FSF250D, FSF250R

24A, 200V, 0.110 Ohm, Rad Hard, SEGR Resistant, N-Channel Power MOSFETs

June 1998

Features

- 24A, 200V, $r_{DS(ON)} = 0.110\Omega$
- Total Dose
 - Meets Pre-RAD Specifications to 100K RAD (Si)
- Single Event
 - Safe Operating Area Curve for Single Event Effects
 - SEE Immunity for LET of 36MeV/mg/cm² with V_{DS} up to 80% of Rated Breakdown and V_{GS} of 10V Off-Bias
- Dose Rate
 - Typically Survives 3E9 RAD (Si)/s at 80% BVDSS
 - Typically Survives 2E12 if Current Limited to IDM
- Photo Current
 - 12nA Per-RAD(Si)/s Typically
- Neutron
 - Maintain Pre-RAD Specifications for 1E13 Neutrons/cm²
 - Usable to 1E14 Neutrons/cm²

Ordering Information

RAD LEVEL	SCREENING LEVEL	PART NO/BRAND
10K	Commercial	FSF250D1
10K	TXV	FSF250D3
100K	Commercial	FSF250R1
100K	TXV	FSF250R3
100K	Space	FSF250R4

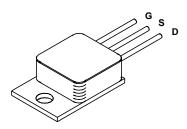
Formerly available as type TA17657.

Description

The Discrete Products Operation of Intersil Corporation has developed a series of Radiation Hardened MOSFETs specifically designed for commercial and military space applications. Enhanced Power MOSFET immunity to Single Event Effects (SEE), Single Event Gate Rupture (SEGR) in particular, is combined with 100K RADS of total dose hardness to provide devices which are ideally suited to harsh space environments. The dose rate and neutron tolerance necessary for military applications have not been sacrificed.

The Intersil portfolio of SEGR resistant radiation hardened MOSFETs includes N-Channel and P-Channel devices in a variety of voltage, current and on-resistance ratings. Numerous packaging options are also available.

This MOSFET is an enhancement-mode silicon-gate power field-effect transistor of the vertical DMOS (VDMOS) structure. It is specially designed and processed to be radiation tolerant. The MOSFET is well suited for applications exposed to radiation environments such as switching regulation, switching converters, motor drives, relay drivers and drivers for high-power bipolar switching transistors requiring high speed and low gate drive power. This type can be operated directly from integrated circuits.


Reliability screening is available as either commercial, TXV equivalent of MIL-S-19500, or Space equivalent of MIL-S-19500. Contact Intersil for any desired deviations from the data sheet.

Symbol

Package

TO-254AA

CAUTION: Beryllia Warning per MIL-S-19500 refer to package specifications.

FSF250D, FSF250R

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	FSF250D, FSF250R	UNITS
Drain to Source Voltage	200	V
Drain to Gate Voltage ($R_{GS} = 20k\Omega$)	200	V
Continuous Drain Current		
$T_C = 25^{\circ}C$ I_D	24	Α
$T_C = 100^{\circ}CI_D$	15	Α
Pulsed Drain Current	72	Α
Gate to Source VoltageV _{GS}	±20	V
Maximum Power Dissipation		
$T_C = 25^{\circ}C$ P_T	125	W
$T_C = 100^{\circ}C$ P_T	50	W
Linear Derating Factor	1.00	W/oC
Single Pulsed Avalanche Current, L = 100μH, (See Test Figure)	72	Α
Continuous Source Current (Body Diode)	24	Α
Pulsed Source Current (Body Diode)	72	Α
Operating and Storage TemperatureT _J , T _{STG}	-55 to 150	°C
Lead Temperature (During Soldering)	300	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications T_C = 25°C, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CON	NDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	$I_D = 1mA$, $V_{GS} = 0V$		200	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$	$T_{C} = -55^{\circ}C$	-	-	5.0	V
		$I_D = 1mA$	$T_C = 25^{\circ}C$	1.5	-	4.0	V
			$T_{\rm C} = 125^{\rm o}{\rm C}$	0.5	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 160V,	$T_C = 25^{\circ}C$	-	-	25	μΑ
		$V_{GS} = 0V$	$T_{C} = 125^{\circ}C$	-	-	250	μΑ
Gate to Source Leakage Current	I _{GSS}	$V_{GS} = \pm 20V$	$T_C = 25^{\circ}C$	-	-	100	nA
			$T_{\rm C} = 125^{\rm o}{\rm C}$	-	-	200	nA
Drain to Source On-State Voltage	V _{DS(ON)}	$V_{GS} = 12V, I_D = 24$	Ā	-	-	2.77	V
Drain to Source On Resistance	r _{DS(ON)12}	I _D = 15A,	$T_{C} = 25^{\circ}C$	-	0.085	0.110	Ω
		V _{GS} = 12V	$T_C = 125^{\circ}C$	-	-	0.189	Ω
Turn-On Delay Time	t _{d(ON)}	V _{DD} = 100V, I _D = 24A,		-	-	130	ns
Rise Time	t _r	$R_L = 4.17\Omega, V_{GS} 18$ $R_{GS} = 2.35\Omega$	2V,	-	-	160	ns
Turn-Off Delay Time	t _{d(OFF)}	NGS = 2.0022		-	-	160	ns
Fall Time	t _f	1		-	-	65	ns
Total Gate Charge	Q _{g(TOT)}	$V_{GS} = 0V \text{ to } 20V$	V _{DD} = 100V,	-	-	250	nC
Gate Charge at 12V	Q _{g(12)}	$V_{GS} = 0V \text{ to } 12V$	I _D = 24A	-	130	160	nC
Threshold Gate Charge	Q _{g(TH)}	$V_{GS} = 0V \text{ to } 2V$	1	-	-	10	nC
Gate Charge Source	Q _{gs}		1	-	26	36	nC
Gate Charge Drain	Q _{gd}	1		-	65	84	nC
Plateau Voltage	V _(PLATEAU)	I _D = 24A, V _{DS} = 15	5V	-	7	-	٧
Input Capacitance	C _{ISS}	V _{DS} = 25V, V _{GS} =	OV,	-	3200	-	pF
Output Capacitance	C _{OSS}	f = 1MHz		-	625	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	175	-	pF
Thermal Resistance Junction to Case	$R_{ heta JC}$			-	-	1.00	°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$			-	-	48	°C/W

Source to Drain Diode Specifications

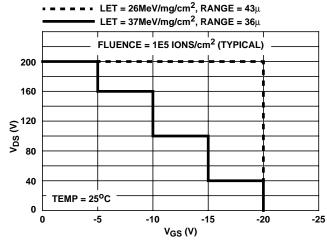
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Forward Voltage	V_{SD}	I _{SD} = 24A	0.6	-	1.8	V
Reverse Recovery Time	t _{rr}	I _{SD} = 24A, dI _{SD} /dt = 100A/μs	-	-	540	ns

Electrical Specifications up to 100K RAD $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
Drain to Source Breakdown Volts	(Note 3)	BV _{DSS}	$V_{GS} = 0$, $I_D = 1mA$	200	-	V
Gate to Source Threshold Volts	(Note 3)	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 1mA$	1.5	4.0	V
Gate to Body Leakage	(Notes 2, 3)	I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$	-	100	nA
Zero Gate Leakage	(Note 3)	I _{DSS}	V _{GS} = 0, V _{DS} = 160V	-	25	μΑ
Drain to Source On-State Volts	(Notes 1, 3)	V _{DS(ON)}	V _{GS} = 12V, I _D = 24A	-	2.77	V
Drain to Source On Resistance	(Notes 1, 3)	r _{DS(ON)12}	V _{GS} = 12V, I _D = 15A	-	0.110	Ω

NOTES:

- 1. Pulse test, 300µs Max.
- 2. Absolute value.
- 3. Insitu Gamma bias must be sampled for both $V_{GS} = 12V$, $V_{DS} = 0V$ and $V_{GS} = 0V$, $V_{DS} = 80\%$ BVDSS.


Single Event Effects (SEB, SEGR) (Note 4)

		ENVIRONMENT (NOTE 5)			APPLIED	(NOTE 6)
TEST	SYMBOL	ION SPECIES	TYPICAL LET (MeV/mg/cm)	TYPICAL RANGE (μ)	V _{GS} BIAS (V)	MAXIMUM V _{DS} BIAS (V)
Single Event Effects Safe Operating Area	SEESOA	Ni	26	43	-20	200
		Br	37	36	-5	200
		Br	37	36	-10	160
		Br	37	36	-15	100
		Br	37	36	-20	40

NOTES:

- 4. Testing conducted at Brookhaven National Labs; sponsored by Naval Surface Warfare Center (NSWC), Crane, IN.
- 5. FLUENCE = 1E5 ions/cm² (typical), $T = 25^{\circ}C$.
- 6. Does not exhibit Single Event Burnout (SEB) or Single Event Gate Rupture (SEGR).

Typical Performance Curves Unless Otherwise Specified

1E-3

1E-4

1E-5

1E-7

10

30

100

300

1000

DRAIN SUPPLY (V)

FIGURE 1. SINGLE EVENT EFFECTS SAFE OPERATING AREA

FIGURE 2. DRAIN INDUCTANCE REQUIRED TO LIMIT GAMMA DOT CURRENT TO IAS

Typical Performance Curves Unless Otherwise Specified (Continued)

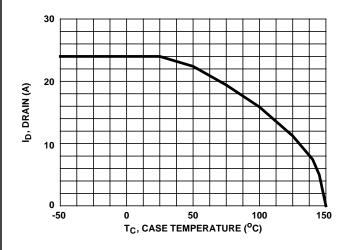


FIGURE 3. MAXIMUM CONTINUOUS DRAIN CURRENT vs TEMPERATURE

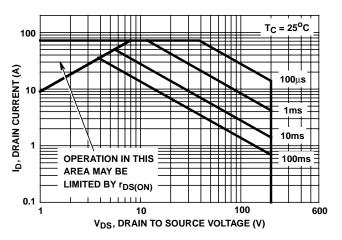


FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

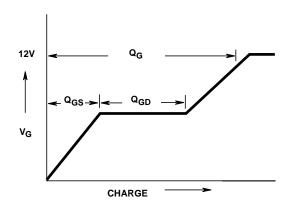


FIGURE 5. BASIC GATE CHARGE WAVEFORM

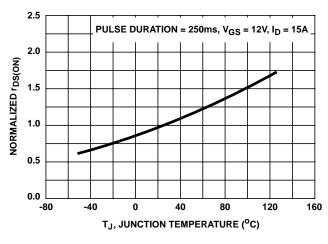


FIGURE 6. NORMALIZED $r_{DS(ON)}$ vs JUNCTION TEMPERATURE

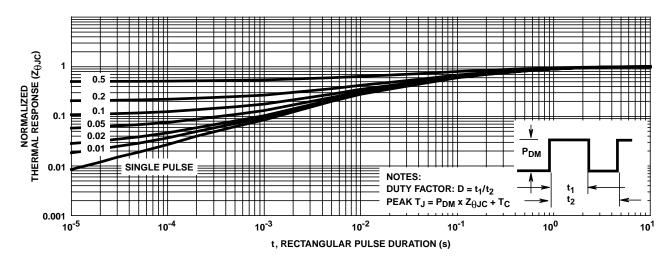


FIGURE 7. NORMALIZED MAXIMUM TRANSIENT THERMAL RESPONSE

Typical Performance Curves Unless Otherwise Specified (Continued)

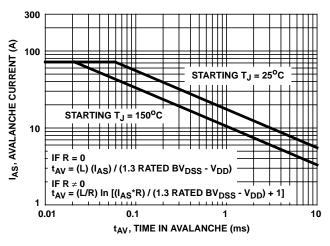


FIGURE 8. UNCLAMPED INDUCTIVE SWITCHING

Test Circuits and Waveforms

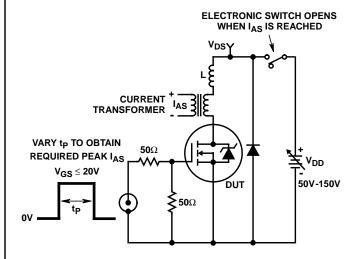


FIGURE 9. UNCLAMPED ENERGY TEST CIRCUIT

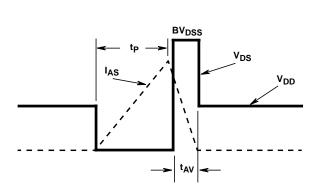


FIGURE 10. UNCLAMPED ENERGY WAVEFORMS

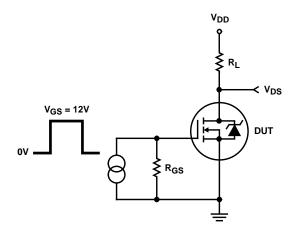


FIGURE 11. RESISTIVE SWITCHING TEST CIRCUIT

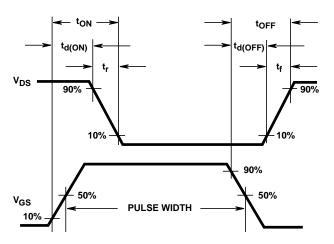


FIGURE 12. RESISTIVE SWITCHING WAVEFORMS

Screening Information

Screening is performed in accordance with the latest revision in effect of MIL-S-19500, (Screening Information Table).

Delta Tests and Limits (JANTXV Equivalent, JANS Equivalent) T_C = 25°C, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MAX	UNITS
Gate to Source Leakage Current	I _{GSS}	$V_{GS} = \pm 20V$	±20 (Note 7)	nA
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 80% Rated Value	±25 (Note 7)	μΑ
Drain to Source On Resistance	r _{DS(ON)}	T _C = 25°C at Rated I _D	±20% (Note 8)	Ω
Gate Threshold Voltage	V _{GS(TH)}	I _D = 1.0mA	±20% (Note 8)	V

NOTES:

- 7. Or 100% of Initial Reading (whichever is greater).
- 8. Of Initial Reading.

Screening Information

TEST	JANTXV EQUIVALENT	JANS EQUIVALENT
Gate Stress	V _{GS} = 30V, t = 250μs	V _{GS} = 30V, t = 250μs
Pind	Optional	Required
Pre Burn-In Tests (Note 9)	MIL-S-19500 Group A, Subgroup 2 (All Static Tests at 25 ^o C)	MIL-S-19500 Group A, Subgroup 2 (All Static Tests at 25°C)
Steady State Gate Bias (Gate Stress)	MIL-STD-750, Method 1042, Condition B $V_{GS} = 80\%$ of Rated Value, $T_A = 150^{\circ}$ C, Time = 48 hours	MIL-STD-750, Method 1042, Condition B V_{GS} = 80% of Rated Value, T_A = 150°C, Time = 48 hours
Interim Electrical Tests (Note 9)	All Delta Parameters Listed in the Delta Tests and Limits Table	All Delta Parameters Listed in the Delta Tests and Limits Table
Steady State Reverse Bias (Drain Stress)	MIL-STD-750, Method 1042, Condition A $V_{DS} = 80\%$ of Rated Value, $T_A = 150^{\circ}$ C, Time = 160 hours	MIL-STD-750, Method 1042, Condition A V_{DS} = 80% of Rated Value, T_A = 150°C, Time = 240 hours
PDA	10%	5%
Final Electrical Tests (Note 9)	MIL-S-19500, Group A, Subgroup 2	MIL-S-19500, Group A, Subgroups 2 and 3

NOTE:

Additional Screening Tests

PARAMETER	SYMBOL	TEST CONDITIONS	MAX	UNITS
Safe Operating Area	SOA	V _{DS} = 160V, t = 10ms	1.75	А
Unclamped Inductive Switching	I _{AS}	V _{GS(PEAK)} = 15V, L = 0.1mH	72	A
Thermal Response	ΔV _{SD}	t _H = 100ms, V _H = 25V, I _H = 4A	136	mV
Thermal Impedance	ΔV _{SD}	$t_H = 500 \text{ms}, V_H = 25 \text{V}, I_H = 4 \text{A}$	187	mV

^{9.} Test limits are identical pre and post burn-in.

Rad Hard Data Packages - Intersil Power Transistors

TXV Equivalent

1. Rad Hard TXV Equivalent - Standard Data Package

- A. Certificate of Compliance
- B. Assembly Flow Chart
- C. Preconditioning Attributes Data Sheet - Attributes Data Sheet D. Group A - Attributes Data Sheet E. Group B - Attributes Data Sheet F. Group C - Attributes Data Sheet G. Group D

2. Rad Hard TXV Equivalent - Optional Data Package

- A. Certificate of Compliance
- B. Assembly Flow Chart
- C. Preconditioning Attributes Data Sheet
 - Precondition Lot Traveler
 - Pre and Post Burn-In Read and Record
- D. Group A - Attributes Data Sheet
 - Group A Lot Traveler
- Attributes Data Sheet E. Group B
 - Group B Lot Traveler - Pre and Post Read and Record Data for
 - Intermittent Operating Life (Subgroup B3) - Bond Strength Data (Subgroup B3) - Pre and Post High Temperature Operating Life Read and Record Data (Subgroup B6)
- F. Group C - Attributes Data Sheet
 - Group C Lot Traveler
 - Pre and Post Read and Record Data for Intermittent Operating Life (Subgroup C6)
 - Bond Strength Data (Subgroup C6)
- Attributes Data Sheet G. Group D
 - Group D Lot Traveler
 - Pre and Post RAD Read and Record Data

Class S - Equivalents

1. Rad Hard "S" Equivalent - Standard Data Package

- A. Certificate of Compliance
- B. Serialization Records
- C. Assembly Flow Chart
- D. SEM Photos and Report

E. Preconditioning Attributes Data Sheet

Hi-Rel Lot Traveler

HTRB - Hi Temp Gate Stress Post Reverse

Bias Data and Delta Data

HTRB - Hi Temp Drain Stress Post Reverse

Bias Delta Data

F. Group A - Attributes Data Sheet G. Group B - Attributes Data Sheet H. Group C - Attributes Data Sheet I. Group D - Attributes Data Sheet

2. Rad Hard Max. "S" Equivalent - Optional Data Package

- A. Certificate of Compliance
- B. Serialization Records
- C. Assembly Flow Chart
- D. SEM Photos and Report
- E. Preconditioning Attributes Data Sheet
 - Hi-Rel Lot Traveler

- HTRB - Hi Temp Gate Stress Post Reverse Bias Data and Delta Data - HTRB - Hi Temp Drain Stress Post Reverse Bias Delta Data

- X-Ray and X-Ray Report

- Attributes Data Sheet F. Group A - Hi-Rel Lot Traveler

- Subgroups A2, A3, A4, A5 and A7 Data

G. Group B - Attributes Data Sheet

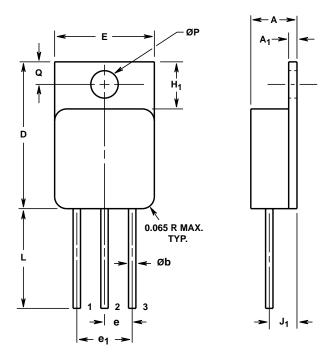
- Hi-Rel Lot Traveler

- Subgroups B1, B3, B4, B5 and B6 Data

- Attributes Data Sheet H. Group C

- Hi-Rel Lot Traveler

- Subgroups C1, C2, C3 and C6 Data


I. Group D - Attributes Data Sheet

- Hi-Rel Lot Traveler

- Pre and Post Radiation Data

TO-254AA

3 LEAD JEDEC TO-254AA HERMETIC METAL PACKAGE

	INC	INCHES MILLIMETERS			
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.249	0.260	6.33	6.60	-
A ₁	0.040	0.050	1.02	1.27	-
Øb	0.035	0.045	0.89	1.14	2, 3
D	0.790	0.800	20.07	20.32	-
E	0.535	0.545	13.59	13.84	-
е	0.150	TYP	3.81 TYP		4
e ₁	0.300	BSC	7.62 BSC		4
H ₁	0.245	0.265	6.23	6.73	-
J ₁	0.140	0.160	3.56	4.06	4
L	0.520	0.560	13.21	14.22	-
ØP	0.139	0.149	3.54	3.78	-
Q	0.110	0.130	2.80	3.30	-

NOTES:

- These dimensions are within allowable dimensions of Rev. A of JEDEC outline TO-254AA dated 11-86.
- 2. Add typically 0.002 inches (0.05mm) for solder coating.
- 3. Lead dimension (without solder).
- 4. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimension D.
- 5. Die to base BeO isolated, terminals to case ceramic isolated.
- 6. Controlling dimension: Inch.
- 7. Revision 1 dated 1-93.

WARNING!

BERYLLIA WARNING PER MIL-S-19500

Packages containing beryllium oxide (BeO) shall not be ground, machined, sandblasted, or subject to any mechanical operation which will produce dust containing any beryllium compound. Packages containing any beryllium compound shall not be subjected to any chemical process (etching, etc.) which will produce fumes containing beryllium or its' compounds.

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000

FAX: (407) 724-7000 FAX: (407) 724-7240

EUROPE

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
Taiwan Limited
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310

FAX: (886) 2 2715 3029