer Timing
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3.7.7. Atomic Load-Store

Atomic transactions consist of two or more steps which are indivisible; once the sequence begins in the instruction
pipeline, it cannot be interrupted. Because atomic operations are four-cycle instructidi®C 88 Easserts LOCK

for as long as necessary to make sure that no interruption occurs on the bus. Figure 41 applies to the atomic operations
load-store unsigned byte (LDSTUB, LDSTUBA) and word swap (SWAP, SWAPA). Note that, as with any store,
INULL is active on the second occurrence of the store address.

! 1 ! 2 ! 3 ! 4 ! 5 ! 6 !

CLK I | |_
0 -o'mo'o'o'oow o'o'o'om'om'o
oo woo'o'o'oowm owo
\ /

RS R S O
o —/ s O\ |
(S S0 o e S W
o /T o
-

INST ‘ \

Figure 41. Atomic Load—Store Timing
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3.7.8. Floating-Point Operations

The timing for floating-point operations and integer operations is the same except for the addition of the FINS1 and
FINS2 signals in floating-point operations. In this example, Instruction 1 is a floating-point operation (see Figure 42 ).
FINS1/2 tell the floating-point unit to move an instruction out of its decode buffer and begin execution. The FPU also
makes use of the INST signal to latch instructions into its decode buffers.

1 ! 2 ! 3 ! 4

CLK

s XK XRXRX E XRRX R
ST GETY 4700 G 00100 G 0100 Gy 0 0 0 G

ot (T XXXRX PP XXKRY e X XXRY e X XKRN e )

sizerro (0 XXXXX 2 XXXXX 2 XXXXX 2 XXXXX 2 )
FINS1/FINS2 i i / ; \ | :

Figure 42. Floating—Point Operation Timing
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3.7.9. Bus Arbitration

TheTSC691Edoes not have on-chip bus arbitration circuitry because it is designed to operate as a bus slave. Therefore,
external circuitry must arbitrate between external bus requests an8@&1E When theTSC691Eneeds to retain

the busses it asserts the LOCK signal. The arbitration circuitry should assert BifgDit needs to keep the
TSC691Eoff the busses. When BHOLID asserted, the processor’s instruction pipeline is frozen until it is deasserted.
The arbitration circuitry should also deassert the DABE, and COEsignals to three-state ti&C691Es address

bus (on chip pull_up resistor=2Qk, data bus and control signal output drivers so they may be driven by an external
source (see Figure 43).

1 2 3 4 5 6

CLK __J I I I I I L____J

Ao { AL XXXXX A2 (Ag )<XXX>( A3 )

p1:0] {Inst. XX XXX nst. 1

sizeo] {10 XXXXK 10
w XD QT

WE

Losto 00— : : N |
DXFER ' ' '

ook _ - 0— f —

o T\ S
e / a
A T G S
e _ /T i i S

Figure 43. Bus Arbitration Timing

76
Rev. | — September 23, 1998



TEMIC TSCB91E

3.7.10. Load with Cache Miss

Figure 44 gives the timing for a load with cache miss. Cache logic must stop the processor by asserting MHOLDA
or MHOLDB in the next cycle. However, the processor stops with the address of the next instruction on the address
bus rather than the instruction that caused the miss. In order to retrieve the proper load data, the memory system need:
the missed address on the bus. To do this the memory system must send an MAO signal, forcing the processor to output
the previous address (the address that was on the bus in the cycle before Mid®©aBserted). The MHOLSgnal

must be maintained while the missed data is strobed into the processor with theidviBIS(it must be strobed
externally because the internal processor clock is frozen by the MHOLD

l 1 l 2 l 3 l 4 l 5 l 6 l 7

e [ LT LT L T L T L I LTI L
-
SOGB40 G .10 T .01 G L[ D LG 10
SizefLo) 10 XXX saX XXX o XXX 20 XXX XX 2o XKD

WFOLD : : \ /_

Figure 44. Load with Cache Miss Timing
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3.7.11. Store with Cache Miss

The timing for a store with cache miss is similar to the load with cache miss situation, except that MAO aae MDS

not required (see Figures 45 & 46). Because the processor outputs the store address twice, it already has the proper
address on the bus when it's stopped by MHOMDS is not required because nothing needs to be strobed into the
processor.

INULL is asserted for the second occurrence of the store address so that it doesn'’t trigger the miss circuitry during the
time the cache is processing the miss on the first occurrence of that address.

1 2 3 4 5

CLK

s -owoowwnm
ro) - G XN XX XX XXX
oz owoowwoxo g

sizelto -owo-owwuwn

RD. -\
= N 3
DXFER /
LoCK / \
wer T\ ?
INULL /
o ————————___
wor 3 D ?

Figure 45. Store with Cache Miss Timing (1 of 2)
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Semiconductors

TSCO691E

CLK

A[31:0]

ASI[7:0]

D[31:0]

SIZE[1:0]

RD

DXFER

LOCK

WRT

INULL

MHOLD

INST

6 | 7 ) 8 . 9

ST Add

XRRRY XX XRRRCE XRRR )

ASlgT

XXX YRR XRRR e XRRRN )

ST Data

— (XXX XX X5

ST Size

XXX XX XXX XX )

N

N

/

Figure 46. Store with Cache Miss Timing (2 of 2)
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Semiconductors

3.7.12. Load/Store instruction with Trap

Figure 47 gives the timing for a load instruction with a trap taken. This timing is similar for the load double, for the
load-store, for the store and for the swap instructions.

1 l 2 l 3 l 4 | 5 6

CLK f _|_

o N
INST : : : R
\ /A

INULL

Figure 47. Ld, LdSt, St and Swap Inst with Trap Taken
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3.7.13. Memory Exceptions

Load with memory exception timing is shown in Figures 48 & 49. As with a cache miss, memory logic must stop the
processor by asserting MHOLDé& MHOLDB in the next cycle. The MHOLBignal must be maintained while the
memory exception (MEXETsignal is strobed into the processor with the Milifhal (it must be strobed in externally
because the internal processor clock is frozen by the MHOUBXC must be deasserted in the same clock cycle in
which MHOLD is deasserted. Note that INULL is asserted in the cycle 8 instruction fetch to annul that fetch. This is
the same action shown in cycle 2 of Figure 32 for an internal trap. Store with memory exception has the same timing
(see Figures 52 & 53) except INULL is asserted from the second store address through to the annulled cycle 8
instruction fetch.

I e B

saxo) (XXX XRRRXE AR XERRK = |

stz (XXX RO X KRR X o]
opro) (@ RRRX = XK R YRR X

sizeptor (30 XXX 10 XXXRXE XXX o XXXRY |
DXFER : /—\ : :

1

CLK

MHOLD 1 l 1 ;\

INULL 1 1 1 1 1
MD 1 1 1 1 1
MEXC l l l l 1
INST \ -/

FLUSH

Figure 48. Load with Memory Exception Timing (1 of 2)
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6 | 7 . 8 . 9

CLK

I I XXX X0 XXX

ssivar [ (KRR XRRRX = KRRy
oz (XX XER O R

SIZE[L0] ™  RARXX 20 XXKIX 22 RXKXR )
DXFER I | | |
MHOLD ﬁ f / ' R17 = ADD (LD Inst)
. : 'R18 = ADD (LD Inst) + 4
INULL

MDS \ o/
MEXC \ ./

INST

FLUSH é é /

i

Figure 49. Load with Memory Exception Timing (2 of 2)
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o L L LI

szo) (R YRR XXX o XERRH = |

6 ' 7 ' 8 ' 9

CLK _, | | | |_ |
XX XXX o XX XN )

ABLO) | A3

SO 040 0040 G V001 G 000 G 90 D

MHOLD ; ; / ' : E%g =IAA3E

ws T\ / ' ' '
MEXC \—/ : : f

- ———— —
-

Figure 50. Instruction Memory Access Exception Timing
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Semiconductors

1 2 3 4 5

CLK _| | | | | | | | | L

rezol (X RRRX YRR X RN o]
oo EEXERCDRRCES xzzzxxzzzx._xzzzx:l

DXFER . . . /

MHOLD

INULL

o L1 L1 LI L1 L1 |
A[31:0] | LD Add ' v"‘v"VVV“VVV“VVV“VVV
oo [— XXK0) H S0 @ LU st X KRN nst 4 XXXK) H QA

MHOLD : , / , 5% IAE

DXFER 5 5 \ ' ! ! :
INULL é E é é §/_El\_
: : : :
T
o N
e 5 5 5 VAR -

Figure 51. Instruction Memory Access Exception Timing (LD in Execute stage)
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1 ; 2 ; 3 ; 4 ; 5

CLK

S D 00 G L0 D 01 G L
ot (XXX XXX o XX v
S G 101 D 1141 D L D 0 GG

° T\

DXFER : : / !
LOCK I L/ L\
WRT -/ \

INULL

MHOLD

MEXC

INST \

FLUSH

Figure 52. Store with Memory Exception Timing (1 of 2)
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6 ! 7 ! 8 ! 9
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QXXX A2 XXXXXA™ KOOXAT™)
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QAKX Astns X XXX st XXXXXASH )
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' /
A
D[31:0] ST Data ‘X‘X‘A‘ = ‘A‘ ‘A‘

sizeio] [ _stsie QAXX 0 XK1 XXX ™ )

RD

' R17 = Add Store,
' R18 = Add Store + 4

DXFER

=
m
N N

LOCK

WRT

INULL I I : : \

MAOLD /

Z‘
O
n

<
m
X
@

CH s § /
FLUSH ' ' / I I

Figure 53. Store with Memory Exception Timing (2 of 2)
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Semiconductors

TSCO691E

CLK

A[31:0]

ASI[7:0]

D[31:0]

SIZE[1:0]

RD

DXFER

LOCK

WRT

INULL

5

XXX XXX X KX A KX =

(o X KRR XXX XX XXX

ST Data

(XXX XX = XX ‘

(oo XX o XXX XXX X RRX s

\

MEXC

INST

FLUSH

Figure 54. Store double with Memory Exception on 1st data address (1 of 2)
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6 | 7 | g 0 -
CLK — , , | |

szervo [ st XOOKCo XXX CXRRRXCE)
oo § / : |

=
i
N

R17 = Add Store
:R18 = Add Store + 4

oxrer | \
-\
-
-\
oo —————

INST

I I I 1/ I
-

Figure 55. Store double with Memory Exception on 1st data address (2 of 2)
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_l|l_', |2'|3'|4_:,|5_' L
A[3L:0]

SIZE[1:0]

RD \ /

DXFER / \
LOCK / ; o\ I
o

o

Figure 56. Store double with Memory Exception on 2nd data address (1 of 2)
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6 ! 7 ! 8 ! 9
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e [ s (XXX )

sazso [ XXX X XX

RD
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R18 = Add Store + 4
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O
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X
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e s \ /.
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Figure 57. Store double with Memory Exception on 2nd data address (2 of 2)

90
Rev. | — September 23, 1998



TEMIC TSCB91E

3.7.14. Floating-Point Exceptions

The floating—point unit asserts FEXG notify theTSC691Ethat a floating-point exception has occurred and that it
should take a trap on the next floating-point instruction that it encounters in the instruction stream (see Figure 58 ).
TheTSC691Easserts FXACK to signal the FPU that the trap is being taken, and FLUSH to clean out the FPU’s decode
buffers. From this point on, the FPU will execute only floating-point store queue instructions until its queue is emptied
by the trap handler.

FEXC is deasserted by the FPU after FXACK is asserted. FXACK is deasserted D3CGBO1E after FEXCis
deasserted.

w ] A L

| | “ | |
ack i YRy A i
| | 7/ | | | |
FLUSH 3 3 3// 3/ 3 \ 3 3
f f 7/ f f f f

Figure 58. Floating—Point Exception Handshake Timing

3.7.15. Interrupts

The asynchronous IRL[3:0] inputs are sampled on the rising edge of every clock. If the interrupt value represented by
those inputs is greater than the masking value in the processor, and no higher priority trap supersdd&S69 ke

will take the interrupt. The IRL input level should be held stable until the processor asserts INTACK.When the trap

is taken, IRL line are ignored until ET=0 (until RETT instruction is executed). Figushé@s the timing for the best

case response time where the IRL input value is asserted one clock and a set—up time before the execute stage of «
single-cycle instruction. Refer to Section 3.8.3 for more information on interrupts.

3 \ 4 \ 5 ‘ 6

SPU s I e O e O O e O O

iz (A XXX 72 XXX XXX 7 XXXRX 7o XXX T XXX

ora0) e XXX e XY e XXX e XY e XXX Tar oY KXK)

IRL[3:0] I 0x0 X Interrupt Asserted ‘X/( I

1 1 1 1 1 Don't care until RETT
INTACK l 1 1 1 1 /_'_\_

Figure 59. Asynchronous Interrupt Timing
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3.7.16. Reset Condition

Figure 60 shows the timing for a power-on reset. RESHEISt be asserted for at least nine cycles so that the processor
can synchronize the reset input and initialize its internal state. For R&eS&eTsynchronized, the CLK signal must
be active.

During the initialization, the processor disables traps (ET=0), sets the supervisor mode (S=1), and sets the program
counter to location zero (PC=0, nPC=4).

x| 7/

-

/L : :
ol (XKoo 77 00000000 XXX A)

1 [ A4 1

| // |

ASI[7:0] CXXXXX ij09 // | Oxogj ‘X‘X‘X‘
| | y 1 ‘ ‘

ool XRRX = 7/ — XX

-7 ;
T 3 VAR |
- 7
wo ? YA ? |

Figure 60. Power—On Reset Timing

3.7.17. Error Condition

Error mode is one of the three states in whichBE691E can exist. To get into this error mode, a synchronous trap

must occur while traps are disabled (the processor state register’s ET bit is set to zero). This essentially means that a
trap which cannot be ignored occurs while another trap is being serviced. In order for that synchronous trap to be
serviced, the processor goes through the normal operations of a trap (see Section 3.8), including $ehitsgtthe

identify the trap type. It then enters error mode, halts, and asserts the ERfR@Rsee Figure 61 ).

The only way to leave error mode is to receive an external RE®Bal, which forces the processor into reset mode.

All information placed in th@ SC691Es registers from the last execute mode (the trap operation) remains unchanged

and the processor resumes operation at address zero. The reset trap handler can examine the trap type of the
synchronous trap and deal with it accordingly.
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FLUSH — I : ! ; : : .-
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I 9. 10 11, 12: I 14,

ST I I I N L l/Zl | |
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ERROR X . X X ! / // X X
RESET | \ : : : I // -/ Z
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* If T.Inst is a control transfert instruction
RESETmust be asserted for a minimum of 9 clocks

Figure 61. Error/Reset Timing
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3.8. Exception Model

The TSC691E supports three types of traps: synchronous, floating-point/coprocessor, and asynchronous (also called
interrupts). Synchronous traps are caused by hardware responding to a particular instruction or by the Trap on integer
condition code (Ticc) instructions; they occur during the instruction that caused them.

Floating—point/coprocessor traps caused by a Floating-Point-operate (FPop) or CoProcessor-operate (CPop)
instruction occur before that instruction is complete. However, because floating—point (and coprocessor) exceptions
are pended until the next floating—point (coprocessor) instruction is executed, other non-floating-point (coprocessor)
instructions may have executed before the trap is taken.

Asynchronous traps occur when an external event interrupts the processor. They are not related to any particular
instruction and occur between the execution of instructions. See Section 3.8.3.

3.8.1. Reset

The reset trap is a special case of the external asynchronous trap type. It is asynchronous because it is triggered by
asserting the RESHEMput signal. But from that point on, its behavior is entirely different from that of an asynchronous
interrupt (see Section 3.8.3).

As soon as th&@ SC691Erecognizes the RESEdignal, it enters reset mode and stays there until the RESEIB

deasserted. The processor then enters execute mode and then the execute trap procedure. Here, it deviates from the
normal action of a trap (Section 3.8.5) by modifying the enable traps bit (ET=0), and the supervisor bit (S=1). It then
sets the PC to O (rather than changing the contents of the TBR), the nPC to 4, and transfers control to location 0.

All other PSR fields, and all other registers retain their values from the last execute mode.
Note :
Upon power-up reset the state of all registers other than the PSR are undefined.

If the processor got to reset mode from error mode, then the normal actions of a trap have already been performed,
including setting thét field to reflect the cause of the error mode. Because this field is not changed by the reset trap,

a post-mortem can be conducted on what caused the error mode. The processor enters error mode whenever a
synchronous trap occurs while traps are disabled.

3.8.2. Synchronous Traps

Synchronous traps are caused by the actions of an instruction, with the trap stimulus occurring either internally to the
TSC691Eor from an external signal which was provoked by the instruction. These traps are taken immediately and
the instruction that caused the trap is abdbefdreit changes any state in the processor.

A new type of trap has been added: Hardware traps. This trap occurs when a hardware errof¥{i.en S€gister)
is detected by the IU. The trap type depends of the internal parity error (see Table 40). In case of hardware traps the
HWERRORsignal is asserted low.

The external signals that can cause a synchronous trap are listed in Table 37

Table 37. Externally Generated Synchronous Exception Traps

Trap Initiating Signal Condition
Data Access Exception MEXC Memory error during data access
Instruction Access Exception MEXC Memory error during instruction access
Floating—Point Exception FEXC Floating—point unit error
Coprocessor Exception CEXC Coprocessor unit error

Note [1]:
SEU = Single Event Upset, a flip of register or memory cells, forced by heavy ions.

3.8.2.1. External Signals

Synchronous traps generated by the input signal MEBME&mory Exception) occur during the execute phase of an
instruction or occur immediately for data accesses. Traps generated by theaRBXZEXCsignals belong to the
special floating-point/coprocessor category, and may not occur immediately.
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3.8.2.1.1. Hardware error

When a hardware error is detected, the trap handling routine saves the error information which the MEC has sampled.

The trap routine then resumes the instruction by returning from the trap routine. If the cause of the error was a transient
fault, it may be removed by just resuming the instruction. If the error was caused by a fault that is not removable by
resuming the instruction, another hardware error trap is generated and the trap handling routine propagates the error
to a higher level of the application.

If the fault is in a critical register or latch which the trap handling routine uses, another hardware error trap is generated.
A synchronous trap during the time when traps are disabled is a critical error and the IU enters the error mode and halts.
This means that the error detection mechanism has to detect the error when the faulty instruction is in the execute stage
in order to handle the trap normally, i.e. correct PC for the faulty instruction.

When an error trap occurs, the HWERRGEIBnal is asserted (see Table 40).

3.8.2.1.2. Instruction access exeption

An instruction access exception trap is generated if a memory exception occurs (theilyaX€ignal is asserted)
during an instruction fetch.

3.8.2.1.3. Data access exception

A data access exception trap is generated if a memory exception occurs (theinpEX8ignal is asserted) during
the data cycle of any instruction that moves data to or from memory.

3.8.2.2. Internal/Software

Synchronous traps generated by internal hardware are associated with an instruction. The trap condition is detected
during the execute stage of the instruction and the trap is taken immediately, before the instruction can complete.
3.8.2.2.1. lllegal instruction

An illegal instruction trap occurs:

e when the UNIMP instruction is encountered,

e when an unimplemented instruction is encountered (excluding FPops and CPops),

® in any of the situations below where the continued execution of an instruction would result in an illegal processor
state:

1. Writing a value to the PSR’s CWP field that is greater than the number of implemented windows (with a
WRPSR)

2. Executing an Alternate Space instruction with kg set to 1
3. Executing a RETT instruction with traps enabled (ET=1)
4. Executing an IFLUSH instruction with TED

Unimplemented floating-point and unimplemented coprocessor instructions do not generate an illegal instruction trap.
They generate fp exception and cp exception traps, respectively.

Floating-point instructions are coded with : op=10 & op3=11010x and coprocessor instructions : op=10 & op3=11011x.
The IU decodes the fields op and op3 and generates FINS'’s or CINS’s even if the instruction is unimplemented.

3.8.2.2.2. Privileged instruction
This trap occurs when a privileged instruction is encountered while the PSR’s supervisor bit is reset (S=0).

3.8.2.2.3. Fp disabled

A fp disabled trap is generated when an FPop, FBfcc, or floating-point load/store instruction is encountered while the
PSR'’s EF hit =0, or if no FPU is present (Rput signal =1).

3.8.2.2.4. Cp disabled

A cp disabled trap is generated when a CPop, CBccc, or coprocessor load/store instruction is encountered while the
PSR’s EC bit =0, or if no coprocessor is presentif@Bt signal =1).

3.8.2.2.5. Window overflow

This trap occurs when the continued execution of a SAVE instruction would cause the CWP to point to a window
marked invalid in the WIM register.
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3.8.2.2.6. Window underflow

This trap occurs when the continued execution of a RESTORE instruction would cause the CWP to point to a window
marked invalid in the WIM register. The window underflow trap type can also be set in the PSR during a RETT
instruction, but the trap taken is a reset. See Section 3.8.1 on reset traps and SPARC V7.0 Instruction Set for the
instruction definition for RETT.

3.8.2.2.7. Memory address not aligned

Memory address not aligned trap occurs when a load or store instruction generates a memory address that is not properly
aligned for the data type or if a JMPL instruction generates a PC value that is not word aligned (low-order two bits
nonzero).

3.8.2.2.8. Tag overflow

This trap occurs if execution of a TADDccTV or TSUBccTV instruction causes the overflow bit of the integer condition
codes to be set. See the instruction definitions of TADDccTV and TSUBccTV and Section 3.4.3.2.3 for details.

3.8.2.2.9. Trap instruction

This trap occurs when a Ticc instruction is executed and the trap conditions are met. There are 128 programmable trap
types available within the trap instruction trap (see SPARC V7.0 Instruction Set, Ticc instruction).
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3.8.3. Interrupts (Asynchronous Traps)

Asynchronous traps occur in response to the Interrupt Request Level (IRL[3:0]) inputs. This type of trap is not
associated with an instruction and is said to happen between instructions. This is because, unlike synchronous traps,
an interrupt allows the instruction in whose execute stage it is prioritized to complete execution (see Figure 62 ). Any
instruction that has entered the pipeline behind the instruction which was allowed to complete is annulled, but can be
restarted again after returning from the trap.

3.8.3.1. Priority

The level, or priority, of the interrupt is determined by the value on the IRL[3:0] pins. For the interrupt to be taken,
the IRL value must be greater than the value in the Processor Interrupt Level (PIL) field of the Processor State Register
(PSR). A value of 0 indicates that no interrupt is requested. A value of 15 represents a non-maskable interrupt. All other
IRL values between 0 and 15 represent interrupt requests which can be masked by the PIL field. The priority and trap
type (t) for each level is shown in Table 38 .

3.8.3.2. Response Time

The TSC691E samples the IRL inputs at the rising edge of every clock. In order to properly synchronize these
asynchronous inputs, they are put through two synchronizing levels of D-type flip-flops. The outputs of the two levels
must agree before the interrupt can be processed. If the outputs disagree, the interrupt request is ignored. This logic
serves to filter transients on the IRL lines, but it means that the lines must be active for two consecutive clock edges
to be accepted as valid.

Once the IRL input has been accepted, it is prioritized and the appropriate trap is taken during the next execute stage
of the instruction pipeline. Best case interrupt response occurs when the interrupt is applied one clock plus one setup
time before the execute phase of any instruction in the pipeline (see Figure 62 ). In this case, the first instruction of
the interrupt service routine is fetched during the fifth clock following the application of an IRL value greater than the
PIL field of the processor status register (PSR). This also holds for an IRL value of OF H, which acts as a non—-maskable
interrupt.

The worst case interrupt response occurs when the detection of the IRL input just misses the cutoff point for the execute
stage of a four-cycle instruction, such as a store double or atomic load-store (see Figure 65 ). In this case, the interrupt
input must wait an additional three cycles for the next pipeline execute phase. In addition, if the IRL input just misses
the sampling clock edge, an additional clock delay occurs. As a result, the first instruction of the service routine is
fetched in the eighth clock following the application of IRL.

The best and worst case interrupt timing described above assumes that the processor is not stopped via the applicatior
of an external hold signal, and that the IRL input is not superceded by the occurrence of a synchronous (internal) trap.

Fetch Inst. 2 ->r17 Inst. 3 ->r18 Inst. 4 WA Trap 1 Trap 2
Decode Inst. 1 Inst. 2 Inst. 3 Annulled / Trap 1
Execute Inst. 1 Inst. 2 Annulled Annulled

Write Inst. 1 Annulled Annulled Annulled

IRL[3:0] A A A
Taken
— Prioritized
Latched
INTACK Sampled

Figure 62. Best—Case Interrupt Response Timing (one cycle instruction)

97
Rev. | — September 23, 1998



TSCB91E TEMIC

Load Tag
Fetch Load Inst1 | Inst2 Inst 3 Trap2 | Trap 3
> r17 > r18 Data A Check
Decode Load 10P, Inst 1 Inst2 | Annulled Trap 1 10P; IOP,
Execute Load IOP; Inst1 | Annulled| Annulled A Trap 1 IOPy
Write Load 10P; Annulled| Annulled | Annulled Trap 1
IRL[3:0] A X A
— e - - - - - 4 '
' X Taken
X X Prioritized
: Latched .
INTACK ‘Sampled I

Figure 63. Double Cycles Instruction Interrupt Response Timing (ex: Load)

Fetch Inst1 | Inst2 Tag Store Tran2 | T Tag
Store | 5%17| ->r18| check | pata | MSt3 A Trapl | Trap AP 3 Check
Y
Decode Store 10Py 10P, Inst. 1 Inst. 2 | Annulled / Trap1 | 10P; 10P,
Execute Store IOP; IOP, Inst. 1 | Annulled | Annulle y/// Trap1| 10P;
y
Write Store 10P;, IOP, | Annulled |Annulled Annulledy Trap 1
IRL[3:0] A A A A A T
PR R -1 : '
! . Taken
! . Prioritized
: Latched
INTACK Sampled I I
Figure 64. Triple-Cycles Instruction Interrupt Response Timing (ex: Store)
Fetch Store | Inst1 | Inst2 | Tag | Store | Store | Inst. 3 Trap 2| Trap 3 | 129
double| -> 17 ->r18 Check D1 | D2 Clrei
Store
Decode double 10P, 10P, 10P3 Inst. 1| Inst. 2 10P,
Store
Execute double 10Py 10P> 10P3 Inst. 1 10P;
Write Store | 1op | 1op, | 10P Trap 1
double 1 2 3 rap
IRL[3:0] A A : A A A A
e R T 4 ' '
X . Taken
' X —Prioritized
L Latched
INTACK Sampled ---+ | |

Figure 65. Four-Cycles Instruction Interrupt Response Timing (Store Double)

98
Rev. | — September 23, 1998



TEMIC TSCB91E

When the instruction present in the decode stage during sampling of IRL[3:0] is a CBI, the response time is the same
than described in Figure 62 except when the delay instruction is annulled:

® BA, FBA, and CBA with annul bit = 1 (B*A,a)
® Bicc, FBicc, and CBicc not taken with annul bit = 1 (B*cc,aNT)

For those two cases, the INTACK signal and the first instruction of the interrupt service routine will be valid one cycle
later (see Figure 66).

Inst. 1
Fetch Delay Inst. :;ar ﬁ:[7 ->nsR:|.8 Inst. 2 A Trap 1 Trap 2

Y4
Decode CBI Annulled Target Inst. 1 Annulled y////// Trap 1
47
Execute CBI Annulled Target Annulled Annulled %

Write CBI Annulled Annulled Annulled Annulled
IRL[3:0] I“ J A
Taken
— Prioritized
Latched
INTACK — Sampled

Figure 66. Interrupt Response Timing on conditional branch instruction (B*A,a & B*cc,aNT)

3.8.3.3.Interrupt Acknowledge

As shown in Figures 62 to 66, the INTerrupt ACKnowledge (INTACK) output signal is asserted when the interrupt
is taken not when it is first detected and latched. Because of this delay, if the IRL[3:0] inputs are changed to reflect
another interrupt condition before the corresponding INTACK for the latched condition is received, there could be
some question as to which interrupt the INTACK is responding to. Therefore, external hardware should ensure that
the IRL[3:0] inputs are held stable until an INTACK is received.

When trap is taken the PC and nPC are saved into r[17] and r[18] respectively (see Figures 63 to 66). Care must be
taken in case of Response Timing on conditional branch instruction (B*A,a & B*cc,aNT), the PC value of instl instead
of the Delay Instruction is saved in r[17]. If Branch is taken, r[17] and r[18] contain the 2 first addresses of the branch
routine.

For the Best—Case Interrupt Response Timing (see Figure 66), r[18] contains the value of the first address of the branch
routine if instl if a Branch instruction (different than B*A,a & B*cc,aNT).

3.8.4. Floating-Point/Coprocessor Traps

Floating-point/coprocessor exception traps are considered a separate class of traps because they are both synchronot
and asynchronous. They are asynchronous because they are triggered by an external sigral @EXCJL and are

taken sometime after the floating-point or coprocessor instruction that caused the exception. This can happen because
the TSC691Eand the FPU (coprocessor) operate concurrently. However, they are also synchronous, because they are
tied to an instruction—the next floating-point or coprocessor instruction encountered in the instruction stream after
the signal is received.

When the FPU (coprocessor) recognizes an exception condition, it enters an “exception pending mode” state. It
remains in this state until tHESC691E signals that it has taken an fp exception (cp exception) trap by sending back
an FXACK (CXACK) signal. The FPU (coprocessor) then enters the “exception mode” state, remaining there until
the floating-point (coprocessor) queue has been emptied by execution of one or more STDFQ (STDCQ) instructions.

Although the PC will always point to a floating-point or coprocessor instruction after an exception trap is taken, it
doesn’t point to the instruction that caused the exception. However, the instruction that did cause the exception is
always the front entry in the queue at the time the trap is taken, and the entry includes both the instruction and its
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address. The remaining entries in the queue point to FPops (CPops) that have been started but have not yet completed.
Once the queue has been emptied, these can be re-executed or emulated.

3.8.4.1. Floating-Point Exception

This trap occurs when the FPU is in exception pending mode and an FPop, FBfcc, or floating-point load/store
instruction is encountered. The type of exception is encoded inhfiblel of the Floating-point State Register (FSR).

3.8.4.2. Coprocessor Exception

This trap occurs when the Coprocessor is in exception pending mode and a CPop, CBccc, or coprocessor load/store
instruction is encountered. The type of exception should be encodedtiri¢te of the Coprocessor State Register
(CSR). The nature of the exception is implementation dependent.

3.8.5. Trap Operation

Once a trap is taken, the following operations take place:

Further traps are disabled (asynchronous traps are ignored; synchronous traps force an error mode).
The S bit of the PSR is copied into the PS bit; the S bit is then set to 1.

The CWP is decremented by one (modulo the number of windows) to activate a trap window.

The PC and nPC are saved into r[17] and r[18], respectively, of the trap window.

Thett field of the TBR is set to the appropriate value.

If the trap is not a reset, the PC is written with the contents of the TBR and the nPC is written with TBR + 4. If the
trap is a reset, the PC is set to address zero and the nPC to address four.

Unlike many other processors, the SPARC architecture does not automatically save the PSR into memory during a trap.
Instead, it saves the volatile S bit into the PSR itself and the remaining fields are either altered in a reversible manner
(ET and CWP), or should not be altered in the trap handler until the PSR has been saved to memory.

3.8.5.1. Recognition

In most cases, traps are recognized in the pipeline’s execute stage. For a synchronous trap, the trap criteria are examined
during the execute stage of an instruction, and the trap is taken immediately, before the write stage of that instruction
takes place. This includes the fp (cp) disabled trap type. The special cases occur with those traps generated by external
signals. A memory exception on an instruction fetch is detected at the beginning of the execute stage of instruction
execution. Memory exceptions occurring on data accesses are detected on the rising clock edge of the data cycle.

Because asynchronous traps happen “between” instructions, their timing is slightly different. As long as the ET bit is
set to one, th& SC691Echecks for interrupts. The interrupt is sampled on a rising clock edge and latched on the next
rising clock edge. The processor compares the IRL[3:0] input value against the PIL field of the PSR, and if IRL is
greater than PIL, or IRL is 15 (unmaskable), then it is prioritized at the end of the next execute stage of the pipeline.
A trap keyed to the IRL level occurs after the write stage completes.

Floating-point/coprocessor exception traps are not recognized when the &#E&XC signal is first sampled. The
processor waits until it encounters a floating-point or coprocessor instruction in the instruction stream and then handles
it as if it were an internal synchronous trap.

3.8.5.2. Trap Addressing

The Trap Base Register (TBR) is made up of two fields, the Trap Base Address (TBA) and the tigp Ty1geTBA

contains the most-significant 20 address bits of the trap table, which is in external memory. The trap type field, which
was written by the trap, not only uniquely identifies the trap, it also serves as an offset into the trap table when the TBR

is written to the PC. The TBR address is the first address of the trap handler. However, because the trap addresses are
only separated by four words (the least-significant four bits of TBR are zero), the program must jump from the trap
table to the actual address of the particular trap handler.

Of the 256 trap types allowed by the 84biield, half are dedicated to hardware traps (0-127), and half are dedicated

to programmer-initiated traps (Ticc). For a Ticc instruction, the processor must calculhteatbe from the fields

given in the instruction, while the hardware traps can be set from a table such as the one below. See the Ticc instruction
definition for details.
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Thett field remains valid until another trap occurs.

3.8.5.3. Trap Types and Priority

Each type of trap is assigned a priority (see Table 38 ). When multiple traps occur, the highest priority trap is taken,
and lower priority traps are ignored. In this situation, a lower priority trap must either persist or be repeated in order
to be recognized and taken.

Table 38. Trap Type and Priority Assignments

Trap Priority Tra[()tt';'ype ors,o)\/s?ycnhcrﬁpoonuosus
Reset 1 - Async.
Hardware error 201 97-102 Sync.
Instruction Access 3l 1 Sync.
lllegal Instruction 401] 2 Sync.
Privileged Instruction 50l 3 Sync.
Floating—Point Disabled 6l 4 Sync.
Coprocessor Disabled 6t 36 Sync.
Window Overflow 711 5 Sync.
Window Underflow 7 6 Sync.
Memory Address not Aligned 8 7 Sync.
Floating—Point Exception 9 8 Sync.
Coprocessor Exception 9 40 Sync.
Data Access Exception 10 9 Sync.
Tag Overflow 11 10 Sync.
Trap Instructions (Ticc) 12 128 - 255 Sync.
Interrupt Level 15 13 31 Async.
Interrupt Level 14 14 30 Async.
Interrupt Level 2 26 18 Async.
Interrupt Level 1 27 17 Async.

Note 1:
The priority of those traps have changed in relation to the CY7C601.

3.8.5.4. Return From Trap

On returning from a trap with the RETT instruction, the following operations take place:
® The CWP is incremented by one (modulo the number of windows) to re-activate the previous window.
® The return address is calculated

® Trap conditions are checked. If traps have already been enabled (ET=1), an illegal instruction trap is taken. If traps
are still disabled but S=0, or the new CWP points to an invalid window, or the return address is not properly aligned,
then an error mode/reset trap is taken.

e |If no traps are taken, then traps are re-enabled (ET=1).
The PC is written with the contents of the nPC, and the nPC is written with the return address.
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® The PS bit is copied back into the S bit.

The last two instructions of a trap handler should be a JMPL followed by a RETT. This instruction couple causes a
non-delayed control transfer back to the trapped instruction or to the instruction following the trapped instruction,
whichever is desired. See the RETT instruction definition for details.

3.9. Coprocessor Interface

In the SPARC architecture, the integer unit is the basic processing engine, but provision is made for two coprocessor
extensions. The extensions are in the form of instruction set extensions and a pair of identical signal interfaces. In the
TSC691E one of these instruction and signal interface extensions is dedicated to floating-point operations and the
other is designated for a second coprocessor, either user defined or some future device offered by MHS and/or Cypress.
Although signals and instructions have been named to reflect the assumption of how these two extensions will be used,
either instruction set extension/signal interface may be used in any way desired.

In order for theTSC691Eto support a user-defined coprocessor, the coprocessor should contain certain elements
defined by the SPARC architecture. These include an internal register set, a status register, a coprocessor queue, and
a set of compatible interface pins. These elements are identical to the floating—point interface, and it is recommended
that a user desiring to use the coprocessor interface thoroughly study the floating—point interface as an example of a
coprocessor interface application.

3.9.1. Protocol

The coprocessor extensions to the architecture are designed to allow the coprocessor to operate concurrently with the
integer unit and the floating—point unit. To keep operations synchronized, address and data busses are shared. The
initial TSC691Einstruction decode determines which unit should execute the instructiomSTI&91Eexecutes its

own instructions, but signals the coprocessor to continue the decode and execution if it recognizes a coprocessor
instruction. For coprocessor loads and storesT 8@691Esupplies the memory address and the coprocessor receives

or supplies the data. The coprocessor must deal with resource or data dependencies, signaling the problem to the
TSC691Eby freezing the instruction pipeline with the CHOE[@nal.

The signal interface between th&C691E and the coprocessor consists of shared address, data, clock, reset, and
control signals, plus a special set of signals that provide synchronization and minimal status information between the
coprocessor and tHESC691E

3.9.1.1. Coprocessor Interface Signals

The SPARC architecture defines two sets of signals intended for interfacing with two coprocessdo&CahEE

assigns one set of coprocessor signals for specific use by the floating—point unit, and the other set of coprocessor signals
for a user—defined coprocessor. All floating—point interface signal names begin Wjthrahall coprocessor interface

signal names begin with @ Both sets of interface signals share the INST signal, which identifiesC#91E

instruction fetch. The two groups of signals are symmetric, have identical timing requirements, and are listed in
Table 33 .

Instruction fetch is signaled by ti&C691Eusing the INST signal. The coprocessor uses INST as an input to enable
latching of an instruction on the data bus. The coprocessor latches all instructions fetch@BGESEE, regardless

of instruction type. Th@ SC691Easserts CINS1 or CINS2 at the beginning of the decode stage of instruction execution

of a coprocessor instruction. The CINS1 or CINS2 signals are used to start the execution of a coprocessor instruction
and select which of the two most recently fetched instructions stored in the two—stage instruction buffer is to be
executed by the coprocessor.

The TSC691E requires the CRignal to be driven low in order for the integer unit to recognize the presence of a
coprocessor. Attempting to execute coprocessor instructions withighRwill cause th& SC691Eto execute &p
disabledtrap.

Hardware interlocking for coprocessor instruction execution is provided with the CH@ial. This signal is
asserted by the coprocessor to freezd 8€691E This signal is asserted in cases wherd ®@691Emust be halted

to prevent it from causing a condition from which the coprocessor cannot recover. An example of this would be fetching
multiple coprocessor instructions that would otherwise overrun the coprocessor queue. The coprocessor would be
expected to assert CHOLtil it could handle additional instructions.
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Coprocessor interrupts are asserted with the CE¥Ral. This signal is asserted by the coprocessor upon the detection
of an exception case. THSC691Ewill continue normal execution until the execution stage of the next coprocessor
instruction. At that time, th& SC691E will acknowledge the interrupt with CXACK, and begin coprocessor trap
execution.

Coprocessor branch on condition code (CBcc) instructions are executed ByQB81E integer unit based on the

value of the CCCJ1:0] signals supplied by the coprocessor. These signals are typically set by the execution of a
coprocessor compare instruction (defined by the designer). The CCCV signal supplied by the coprocessor indicates
whether the state of the CCC[1:0] signals is valid. CCCV is normally asserted, but is deasserted when a coprocessor
compare instruction is executed and remains deasserted until that instruction is completed. The deassertion of this
signal causes th&€SC691E to halt execution. This interlock prevents thR8C691E from branching on invalid

condition codes. The SPARC architecture requires at least one non—coprocessor instruction between a coprocessor
compare and a coprocessor branch on condition code (CBcc) instruction.

3.9.2. Register Model

The coprocessor register model specified by the SPARC architecture is shown in Figure 67 . The coprocessor has its
own 32 x 32-bit working register file from which all operands for CPop instructions originate and to which all results
return. The contents of these registers are transferred to and from memory under contr@SE68&E using
coprocessor load/store instructions.

32—-Word by 32-Bit Register
File

32-Bit Status Register

Address Decode Register 1 Instruction Decode Register 1
Address Decode Register 2 Instruction Decode Register 2
Address Queue Register N Instruction Queue Register N
Address Queue Register 1 Instruction Queue Register 1
Address Queue Register 0 Instruction Queue Register 0

Figure 67. Coprocessor Register Model

The Coprocessor State Register (CSR) contains the current status of the coprocessor. The exact nature of the exceptio
bits and trap types are implementation dependent. The CSR is read and written indirectly through memory using the
LDCSR and STCSR instructions.

The coprocessor queue is necessary to properly handle traps with concurrently operating units. The first-in, first-out
queue records all pending coprocessor instructions and their addresses at the time of a coprocessor exception. The fron
entry of the queue contains the unfinished instruction that caused the exception. The rest of the queue contains
unfinished CPops which would be restarted or emulated after the trap handler returns control to the main program.

The address and instruction decode buffers hold instructions and their addressesTB@GB®EE determines if they

belong to the coprocessor. If one of the held instructions belongs to the coproce3SEadEEsends the appropriate

CINS signal to move the instruction into the coprocessor execute stage. The address and a copy of the instruction also
move into the queue at this point and remain there until the instruction completes.
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Semiconductors

When a trap is taken, tie&SC691Easserts the FLUSH signal, causing the coprocessor to dump any instructions in the
decode buffers. FLUSH does not affect instructions which are already in the queue.

3.9.3. Exceptions

Exactly what conditions will generate a cp exception trap are implementation dependent. However, most
implementations would probably include Unfinished CPop as a condition that would cause an exception.

An Unfinished CPop trap is generated when the coprocessor cannot complete execution because the data has exceeded
the capabilities of the coprocessor and/or has generated an inappropriate result.
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TSCO691E

4. Fault Tolerant and Test Mechanism

Fault Tolerant Mechanism:
Parity checking on 98.7% of the total number of latches with hardware error traps

Parity checking of address, data pads and control pads
Program Flow Control

Master/Checker operation
Interleaving of the register file bits to reduce the risk for one impact to provoke dual (multiple) bit upsets

Manufactured using TEMIC Space Hardened 0r8SCMOS RT TECHNOLOGY

Test Mechanism:

e |EEE Standard Test Access Port & Boundary-Scan Architecture
® |nternal Scan Path to test the internal parity error detection during off-line test

® Possibility to halt the IU by an external signal

Parity
Control Error

&

Y

Destination

Register File — 136 x 32 bits

Source 1 Source P
Program Flow
Control @ E L'i
[ —
. S Arithmetic Shift Uni
Parity & Logic Unit ift Unit
Checker PC
Adder + +
F [l TES >
. rogram Gen
Parity - Counters . [Gen]
Generator Align r
Processor State Align -
Master Window Invalid I
— Checker Trap Base
Control Multiply Step A
A &
Genj—¢ Genf—e Genf—9
| Boundary Scan Path - 7ap |
v A—CMODE Y Y Y . ¢
V MCERR Address Control Instruction/ Data
HWERR APAR CPAR DPAR TAP Control
Figure 68. Fault Tolerant and Test Mechanism Block Diagram
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4.1. Fault Tolerant and Test Support signals

Some signals have been added for fault tolerant and test mechanism improvement. These new signals can be classified
as follows:

4.1.1. Address Parity Generation:

® APAR—Address Bus Parity (output)
® ASPAR—ASI and SIZE Parity (output)

4.1.2. Data Parity Generation/Checking:
e DPAR—Data Bus Parity (bidirectional)

4.1.3. MEC control signal Parity Generation:
e |IMPAR—IU to MEC Control Parity (output)

4.1.4. FPU control signal Parity Generation/Checking:

e |FPAR—IU to FPU Control Parity (output)
e FIPAR—FPU to IU Control Parity (input)

4.1.5. Parity Checking Error Output:

o HWERROR—Hardware Error Occurs (outputs)
Odd parity definition: The number of one in a word, including the parity bit, is alway odd.
(e.g. 00000000 --> P=1, 00000001 --> P=0)

4.1.6. Master/Checker Mode:

® CMODE—checker Mode (input)
® MCERR—Comparison Error (output)

4.1.7. Test Access Port:

TCLK—Test Clock (input)
TRST—TEST Reset (input)
TMS—Test Mode Select (input)
TDI—Test Data Input (input)
TDO—Test Data Output

4.1.8. Miscellaneous:

® 601MODE—Normal 601Mode Operation (input)
e HALT—Halt (input)
® FLOW—enable or disable Program Flow Control

A more detailed description of these signals is provided in Chapter 3.5
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4.2. Program Flow Control

4.2.1. Introduction

A very high proportion of transient faults can cause errors in the program flow (75% in a traditional microprocessor).
This type of error is detected by the TSC691E using Embedded Signature-Monitoring (ESM) techniques.

A program using ESM is partitioned in branch free basic blocks and branch instructions. For each executed instruction,
the 1U calculates a checksum of 32 bits of the operation code during the execution. The checksum result consist of the
logic XOR of the instruction words with the previous checksum. The 16 MSB’s are XORed with the 16 LSB’s to provide

a signature word.

This 16-bit signature is compared with the correct value, precomputed by the compiler, whenever a SETHI instruction
(SETHI g0,%PRE_CHECKSUM) is executed. After the comparison, the checksum is reseted to zero.

The 6 MSB’s in the immediate value of the SETHI instruction must be set1@1D1

In case of a comparison error, a hardware trap is taken with Trap Type=0x66 and HWBERSRQ&d.

There are three cases when the subsequent check is disabled:

1. When a trap is taken.
2. When executing a RETT instruction.

3. When executing a SETHI instruction to R[0] with the immediate value set to zero. This SETHI instruction does
not perform a comparison but zero the checksum. It is reserved as a NOP instruction.

For these cases the subsequent check is disabled, and will not signal an error, but will enable the checking again with
checksum equal to zero.

The Program Flow Control is enabled by the FL@MAhal input. After reset the Program Flow Control is enabled (if
FLOW signal is low), and the checksum is reseted to zero.

4.2.2. Example of Program Flow Control

SETHI(gO, %CH3) SETHI(g0,%CH4) SETHI(gO, %CH?)
Pgm start
(add=0) SETHI(gO %CH1) . SETHIGO, %CHG) SETHI(g0,%CHS8)
1 I
I ! I
"1 TRAP RETT 9 13JMPL, 14
, ) , CALL, RESTORE

Figure 69. Example of Program Flow Control

1- Program starts at address=0x0 with Program Flow Control enabled and Checksum=0.

2- No comparison performed, next checking disabled and Checksum is reseted to zero. (NOP)
3- No comparison performed, next checking enabled and Checksum is reseted to zero.

4- Comparison performed, next checking enabled and Checksum is reseted to zeroomparison.
5- TRAP instruction disables the next checking.

6- No comparison performed, next checking enabled and Checksum is reseted to zero.

7- Comparison performed, next checking enabled and Checksum is reseted to zero.

8- RETT instruction disables the next checking.

9- No comparison performed, next checking enabled and Checksum is reseted to zero.
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10- Comparison performed, next checking enabled and Checksum is reseted to zero.

11- When a CALL instruction is encountered, the delay instruction must be a SETHI instruction to perform a
comparison, enable the next checking and reset the Checksum.

12- Comparison performed, next checking enabled and Checksum is reseted to zero.

13- When the JMPL instruction is encountered the Program Flow Control is not disabled and next checking is
enable since the delay instruction is a RESTORE.

14- Comparison performed (checksum is calculated from the last SETHI encountered in the subroutine).
Conclusion In this example, the sequences 3 to 4, 6 to 7 and 9 to 14 are checked.

Programming Note:

1- When returning from a CALL routine (13), the delay instruction is a RESTORE so, when encountering the
next SETHI(g0,%CHS) (14), the comparison is performed with a checksum calculated from the last
SETHI(g0,%CHS) of the subroutine (12).

2- All the delay instruction (instruction after a control transfer instruction: Bicc, FBfcc, CBccc, CALL, JMPL,
Ticc or RETT) are added in the checksum even this instruction is annuled.

4.3. Parity Checking

4.3.1. Introduction

In the TSCB691E 98.7% of all registers are protected by a odd parity bit (100% of the register file is protected). The
checking of registers and busses is be performed only if the registers or the busses are used by the current instruction.
With this approach, unused registers/busses will not cause an error and decreasing the uptime of the system will be
limited.

Address bus, Size and ASI busses, Data bus, Control signals of the MEC and of the FPU are also protected with parity
bits.Control signals for coprocessor are not protected by parity bit. The parity checking is disabled during reset. Care
has to be taken not to read a register before it has been written and its parity bits initialized.

When an error occurs, the HWERRGRnal is asserted low and a trap is taken depending of the parity error type
(see Table 39).

Definition of odd parity bit The number of one in a word, including the parity bit, is alway odd.
(e.g. 00000000 --> P=1, 00000001 --> P=0)

4.3.2. Trap handling

When a hardware error is detected the HWERR{@Ral is asserted then a trap routine is taken depending of the error
type (see Table 39 ). The HWERRGRnal is asserted until the error trap is taken.This software routine reviews the
failing instruction. If the cause of the error was a transient fault, it may be removed by just resuming this instruction.
In this case, HWERROR deasserted (see 5.2.2.2).

If the error was caused by a non removable error, another hardware error trap is generated. Because a synchronous trap
is taken during a time when traps are disabled, the IU enters the error mode, asserts $igRiRO&1d halts
(HWERRORWwill stay asserted until removed by reset).

This means that the error detection mechanism will detect the error when the failing instruction is in the execute stage
in order to handle the trap normally, i.e. correct PC for the failing instruction.

The trap are grouped into the following Error-Type:

1- Restartable, precise error: Errors that can be removed by retrying the instruction and with correctly saved PC
and nPC. These errors can be removed by simply returning from the trap routine.

2- Non-restartable, precise error: Errors that will remain even after an instruction retry, but with correctly saved
PC and nPC. These errors are not removable and the trap routine should not attempt a retry. Since the address
of failing instruction is know, the kernel can attempt a local clean-up, i.e. not having to restart the application.
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3- Restartable, late error: Errors that can be removed by retrying the instruction but with PC and nPC pointing
to the following instruction (was data load error). The trap routine can emulate the failing instruction or retry
after the PC and nPC have been adjusted.

4- Non-restartable, imprecise error: Error that can not be associated with a particular instruction and cannot be
removed by instruction retry. These errors are typically quite severe and will require a re-boot.

5- Register file error: Error that occurred in the register file (special case of Non-restartable, precise error)
6- Program flow error: Error detected by the program flow control.

Table 39. Error Type Assignments

Trap Type Error Type Error Signal
0x61 Restartable, precise error HWERROR
0x62 Non-restartable, precise error HWERROR
0x63 Restartable, late error HWERROR
0x64 Non-restartable, imprecise error HWERROR
0x65 Register file error HWERROR
0x66 Program flow error Trap only

Master / Checker error MCERR
Error mode ERROR

4.3.3. Priority within hardware traps for U

When multiple hardware traps occur, the highest priority trap is taken, and lower priority traps are ignored. The priority
applied on the harware traps of the IU are define as follow:

Table 40. Hardware Priority

Trap Type Error Type Error Signal

0x61 Restartable, precise error 5
0x62 Non-restartable, precise error 2
0x63 Restartable, late error 4
0x64 Non-restartable, imprecise error 1
0x65 Register file error 3
0x66 Program flow error 6

IU synchronous traps 7

Remark: Priority 1 is for highest priority and 5 for the lowest priority. All other
synchronous traps (caused by the actions of an instruction) has a lower priority.

4.3.4. Parity Checking on Register File and Control/Status Registers

The register file and the control/status registers of the TSC691E are protected by a parity bit. Hardware error on those
registers shall lead to hardware error trap as defined in .

109
Rev. | — September 23, 1998



TSCB91E TEMIC

Table 41. Hardware error type for user registers

Location or Register Error type Trap type
Register File Register file error 65H
“Fetch” Parity Check Restartable, precise error 61H
“Decode” Parity Check Non-restartable, precise error 62H
“Execute” Parity Check / “Write” Parity Check Non-restartable, imprecise error 64H
PSR Non-restartable, imprecise error 64H
WIM Non-restartable, precise error 62H
TBR Non-restartable, precise error 62H
Y Restartable, precise error 61H

4.3.5. Parity Checking on Control Signal for the FPU
The control signals between the IU and the FPU are protected by a parity bit.

4.3.5.1. Output control signals

The control bus contains five bits: FINS1, FINS2, FLUSH, FXACK and INST. The parity output for these five signals

is IFPAR (IU to FPU PARIty). This parity bit is generated by the IU.
Note:
IFPAR is a three-state (on chip pull-up resistor£20&utput controlled by TORignal.

4.3.5.2. Input control signals

The input control signals are: FCC[1:0], FCCV, FEXXHOLD and FPThe parity input for these signals is FIPAR
(FPU to IU PARIty). This parity bit is generated by the FPU and checked by the IU when a FBfcc instruction is executed.
FCCV and FHOLD are re-synchronized on the rising edge of the clock to check the parity.

4.3.6. Parity Checking on Control Pads for the TSC693E (MEC)
The 13 control signals between the IU and the MEC are protected by a parity bit.

4.3.6.1. Output control signals

The output control bus contains six bits: DXFER, LDSTO, LOCK, RD,ak&WRT. The parity output for these five
signals is IMPAR (IU to MEC PARIty). This parity bit is generated by the 1U.

Note:
IMPAR is a three-state (on chip pull-up resistor=2Pkutput controlled by COBr TOEsignals.

4.3.6.2. Input control signals
No parity is performed on the input control signals: MAO, MDME&EXC, MHOLDA/B and BHOLD

4.3.7. Parity Checking on Control Pads for the Coprocessor

No parity is performed on the input and output control signals.

4.3.8. Parity Generation on ADDRESS Bus

The 32-bit address bus contains a parity bit calculated by the IU and sent out on the APAR pad. The ASI[7:0] and

SIZE[1:0] busses contain also a parity bit called ASPAR which is calculated by the 1U.
Note:
APAR and ASPAR are a three-state (on chip pull-up resistoR0utput controlled by AOBr TOEsignals.
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4.3.9. Parity Checking on DATA Bus

The DPAR bidirectional signal contains the odd parity over the 32-bit data bus. When the IU receives a data (LOAD)
or an instruction, the parity bit is checked by the IU. In case of a STORE data instruction, the parity bit is generated
and launched in parallel by the IU.

To be able to use a standard FPU (i.e. TSC692E), parity on the data bus has to be generated internally and parity
checking on the control bus must be turned off.

4.3.10. Non CY7C601 Mode
This feature is controlled by asserting the 601MQODEUt signal. This signal is static and shall not change when
running.

4.3.11. Error Type for external signals parity errors

Data inputs (Inst. and Load) and FPU to IU control signals receive a parity bit which is checked by the IU. If an error
is detected, the IU takes a trap depending of the error type Table 50 .

Table 42. Hardware error type for external signals

Register Error type Trap type

Data (inst.) Restartable, precise error 0x61

Data (load) Restartable, late error 0x63
FIPAR Floating—Point Disablef! 0x04

Note []: The parity is only checked when a FBfcc instruction is executed.

4.4. Master/checker operation

The MHSTSC691E includes comparator circuits at the outputs to support fault detection. Applications requiring a
high level of reliability can use this Master/Checker operation to introduce fault detection on a system level. By
duplication of units without the use of external comparators, 100% of the internal errors can be detected, especially
those errors which are not detected by the internal unit concurrent error detection mechanism.

4.4.1. Basic function

By asserting the signal CMODi#Ee TSC691Ecan be configured either as master or checker. This signal is static and
shall not change when running. Assertion of this signal will set the IU to act as a checker to support master/checker
operation. All output signals except ERRGIRVERROR MCERRand TAP signals will be high-Z (on chip pull_up
resistor=20K). The master and at least one checker circuit are working in parallel and execute the same program.
When the master is forcing the address and data bus, the checker is in a read and compare mode. This means the outpi
buffers are disabled and the external busses are compared by the checker with its internal results. If a mismatch occurs
on any output, then the MCERSgnals are asserted until the mismatch disappears. In this case, the system hardware
and/or software can take appropriate action.

If the master IU signals an internal error before a comparison error is indicated, it is possible to stop execution of the
two IUs by asserting the HALTBignal, disable the master U, change the checker IU to master IU and continue
execution. CMODEsignal can be changed when RESH#Jhal is asserted or when the 1U is in halt mode.

On a master processor, the three-state control signals (e.g,:@@H:-DOE, TOE) disable the checker mode of the
three-stated buffers.

An external/internal mismatch can occur for two reasons:

1- In a system with only one master processor, a short or other electrical failure can force the output signal to a
fixed voltage. For example, a bus signal can be shorted to ground. When the circuit drives a high voltage on
the bus, the external signal will be pulled low and a mismatch will occur and he IU asserts the
CMPERRSsignals.
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2- An external/internal mismatch can occur in the master/checker mode. Figure 70 shows a basic master/checker
configuration using twd@ SC691Edevices.

Using the master/checker solution there is a possibility that the system can continue with only the correct remaining
unit, or with both after the restoration of state of the faulty unit. If an internal error is indicated in the checkael, it coul

be ignored. The MEC requires error signals from both the master and the checker. In case of corruption, the system
behavior is defined by the MEC.

Control

Data ‘

Address + l

P vy Y
HALT > [ <€—— HALT
ERROR <& MASTER IU CHECKER IU » ERROR
HWERROR -—— ——>» HWERROR
CMODE = 1 —>» l«¢——— CMODE=0
TAP 4_, |—> TAP
MCERR g¢——«——— L = MCERR

Figure 70. Master/Checker Configuration

4.4.1.1. Master/Checker Signal description

4.4.1.1.1. MCERR—Comparison Error (output)

This signal is asserted in the checker mode when a comparison error occurs on the internal output signals (except
ERROR HWERROR MCERRand TAP signals) vis-a-vis the output signal of the master IU. It is deasserted when
the error disappears.

Note:

MCERRIs a three-state (on chip pull-up resistor=QPkutput controlled by TOEignal.

4.4.1.1.2.CMODE—checker Mode (input)

Assertion of this signal will set the IU to act as a checker to support master/checker operation. All output signals except
ERROR HWERROR and TAP signals will be high-Z (on chip pull-up resistor=2Kt is a static signal and shall
not change when running. It can change only during reset cycle or halt mode.

4.5. IEEE Standard Test Access Port & Boundary-Scan Architecture

The IU includes a Boundary Scan using a Test Access Port (TAP) intdE&de $tandard 1149.]. This interface
is used for debugging and test purposes.

This interface provides standardized approaches to :

1- Testing the interconnections between integrated circuits once they have been assembled on a printed circuit
board or other substrate.

2— Support of testing the integrated circuit itself.
3— Observing or modifying activity during the component’s normal operation.

4.5.1. TAP

The Test Access Port includes the following connections : TCLK, TMS, TR®I and TDO. Dedicated TAP
connections are required to allow access to the full range of mandatory features of this standard.
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4.5.1.1. TCLK (input)

The Test Clock Input provides the clock for the test logic defined by this standard. TCK is active high. The IEEE
standards requires that TCLK can be stopped at O indefinitely without causing any change to the state of the test logic.
When TCLK is active, CKL must be held to one.

4.5.1.2. TMS (input)

The signal received by TMS is decoded by the TAP controller to control test operation. TMS is sampled on the rising
edge of TCLK and has to change on the falling edge of TCLK.

4.5.1.3. TDI (input)

Serial test instructions and data are received by the test logic by TDI. TDI is sampled on the rising edge of TCLK and
has to change on the falling edge of TCLK.

4.5.1.4. TRST(input)
The TRSTinput provides for asynchronous initialization of the TAP controller.

4.5.1.5. TDO (output)
TDO is the serial output for test instructions and data from the test logic defined in the standard.

4.5.2. TAP Controller

The TAP controller is a synchronous finite state machine that responds to changes at the TMS and TCLK signal of the
TAP and controls the sequence of operations of the circuit defined by the IEEE standard.

4.5.3. The Instruction Register

The Instruction Register allows an instruction to be shifted into the design. The instruction is used to select the test
to be performed or the test data register to be accessed or both. A number of mandatory and optional instructions are
defined by the standard. The instructions SAMPLE/PRELOAD, INTEST, EXTEST and BYPASS are implemented on
this chip.

The private instruction TESTPAR will be implemented to access the internal scan path registers. These registers are
not publicly accessible and will be used to test the internal parity logic.

4.5.3.1. Design and Construction of the instruction register

The instruction register is a shift-based design having an optional parallel input. These parallel inputs permit capture
of design-specific information in the Capture-IR state. Figure 71 illustrates an example implementation of an
Instruction Register Cell.

Shift IR ——|G1 1D | It)r)tstruction
i
Data ——3-| ¢ 5 >c1
From last cell ———| 1
—>»1R
|—>-> c1
Clock IR »- 10 next cell

Update IR

Reset

Figure 71. Instruction Register (IR) Cell

4.5.3.2. BYPASS Instruction

The BYPASS register contains a single shift register stage, used to speed-up shifting at the board level, through
components which are not activated.
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4.5.3.3. EXTEST Instruction

The EXTEST instruction shall connect the BOUNDARY SCAN register between TDI and TDO. It is used to test
connections between components on the board level. All output signals can be disabled by using the EXTEST
instruction (except TAP).

4.5.3.4. INTEST Instruction

INTEST instruction allows testing of the on-chip system logic while the component is assembled on the board, with
each test pattern and response being shifted through the boundary-scan register.

4.5.3.5. SAMPLE/PRELOAD Instruction

The SAMPLE instruction allows normal operation if the system logic with the ability to sample signals entering and
leaving the component without affecting circuit operation.

PRELOAD allows a value to be preloaded on the latched outputs of the boundary scan register. This instruction does
not modify the system behavior.

4.5.4. The Device Identification Register

The Device ldentification Register is implemented on the chip. It contains the TSC691E’s assigned component
identifier: 0xOb6400b1. It is selected by the IDCODE instruction.

4 .5.5. Internal Scan Path

An Internal Scan Path will be implemented to provide the off-line test of the internal parity error detection. This Internal
Scan Path will be controlled by the TAP and will force some nodes in the generation circuit of the parity bits. This would
then result in a value with the wrong parity. When this value is read again an error will be detected if the error detection
works correctly. This chain would have one bit for each parity generator.

4.5.6. Boundary scan test register

The Boundary-scan technique involves the inclusion of a shift register stage (contained in a Boundary-scan cell)
adjacent to each component pin so that signals at component boundaries can be controlled and observed using scan
testing principles.

Figure 72 illustrates an example implementation for a Boundary-scan cell that could be used for an input or output
connection to an integrated circuit. Dependent on the control signals applied to the multiplexers, data can either be
loaded into the scan register from the Signal-in port (e.g. the input pin), or driven from the register through the
Signal-out port of the cell (e.g. into the core of the component design). The second flip-flop (controlled by clock B)
is provided to ensure that the signals driven out of the cell in the latter case are held while new data is shifted into the
cell using clock A.

Mode )-|G1 |

Signal in @ >
1

> Signal out

Shift/Load G1

; I P> Scan out
S 0
— |———1D 1D

Scanin | |—>-> c1 |—>> c1

Clock A Clock B

Figure 72. Boundary Scan Cell
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4.6. Interleaving register file bits

It is known that the impact from an SEU will flip adjacent bits in a register file. These multiple bit errors might be
impossible to detect with one parity bit error. Though these cases with multiple bit errors due to SEU are probably more
rare than one bit errors, they cannot be neglected, especially in the register file, which corresponds to 70% of the entire
amount of registers in the 1U.

One solution to this problem is to interleave the bits of one word with the bits of another word. This is done in the register
file and will remove all multiple bit errors due to SEU and full error detection is possible with a single parity bit checker.
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5. Electrical and Mechanical Specification

5.1. Maximum rating and DC Characteristics

5.1.1. Maximum Ratings

Storage TeMPEIatUIe. . . . . .o -8& to+150 C
Ambient Temperature with Power Applied . . .. ... ... 561t0+125 C
SupplyVoltag€! . . ... ... ... ... i ... 05 VI0+7.0 V
INPUEVOItAGE . . . .o -.5Vto+7.0V
5.1.2. Operating Range
Range Ambient Temperature [2] Vce
Military 55° Cto 125 C 5V +/- 10%
5.1.3. DC CharacteristicSover the Operating Range
Parameters Description Test Conditions Min. Max. Units
VoH Output HIGH Voltage Vce=min., loy =-2.0 mA 2.4 \Y
VoL Output LOW Voltage Vee = min., b = +4.0 mA 0.5 \%
ViH Input HIGH Voltage 2.1 Vce \Y
Vi Input LOW \oltage -0.5 0.8 \%
liz Input Leakage Current Vce = Max., Vss<Vijy <Vce -10 10 HA
lozH Output Leakage Current Vee= Max. Your= Vee > - A
utpu u
lozL P 9 Vee= Max., Vout = Vss 503l | —24d3] H
Isc Output Short Circuit Current Vee=Max., Vot =0V -30 -350 mA
Iccop Supply Current Vce= Max., f =14 MHz - 200 mA
Iccsb Stand By Current Vce = Max, f =0 Mhz - 1 mA
Notes:
1- All power and ground pins must be connected before power is applied.
2— Ambient temperature is defined as the ‘instant on’ case temperature.
3— On chip pull-up resistor=20k
5.1.4. Capacitance Rating& %!
Parameters Description Max. Units
CiN Input Capacitance 10 pF
Cout Output Capacitance 12 pF
Cio Input/Output Bus Capacitance 16 pF
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5.1.5. AC Test Loads and Waveforms
R1 470Q

5V (©) 3V

90%

10%
oV

OUTPUT O

<3ns
R2 319Q

TEST LOAD WAVEFORM
Notes:
4. Tested initially and after any design or process changes that may affect these parameters.
5. Test conditions are:3&=5.0V, Ta=25° C, f=1MHz
6. C = 30 pF (for FINS [D] signal)

5.2. TSC691E AC Characteristics

5.2.1. AC Characteristics Over the Operation RangE!

Parameter Description REEEnes TSC.691E — 14 MHz Unit
Edge Min Max
1 tcy Clock cycle 71 ns
2 tcHL Clock high and low 33 ns
3 tcrRF Clock rise and fall 1 V/ns
4 taD Address/Control?! output delay CLK+ 58 ns
5 taH Address/Control2] output valid CLK+ 7 ns
6 tpob D[31:0] output delay CLK- 35 ns
7 tboH D[31:0] output valid CLK- 4 ns
8 tpis D[31:0] input setup CLK+ 7 ns
9 tpIH D[31:0] input hold CLK+ 9 ns
10 tMES MEXC input setup CLK+ 12 ns
11 tMEH MEXC input hold CLK+ 4 ns
12-1 | tys MHOLDA, B input setup CLK- 7 ns
13-1 | tyn MHOLDA, B input hold CLK- 9 ns
12-2 | tys yHOLD [l input setup CLK- 10 ns
13-2 | tyn yHOLD Bl input hold CLK- 7 ns
14 tHoD XHOLD [7] to Address/Control output delay XHOLD- 40 ns
15 tHoH xHOLD [71 to Address/Control output valid XHOLD+ 0 ns
16 toe AOE, COE DOE to output enable delay XOE- [8] 27 ns
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Parameter Description Reézrence TSC.691E — 14 MHz Unit
ge Min Max
17 tob AOE, COE DOE to output disable delay xOE+ [8] 27 ns
18 tToE TOE asserted to output enable delay TOE- 38 ns
19 ttop TOE deasserted to output disable delay TOE+ 38 ns
20 tssp INST, FXACK, CXACK, INTACK, ERRORoutput delay CLK+ 36 ns
21 tssH INST, FXACK, CXACK, INTACK, ERRORoutput valid CLK+ 3 ns
22 trs RESETinput setup CLK+ 27 ns
23 tRH RESETinput hold CLK+ 3 ns
24 tFD FINS[1:0] output delay CLK+ 29 ns
25 trH FINS[1:0] output valid CLK+ 35 ns
24 trD CINS[1:0] output delay CLK+ 40 ns
25 tFH CINS[1:0] output valid CLK+ 3.5 ns
26 tris FCC[1:0], CCC[1:0] input setup CLK+ 18 ns
27 tFIH FCCJ1:0], CCCJ1:0] input hold CLK+ 4 ns
28 tpxp DXFER output delay CLK+ 57 ns
29 toxH DXFER output valid CLK+ 10 ns
30 tupxp | XHOLD I3l asserted to DXFER output delay XHOLD- 36 ns
31 tipxH | XHOLD I3l deasserted to DXFER output valid XHOLD+ 0 ns
32 tNUD INULL output delay CLK+ 34 ns
33 tNUH INULL output valid CLK+ 7 ns
34 tMDs MDS input setup CLK- 4 ns
35 tMDH MDS input hold CLK- 5 ns
36 tFLs FLUSH output delay CLK+ 30 ns
37 tELH FLUSH output valid CLK+ 3 ns
38 tccvs FCCV, CCCV input setup CLK- 13 ns
39 tccvH FCCV, CCCV input hold CLK- 5 ns
40 txes FEXC, CEXCinput setup CLK+ 18 ns
41 txEH FEXC, CEXCinput hold CLK+ 4 ns
42 tMAD MAO Asserted to Address/Control Output Delay MAO+ 36 ns
43 tMAH MAO Deasserted to Address/Control Output Valid MAO- 2 ns
44 terD HWERRORoutput delay CLK+ 45 ns
45 tERH HWERRORoutput valid CLK+ 5 ns
46 trms TMS input setup TCLK+ 20 ns
a7 tTMH TMS input hold TCLK+ 25 ns
48 trois TDI input setup TCLK+ 20 ns
49 tTDIH TDI input hold TCLK+ 25 ns
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Parameter Description Reétzrence TSC.691E — 14 MHz Unit
ge Min Max

50 ttRs TRSTinput setup TCLK+ 25 ns
51 tTRH TRSTinput hold TCLK+ 25 ns
52 tTooDp TDO output delay TCLK- 45 ns
53 tTDOH TDO output valid TCLK- 5 ns
54 trey TCLK clock cycle 100 1000 ns
55 txapp | XAPARIMI output delay CLK+ 61 ns
56 txapH | XAPARI[4] output valid CLK+ 7 ns
57 topop | DPAR output delay CLK- 45 ns
58 tppon | DPAR output valid CLK- 4 ns
59 tppis DPAR input setup CLK+ 6 ns
60 tDPIH DPAR input hold CLK+ 4 ns
61 tiFPD IFPAR output delay CLK+ 53 ns
62 tiFPH IFPAR output valid CLK+ 3 ns
63 trips FIPAR input setup CLK+ 18 ns
64 tFIPH FIPAR input hold CLK+ 4 ns
65 timpPD IMPAR output delay CLK+ 61 ns
66 tiMPH IMPAR output valid CLK+ 7 ns
67 tmcep | MCERR output delay®! CLK+ 45 ns
68 tmcev | MCERRoutput valid®] CLK+ 5 ns
69 tstatrs | 60IMODHEFLOW/CMODE/FP input setup6l CLK+ 18 ns
70 tHAS HALT input setup CLK- 13 ns
71 tHAH HALT input hold CLK- 4 ns
72 tiRLS IRL[3:0] input setup CLK+ 2 ns
73 tiRLH IRL[3:0] input hold CLK+ 6 ns
Notes:

1- Test conditions assume signal transition times of 3 ns or less, a timing reference level of 1.5V, input levels\aditba@ifput loading of 50

pF.
2— Address/Control signals include: A[31:0], ASI[7:0], SIZE[1:0], RD, WRT,,\MBCK, and LDSTO.

3—- yHOLD includes BHOLD FHOLD, and CHOLD
4— xAPAR includes APAR and ASPAR.
5— When an error occurs on D[31:0] or DPAR, MCERRY be delayed for 1 cycles depending of frequency.

6— 601MODEFLOW/CMODE/FP shall be change to be related to positive clock edge during reset active orda\e.

7— xHOLD includes BHOLD MHOLDA, MHOLDB, FHOLD and CHOLD

8— xOEincludes AOECOEand DOE
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5.2.2. Waveforms

5.2.2.1. Clock and ERROR RESET Timing

DV/Dt =0.8 V/ ns

loy—

RESET \r@_ ))
A\ o
9 CLK Cycles Minimum
CP,FP ) [
601MODE
FLOW
CMODE h

Reset needs to be synchronized with CLK only if the processor must be in step with other devices in the system.

5.2.2.2. Clock and HWERRORTiming for Parity Error Type

CLK

HWERROR

(43

oo (20 KOXKX A1 XXX 22 XXKXR T2 2 KKK T2 XA

D[31:0]
) ) )
' Parity error ¢ ' ' '
' on this data | ' . '

INULL/FLUSH ' ' -/ ' \ '
1 1 1 ) 1

T Z Z Z Z Z
I I "\ / I
) )

Note: The IU check the parity on internal register when the instruction is in the execute stag.
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5.2.2.3. TOEDe-assertion /Assertion
All bussed CXXXXX : : Hi-Z )) ‘ X ‘ XXXX>
outputs : : : : (( ‘ :

(VoA v aum B M —

All active

R N W e (s B &

} T

5.2.2.4. Load Timing

CLK

ABLOl |5 et AUd ‘X‘X“X‘X‘X‘

LD Da‘ita Ad X‘X‘X’ ’X‘X‘X‘

1 XX XK
sectior. (SEE XOXOKE=E XX

INST l l l l 1 l ;t

121
Rev. | — September 23, 1998



TSCO91E

TEMIC

Semicon ductors

5.2.2.5. Store Timing

CLK I | I

| v L

| ~ O
I\
A1) ST nst. Add XXX AL XXXX)

\/
A
\/
A

25
XK )
‘ l ‘ ‘ \ ‘ \ ‘
s (RN X RN YRR o XX XXX = X
L0

< ! |
. ! ‘ | ‘ |
2 YK oata AgXOXST Data OO 22 XXX

‘ \ \

saeo (RN RN R = M= R EEETRD
‘ | IR
* XX K

w TR
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5.2.2.6. Load with Cache Miss

” N

” N

” N

123
Rev. | — September 23, 1998



TSCO91E

TEMIC

Semiconductors

5.2.2.7. Memory Exception Timing

INULL

MHOLD

f

5.2.2.8. Bus Arbitration Timing

cx _| [ S I N R N I
A[31:0] : ' : : : : f
Sty XK D
¢ BREVY VA BT B g
' I Z _ ' -
! ! iz ) !
oo L AN AN AN
BHOLD ;‘%AT@@ 28 l;
AOE : | | = N ‘E
-SRI sy o\l
TOE can replace the combined function of AGEOE and DOE
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5.2.2.9. Floating-Point and Coprocessor Timing
SO I IO | 82 2
AI3L0] OIOIOIOOIOM AT OIOIOIO

I
YR xx$x><
Di3L0) mommo st xzzlenst om XXRKinst s><X$X>< inst) m
A

ST TTXRR R Wy WY lexy X~
FINS1/2 >_@_/<_'_\j\ \ \ ))

CINSL2 __' 4 ‘ : - (¢ ! | |
FCCIL:0] : : , 1 N ! " (29
CCCJ[1:0] I (( ‘A‘A“““A‘_
| | | : ; '
T on —ou <2*c:1+_@/— S/ —
| : : ]ﬂ: L |
| ' ' — :
|
|
|

FXACK ' ' ' ))
CXACK ' ' ' [ ' '

5.2.2.10. TAP Signals

1

—
L ——— N A

P S

4
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5.2.2.11. PARITY Signals

DPAR

FIPAR

IFPAR

IMPAR

—O0—
CLK —_— W ‘ ‘ |—<8_ —
\ 1 1
MCERR : O m jl:
e i | L? :
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5.2.2.13. IRL[3:0] Signals

CLK

IRL[3:0]

INTACK

5.2.2.14. HALT Signal timing

— (T >
v O

CLK — : : I—(2 . . Y
gVJKERNAL _I | 22

|
|
|
|
|
: : | :
1 | | ! ' | 1
1 1 1 1 1 I 1
ADD Al >< A2, >< ! A3 | 22 ‘ ‘ | A3 >< A4
. Z Z ﬁ ﬁ I ﬁ
, | | | | | | :
' : | : : : | :
- : . |
OUTPUT . | .
SIGNALS DP >< b1 >< | bz . 22 ! ><
| | | |
| - |
|

|
CP, |
P, ——. ] \
60IMODE ; | ; 2 /
FLOW .
CMODE - - | - o
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5.3. Package Description

5.3.1. 256-Pin MQFP_F Package

° 1 [
- D1 -
o _[Ej —
T :
E e L . | i o [-A-] .
NNz
. . . f
Y f 2
A 256 r|_AZ_[
INDEX CORNER L
N1 _/ -D- Colle
mm mils
Min Max Min Max
A 2.41 3.18 .095 125
C 0.10 0.20 .004 .008
D 53.23 55.74 2.095 2.195
D1 36.83 37.34 1.450 1.470
E 53.23 55.74 2.095 2.195
E1 36.83 37.34 1.450 1.470
e 0.508 BSC .020 BSC
£ 0.15 0.25 .006 010
Al 2.06 | 2.56 081 | 101
A2 0.05 0.36 .002 014
L 8.20 | 9.20 323 | .362
N1 64 64
N2 64 64
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5.3.2. 256-Pin MQFP_F Pin Assignments

Pin Signal Pin Signal Pin Signal Pin Signal
1 IMPAR 33 AOE 65 VSSO 97 FLOW
2 VCCO 34 APAR 66 VSSO 98 MCERR
3 COE 35 AO 67 VSSI 99 HALT
4 VCCI 36 Al 68 VCCO 100 DPAR
5 DXFER 37 VCCI 69 Al16 101 -NC-
6 LOCK 38 A2 70 A15 102 -NC-
7 VSSO 39 -NC- 71 Al18 103 DO
8 WRT 40 -NC- 72 Al7 104 VSSO
9 SIZE1 41 VSSO 73 A19 105 D1
10 MAO 42 A3 74 VSSO 106 D2
11 ASPAR 43 -NC- 75 A20 107 -NC-
12 SIZEO 44 -NC- 76 VCCI 108 VSSI
13 VCCO 45 A4 7 VSSI 109 D3
14 HWERROR 46 A5 78 A21 110 VCCO
15 ASI1 47 -NC- 79 VCCO 111 D4
16 ASIO 48 -NC- 80 A22 112 D5
17 VSSI 49 A6 81 A24 113 -NC-
18 ASI2 50 VCCO 82 A23 114 D6
19 ASI3 51 A7 83 A25 115 VCCI
20 VSSO 52 A8 84 A26 116 D8
21 ASl4 53 A9 85 VSSO 117 D7
22 VCCI 54 Al0 86 A27 118 -NC-
23 ASI5 55 VSSI 87 A28 119 -NC-
24 ASI6 56 VSSO 88 A29 120 D9
25 ASI7 57 -NC- 89 VSSI 121 VCCO
26 VCCO 58 Al2 90 VSST 122 -NC-
27 VSST 59 All 91 A30 123 -NC-
28 CLK 60 Al4 92 VCCO 124 VSSI
29 -NC- 61 Al13 93 A3l 125 VCCT
30 VSSI 62 VCCI 94 VCCI 126 VSSO
31 -NC- 63 VCCI 95 601IMODE 127 VSSO
32 -NC- 64 VCCO 96 -NC- 128 -NC-
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Pin Signal Pin Signal Pin Signal Pin Signal
129 VCCI 161 -NC- 193 VSSO 225 VSST
130 VCCO 162 D24 194 VSSO 226 RESET
131 D11 163 -NC- 195 IFT 227 VSSI
132 VCCO 164 D25 196 VSSI 228 CHOLD
133 D12 165 VCCO 197 FLUSH 229 FHOLD
134 D10 166 VCCI 198 IFPAR 230 BHOLD
135 VSSO 167 D26 199 VCCO 231 -NC-
136 D13 168 D27 200 ERROR 232 MHOLDB
137 D15 169 D28 201 CXACK 233 MHOLDA
138 D14 170 VSSO 202 INTACK 234 MDS
139 D16 171 D29 203 FXACK 235 -NC-
140 VSSI 172 D30 204 VSSO 236 FP
141 D17 173 VSSI 205 CCcC1 237 CEXC
142 VCCO 174 VCCI 206 CCCOo 238 MEXC
143 D18 175 D31 207 FPSYN 239 -NC-
144 D19 176 DOE 208 FCC1 240 -NC-
145 -NC- 177 VCCI 209 VSSI 241 FEXC
146 -NC- 178 FINS2 210 FCCO 242 -NC-
147 -NC- 179 FINS1 211 IRL3 243 VSSI
148 -NC- 180 CINS1 212 IRL2 244 VSSO
149 D20 181 VCCO 213 -NC- 245 INST
150 D21 182 TOE 214 -NC- 246 RD
151 VSSO 183 VSSI 215 IRL1 247 VCCI
152 -NC- 184 TRST 216 -NC- 248 LDSTO
153 -NC- 185 CINS2 217 IRLO 249 VCCO
154 VCCI 186 TDI 218 -NC- 250 WE
155 D22 187 TCLK 219 -NC- 251 CP
156 -NC- 188 VSSI 220 cccv 252 VCCT
157 D23 189 T™MS 221 FIPAR 253 INULL
158 VSST 190 VCCI 222 VCCI 254 VSSO
159 -NC- 191 TDO 223 FCCV 255 VSSI
160 VSSI 192 VCCO 224 CMODE 256 VSSO
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TEMIC TSCB91E

5.3.2. 256-Pin MQFP_F Pin Assignments

Pin Signal Pin Signal Pin Signal Pin Signal
1 IMPAR 65 VSSO 129 VCCI 193 VSSO
2 VCCO 66 VSSO 130 VCCO 194 VSSO
3 COE 67 VSSI 131 D11 195 IFT
4 VCCI 68 VCCO 132 VCCO 196 VSSI
5 DXFER 69 Al6 133 D12 197 FLUSH
6 LOCK 70 A15 134 D10 198 IFPAR
7 VSSO 71 A18 135 VSSO 199 VCCO
8 WRT 72 Al7 136 D13 200 ERROR
9 SIZE1 73 A19 137 D15 201 CXACK

10 MAO 74 VSSO 138 D14 202 INTACK
11 ASPAR 75 A20 139 D16 203 FXACK
12 SIZEO 76 VCCI 140 VSSI 204 VSSO
13 VCCO 77 VSSI 141 D17 205 ccc1
14 HWERROR 78 A21 142 VCCO 206 CCCO
15 ASI1 79 VCCO 143 D18 207 FPSYN
16 ASIO 80 A22 144 D19 208 FCC1
17 VSSI 81 A24 145 -NC- 209 VSSI
18 ASI2 82 A23 146 -NC- 210 FCCO
19 ASI3 83 A25 147 -NC- 211 IRL3
20 VSSO 84 A26 148 -NC- 212 IRL2
21 ASl4 85 VSSO 149 D20 213 -NC-
22 VCCI 86 A27 150 D21 214 -NC-
23 ASI5 87 A28 151 VSSO 215 IRL1
24 ASI6 88 A29 152 -NC- 216 -NC-
25 ASI7 89 VSSI 153 -NC- 217 IRLO
26 VCCO 90 VSST 154 VCCI 218 -NC-
27 VSST 91 A30 155 D22 219 -NC-
28 CLK 92 VCCO 156 -NC- 220 CCcCvVv
29 -NC- 93 A3l 157 D23 221 FIPAR
30 VSSI 94 VCCI 158 VSST 222 VCCI
31 -NC- 95 601IMODE 159 -NC- 223 FCCV
32 -NC- 96 -NC- 160 VSSI 224 CMODE
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Pin Signal Pin Signal Pin Signal Pin Signal
33 AOE 97 FLOW 161 -NC- 225 VSST
34 APAR 98 MCERR 162 D24 226 RESET
35 A0 99 HALT 163 -NC- 227 VSSI
36 Al 100 DPAR 164 D25 228 CHOLD
37 VCCI 101 -NC- 165 VCCO 229 FHOLD
38 A2 102 -NC- 166 VCCI 230 BHOLD
39 -NC- 103 DO 167 D26 231 -NC-
40 -NC- 104 VSSO 168 D27 232 MHOLDB
41 VSSO 105 D1 169 D28 233 MHOLDA
42 A3 106 D2 170 VSSO 234 MDS
43 -NC- 107 -NC- 171 D29 235 -NC-
44 -NC- 108 VSSI 172 D30 236 FP
45 A4 109 D3 173 VSSI 237 CEXC
46 A5 110 VCCO 174 vCcCl 238 MEXC
47 -NC- 111 D4 175 D31 239 -NC-
48 -NC- 112 D5 176 DOE 240 -NC-
49 A6 113 -NC- 177 vccl 241 FEXC
50 VCCO 114 D6 178 FINS2 242 -NC-
51 A7 115 VCClI 179 FINS1 243 VSSI
52 A8 116 D8 180 CINS1 244 VSSO
53 A9 117 D7 181 VCCO 245 INST
54 A10 118 -NC- 182 TOE 246 RD
55 VssI 119 -NC- 183 VSSI 247 VCCI
56 VSSO 120 D9 184 TRST 248 LDSTO
57 -NC- 121 VCCO 185 CINS2 249 VCCO
58 Al2 122 -NC- 186 TDI 250 WE
59 All 123 -NC- 187 TCLK 251 CP
60 Al4 124 VSSI 188 VSSI 252 VCCT
61 A13 125 VCCT 189 T™S 253 INULL
62 VCCI 126 VSSO 190 VCCI 254 VSSO
63 VCCI 127 VSSO 191 TDO 255 VSSI
64 VCCO 128 -NC- 192 VCCO 256 VSSO
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