## **DATA IMAGE** CORPORATION

## **LCD Module Specification**

ITEM NO.: TG161600FFEBB-01

#### **Table of Contents**

| 1.  | COVER & CONTENTS               | 1  |
|-----|--------------------------------|----|
| 2.  | RECORD OF REVISION ······      | 2  |
| 3.  | GENERAL SPECIFICATIONS         | 3  |
| 4.  | ABSOLUTE MAXIMUM RATINGS       | 4  |
| 5.  | ELECTRICAL CHARACTERISTICS     | 5  |
| 6.  | ELECTRO-OPTICAL CHARACTERISTIC | 5  |
| 7.  | TIMING CHARACTERISTICS         | 7  |
| 8.  | PIN CONNECTIONS                | 10 |
| 9.  | POWER SUPPLY ·····             | 10 |
| 10. | BLOCK DIAGRAM ······           | 11 |
| 11. | QUALITY ASSURANCE              | 13 |
| 12. | LOT NUMBERING SYSTEM ·····     | 17 |
| 13. | LCM NUMBERING SYSTEM ·····     | 17 |
| 14. | PRECAUTIONS IN USE LCM ······  | 18 |
| 15  | OUTLINE DRAWING                | 19 |
| 16  | PACKAGE INFORMATION            | 20 |

| R&D Dept. | Q.C. Dept.   | Eng. Dept.  | Prod. Dept.  |
|-----------|--------------|-------------|--------------|
| Alex      | Tric         | Ten         | heien        |
| Version:  | Issued Date: | Sheet Code: | Total Pages: |
| С         | 2003/7/15    |             | 20           |

Page: 1 / 20

## 2. RECORD OF REVISION

| Rev | Date                   | Item | Page | Comment                                                                                                     |
|-----|------------------------|------|------|-------------------------------------------------------------------------------------------------------------|
| В   | 10/AUG/00              | 15   | 19   | Change FFC TOLERANCE, from 13±0.5to 13±3mm.                                                                 |
| B C | 10/AUG/00<br>15/JUL/03 | 15   |      | Change FFC TOLERANCE, from 13±0.5to 13±3mm.  New model numbering system is updated from old P/N#TG16162FEBH |
|     |                        |      |      |                                                                                                             |

Page: 2 / 20

## 3. GENERAL SPECIFICATION

| Display Format :      | 160 (W                            | ) ×            | 160 (H)    | dots           |
|-----------------------|-----------------------------------|----------------|------------|----------------|
| Dots Size :           | 0.335 (W                          | ) ×            | 0.335 (H)  | mm             |
| View Area :           | 63.4 (W                           | ) ×            | 63.3 (H)   | mm             |
| General Dimensions :  | 69.0 (W                           | ) ×            | 69.5 (H) × | 5.6 (T) mm Max |
| Weight:               | 30 g max.                         |                |            |                |
| LCD Type :            | STN Blue                          | STI            | N Yellow V | FSTN           |
| Polarizer mode :      | Reflective                        | V Tra          | nsflective |                |
|                       | Transmissive [                    | Ne             | gative     |                |
| View Angle :          | V 6 O'clock                       | 12             | O'clock    | Others         |
| Backlight :           | LED [                             | V EL           |            | CCFL           |
| Backlight Color :     | Yellow green [                    | Am             | ber V      | Green          |
|                       | White [                           | Oth            | ners       |                |
| Controller / Driver : | NT7701 COM & S                    | EG             |            |                |
| Temperature Range :   | Normal Operating 0 to Storage -20 | 50°C<br>to 70° |            | ng -20 to 70°C |
| Remark                |                                   |                |            |                |

Page: 3 / 20

## 4. ABSOLUTE MAXIMUM RATINGS

#### 4.1 ELECTRICAL ABSOLUTE MAXIMUM RATINGS

 $V_{SS}=0V$ ,  $Ta=25^{\circ}C$ 

|                                |         |      | 1 00 | o 1, 10 20 |
|--------------------------------|---------|------|------|------------|
| Item                           | Symbol  | Min. | Max. | Unit       |
| Supply Voltage<br>(Logic)      | VDD-VSS | -0.3 | 6.5  | V          |
| Supply Voltage<br>(LCD Driver) | VEE-VSS | 0    | 30   | V          |
| Input Voltage                  | Vı      | Vss  | VDD  | V          |
| Operating Temperature          | Тор     | -20  | 70   | °C         |
| Storage Temperature            | Tstg    | -30  | 80   | °C         |

### 4.2 ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS

| Item         | Oper     | ating                | Sto                 | rage                 | Comment              |  |
|--------------|----------|----------------------|---------------------|----------------------|----------------------|--|
| item         | (Min.)   | Max.)                | (Min.) (Max.)       |                      | Comment              |  |
| Ambient Temp | -20      | 70                   | -30                 | 80                   | Note (1)             |  |
| Humidity     | Note (2) |                      | No                  | te(2)                | Without Condensation |  |
| Vibration    |          | 4.9M/S <sup>2</sup>  |                     | 19.6M/S <sup>2</sup> | XYZ Direction        |  |
| Shock        |          | 29.4M/S <sup>2</sup> | 490M/S <sup>2</sup> |                      | XYZ Direction        |  |

Note(1) Ta =  $0^{\circ}$ C : 50Hr Max. Note(2) Ta  $\leq 40^{\circ}$ C : 90% RH Max.

Ta  $\geq 40^{\circ}$ C: Absolute humidity must be lower than the humidity

of 90% RH at 40°C.

Page: 4 / 20

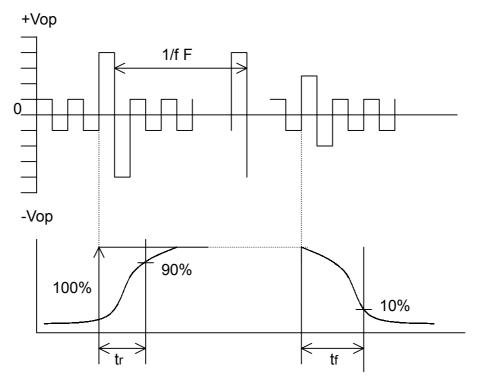
### 5. ELECTRICAL CHARACTERISTICS

| Item                   | Symbol  | Condition  | Min.    | Тур. | Max.    | Unit |
|------------------------|---------|------------|---------|------|---------|------|
| Supply Voltage (Logic) | VDD-VSS |            | 2.5     | 3.3  | 5.5     | V    |
|                        |         | -20°C      | 19.3    | 20   | 21      |      |
| Supply Voltage (LCD)   | VEE-VSS | 25°C       | 18.6    | 19   | 20      | V    |
| ,                      |         | 70°C       | 17.6    | 18   | 18.6    |      |
| Input Voltage          | VIH     |            | 0.8*VDD |      | VDD     | V    |
| Input Voltage          | VIL     |            | VSS     |      | 0.2*VDD | V    |
| Logic Supply           | IDD     | EL=ON      |         | 40   |         | mA   |
| Current                | IEE     | VEE-VSS=19 |         | 0.9  |         | IIIA |

### 6. ELECTRO-OPTICAL CHARACTERISTICS

| ITEM            | Symbol | Condition | Min. | Тур. | Max. | Unit | Ref.     |  |
|-----------------|--------|-----------|------|------|------|------|----------|--|
| Rise Time       | Tr     | 0°C       | 450  | 560  | 800  | mo   |          |  |
| Rise Time       | ''     | 25°C      | 266  | 280  | 302  | ms   | Note (4) |  |
| Fall Time       | Tf     | 0°C       | 400  | 500  | 750  | mo   | Note (1) |  |
| raii fiifie     | ''     | 25°C      | 87   | 94   | 98   | ms   |          |  |
| Contrast        | К      | 25°C      | 7.1  | 7.25 | 7.38 |      | Note (3) |  |
| Viou Anglo      | θ1~θ2  |           |      | 30   |      |      | Note (2) |  |
| View Angle      | Ø1, Ø2 | CR≥3      |      | 30   |      |      | Note (2) |  |
| Frame Frequency | Ff     | 25°C      |      | 64   |      | Hz   |          |  |

Note (1) & (2): See next page

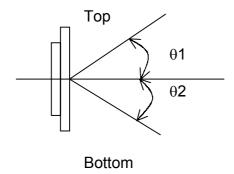

Note (3): Contrast ratio is defined under the following condition:

# CR= Brightness of non-selected condition Brightness of selected condition

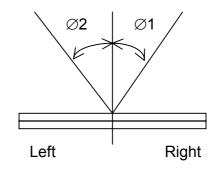
- (a). Temperature ----- 25°C
- (b). Frame frequency ---- 64Hz
- (c). Viewing angle -----  $\theta$ = 0°,  $\varnothing$  = 0°
- (d). Operating voltage --- 19V

Page: 5 / 20

Note (1) Response time is measured as the shortest period of time possible between the change in state of an LCD segment as demonstrated below:




#### Condition:


- (a). Temperature -----25°C
- (b). Frame frequency ----- 64Hz
- (c). View Angle -----  $\theta = 0^{\circ}$ ,  $\varnothing = 0^{\circ}$
- (d). Operating voltage ----- 19V

Note (2) Definition of View Angle

Top – Bottom direction



Right -- Left direction



### **6.2 ELECTRIC - OPTICAL CHARACTERISTIC**

( TEMP : 20°C )

| ITEM                   | CONDITION                               | DIMENION -         |     | STANDARD |      |      |  |
|------------------------|-----------------------------------------|--------------------|-----|----------|------|------|--|
| I I ⊏IVI               | CONDITION                               | DIMENI             | JIN | MIN      | TYP  | MAX  |  |
| BRIGHTNESS             | 400H <sub>Z,</sub> 100Vrms<br>SINE WAVE | cd/m <sup>2</sup>  |     | 45       | 56   |      |  |
| UNIFORMITY             | 400H <sub>z,</sub> 100Vrms<br>SINE WAVE | %                  |     | 85       | 90   |      |  |
| CURRENT<br>CONSUMPTION | 400H <sub>z,</sub> 100Vrms<br>SINE WAVE | mA/cm <sup>2</sup> |     | -        | 0.12 | 0.17 |  |
|                        |                                         |                    | Х   | 0.15     | 0.17 | 0.19 |  |
| CHROMATICITY           | 400H <sub>Z,</sub> 100Vrms              | GREEN              | Υ   | 0.33     | 0.35 | 0.37 |  |
| GINOMATION             | SINE WAVE                               | White              | Х   | 0.30     | 0.32 | 0.34 |  |
|                        |                                         | vville             | Y   | 0.34     | 0.36 | 0.38 |  |

Note: Measured at the EL panel unit.

Page: 7 / 20

## 7. TIMING CHARACTERISTICS

common & Segment interface timing:

| Item                 | Symbol     | <b>Test Condition</b> | Min. | Тур. | Max. | Units |
|----------------------|------------|-----------------------|------|------|------|-------|
| Clock Cycle          | tC         | Fig.1                 | 500  |      |      | ns    |
| SCP Pulse Width      | tSWH, tSWL | Fig.1                 | 240  |      |      | ns    |
| Data Set Up Time     | tDSU       | Fig.1& 2              | 240  |      |      | ns    |
| Data Hold Time       | tDHD       | Fig.1& 2              | 240  |      |      | ns    |
| SCP Rise/Fall Time   | tr,tf      | Fig.1& 2              |      |      | 50   | ns    |
| LP Rise Time         | tLRP       | Fig.1                 | 240  |      |      | ns    |
| LP Fall Time         | tlw        | Fig.1                 | 240  |      |      | ns    |
| LP Pulse Width       | tlw        | Fig.1                 | 240  |      |      | ns    |
| SCP To LP Delay Time | tSL        | Fig.1                 | 50   |      |      | ns    |
| LP To SCP Delay Time | tLS        | Fig.1                 | 100  |      |      | ns    |
| LP "H" Pulse Width   | tCWH       | Fig.2                 | 40   |      |      | ns    |
| LP "L" Pulse Width   | tCWL       | Fig.2                 | 170  |      |      | ns    |

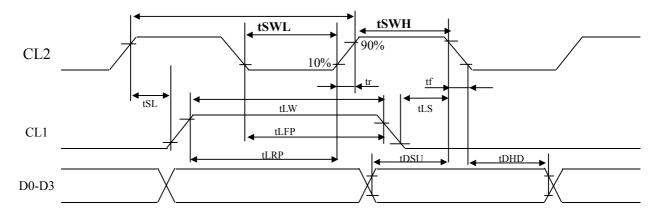
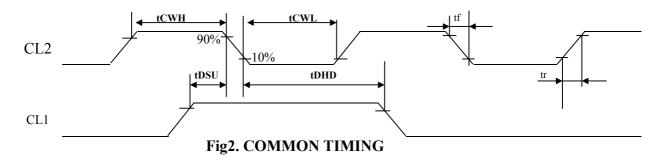
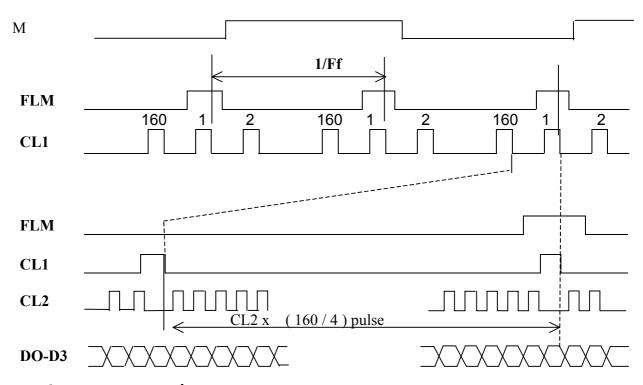
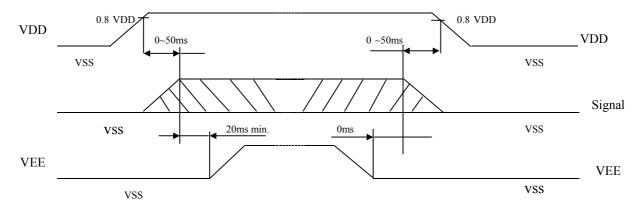





Fig1. SEGMENT TIMING




Page: 8 /20

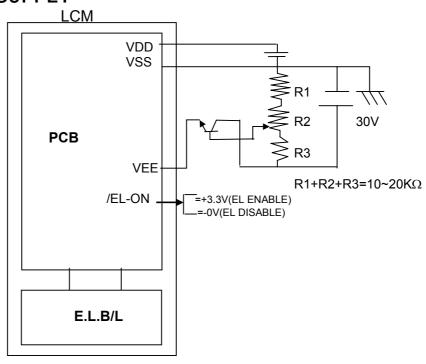
## 7.1 TIMING CHART



## 7.2 POWER ON/OFF TIMING

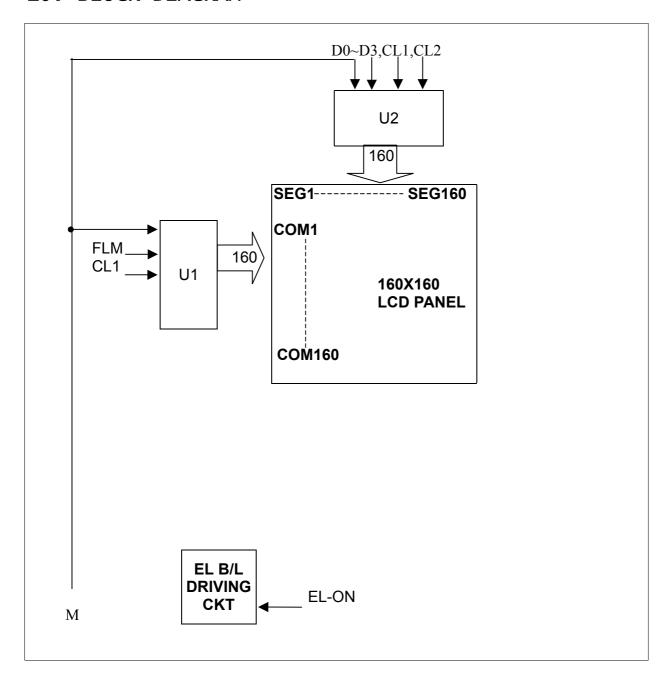


POWER ON POWER ON


The missing pixels may occur when the LCM is driven beyond above power interface timing sequence.

Page: 9 /20

## 8. PIN CONNECTIONS


| NO | Symbol   | Function                                    |
|----|----------|---------------------------------------------|
| 1  | VSS      | Power Supply (0V)                           |
| 2  | FLM      | First Line Mark for Common Scan             |
| 3  | CL1(LP)  | H→L Data Latch Pulse                        |
| 4  | CL2(SCP) | H→L Data Shift Pulse                        |
| 5  | M(N.C)   | H/L Frame Reverse Signal (Alternate Signal) |
| 6  | VDD      | Power Supply for Logic                      |
| 7  | EL_ON    | EL. Back light ON /OFF ("H"=ON,"L"=OFF)     |
| 8  | VEE      | Power Supply for LCD (+V)                   |
| 9  | D3       |                                             |
| 10 | D2       | H/L Display data(Upper Half)                |
| 11 | D1       | The Display data(Opper Flair)               |
| 12 | D0       |                                             |
| 13 | NC       | NO Connection.                              |
| 14 | NC       | NO Connection.                              |
| 15 | NC       | NO Connection.                              |
| 16 | NC       | NO Connection.                              |
| 17 | VSS      | Power Supply (0V)                           |
| 18 | VSS      | Power Supply (0V)                           |

## 9. POWER SUPPLY



Page: 10/20

## 10. BLOCK DIAGRAM



\*M SIGNAL CAN BE SUPPLIED BY USER'S INTERFACE OR GENERATED BY MODULE'S CKT (FOR THIS SPEC.,M SIGNAL MUST BE SUPPLIED BY USER'S INTEREACE)

Page: 11/20

## 10.1 DISPLAY PATTERN

| FIRST DATA |        | •      |        |    |    |    |    |        |    |
|------------|--------|--------|--------|----|----|----|----|--------|----|
|            | COM001 | D3     | D2     | D1 | D0 | D3 | D2 | D1     | D0 |
|            | COM002 | D3     | D2     | D1 | D0 | D3 | D2 | D1     | D0 |
|            |        |        |        |    |    |    |    |        |    |
|            |        |        |        |    |    |    |    |        |    |
|            |        |        |        |    |    |    |    |        |    |
|            |        |        |        |    |    |    |    |        |    |
|            | COM159 | D3     | D2     | D1 | D0 | D3 | D2 | D1     | D0 |
|            | COM160 | D3     | D2     | D1 | D0 | D3 | D2 | D1     | D0 |
|            |        | SEG001 | SEG002 |    |    |    |    | SEG159 | ΙШ |

160\*160 Dots Matrix

Page: 12/20

## 11. QUALITY ASSURANCE

#### 11.1 Test Condition

11.1.1 Temperature and Humidity(Ambient Temperature)

Temperature :  $20 \pm 5^{\circ}$ C Humidity :  $65 \pm 5\%$ 

11.1.2 Operation

Unless specified otherwise, test will be conducted with LCM in operation.

11.1.3 Container

Unless specified otherwise, vibration test will be conducted on module only.

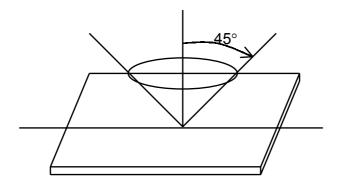
11.1.4 Test Frequency Single cycle.

#### 11.1.5 Test Method

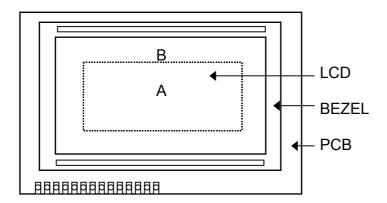
| No. | Parameter                                | Conditions                                                                                                                     | Regulations |
|-----|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1   | High Temperature Operating               | 70 ± 2 °C                                                                                                                      | Note 3      |
| 2   | Low Temperature Operating                | -20 ± 2 °C                                                                                                                     | Note 3      |
| 3   | High Temperature Storage                 | 80 ± 2 °C                                                                                                                      | Note 3      |
| 4   | Low Temperature Storage                  | -30 ± 2 °C                                                                                                                     | Note 3      |
| 5   | Vibration Test<br>(Non-operation state)  | Total fixed amplitude: 1.5mm Vibration Frequency: 10 ~ 55Hz One cycle 60 seconds to 3 directions of X.Y.Z. for each 15 minutes | Note 3      |
|     | Damp Proof Test<br>(Non-operation state) | 40°C ± 2°C, 90~95%RH, 96h                                                                                                      | Note 1,2    |
| 7   | Shock Test<br>(Non-operation state)      | To be measured after dropping from 60cm high once concrete surface in packing state                                            | Note 3      |

Note 1: Returned under normal temperature and humidity for 4 hrs.

Page: 13 /20


Note 2: No dew condensation to be observed.

Note 3: No change on display and in operation under the test condition


## 11.2 Inspection condition

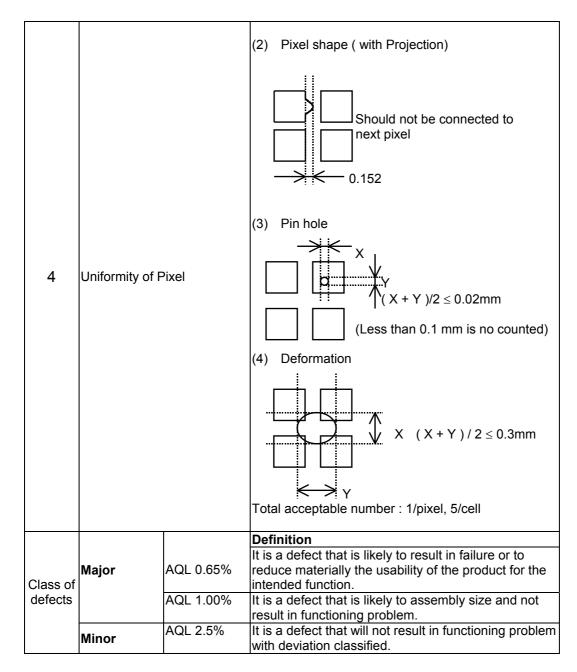
## 11.2.1 Inspection conditions

The LCD shall be inspected under 40W white fluorescent light.



## 11.2.2 Definition of applicable Zones




A : Display Area B : Non-Display Area

Page: 14/20

## 11.2.3 Inspection Parameters

| No. | Parameter                                  | Criteria                                               |
|-----|--------------------------------------------|--------------------------------------------------------|
| 1   | Black or White spots                       |                                                        |
| 2   | Scratch, Substances                        | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
| 3   | Air Bubbles<br>(between glass & polarizer) |                                                        |
| 4   | Uniformity of Pixel                        | (1) Pixel shape (with Dent)  0.152                     |

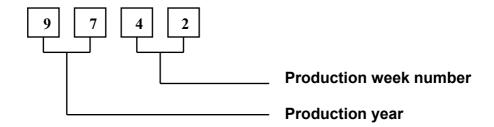
Page: 15 /20



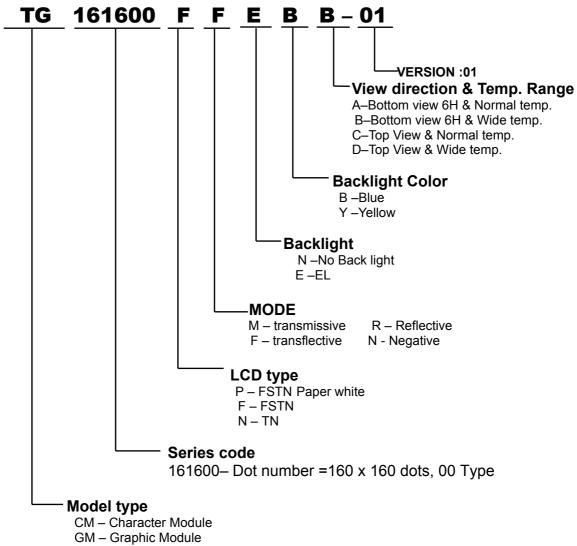
## 11.3 Sampling Condition

Unless otherwise agree in written, the sampling inspection shall be applied to the incoming inspection of customer.

Lot size: Quantity of shipment lot per model.


Sampling type: normal inspection, single sampling

Sampling table: MIL-STD-105E


Inspection level: Level II

Page: 16 /20

#### 12. LOT NUMBERING SYSTEM



#### 13. LCM NUMBERING SYSTEM



TG -Slim TAB/COG Module

TGX-Custom Slim TAB/COG Module

Page: 17 /20

#### 14. PRECAUTION FOR USING LCM

#### 1. LIQUID CRYSTAL DISPLAY (LCD)

- LCD is made up of glass, organic sealant, organic fluid, and polymer based polarizers. The following precautions should be taken when handing,
- (1). Keep the temperature within range of use and storage. Excessive temperature and humidity could cause polarization degredation, polarizer peel off or bubble.
- (2). Do not contact the exposed polarizers with anything harder than an HB pencil lead. To clean dust off the display surface, wipe gently with cotton, chamois or other soft material soaked in petroleum benzin.
- (3). Wipe off saliva or water drops immediately. Contact with water over a long period of time may cause polarizer deformation or color fading, while an active LCD with water condensation on its surface will cause corrosion of ITO electrodes.
- (4). Glass can be easily chipped or cracked from rough handling, especially at corners and edges.
- (5). Do not drive LCD with DC voltage.

#### 2. Liquid Crystal Display Modules

#### 2.1 Mechanical Considerations

- LCM are assembled and adjusted with a high degree of precision. Avoid excessive shocks and do not make any alterations or modifications. The following should be noted.
- (1). Do not tamper in any way with the tabs on the metal frame.
- (2). Do not modify the PCB by drilling extra holes, changing its outline, moving its components or modifying its pattern.
- (3). Do not touch the elastomer connector, especially insert an backlight panel (for example, EL).
- (4). When mounting a LCM make sure that the PCB is not under any stress such as bending or twisting. Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.
- (5). Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels.

#### 2.2. Static Electricity

LCM contains CMOS LSI's and the same precaution for such devices should apply, namely

- (1). The operator should be grounded whenever he/she comes into contact with the module. Never touch any of the conductive parts such as the LSI pads, the copper leads on the PCB and the interface terminals with any parts of the human body.
- (2). The modules should be kept in antistatic bags or other containers resistant to static for storage.
- (3). Only properly grounded soldering irons should be used.
- (4). If an electric screwdriver is used, it should be well grounded and shielded from commutator sparks.

- (5) The normal static prevention measures should be observed for work clothes and working benches; for the latter conductive (rubber) mat is recommended.
- (6). Since dry air is inductive to static, a relative humidity of 50-60% is recommended.

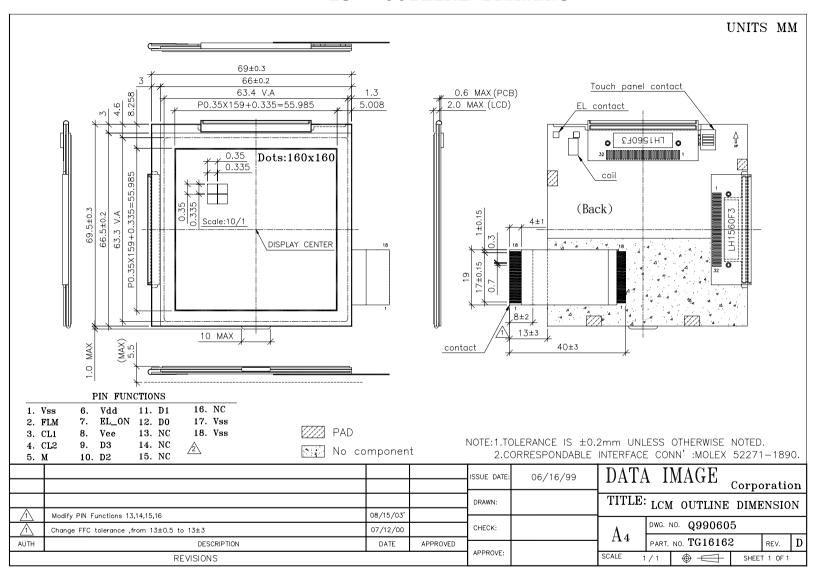
#### 2.3 Soldering

- (1). Solder only to the I/O terminals.
- (2). Use only soldering irons with proper grounding and no leakage.
- (3). Soldering temperature :  $280^{\circ}\text{C} \pm 10^{\circ}\text{C}$
- (4). Soldering time: 3 to 4 sec.
- (5). Use eutectic solder with resin flux fill.
- (6). If flux is used, the LCD surface should be covered to avoid flux spatters. Flux residue should be removed after wards.

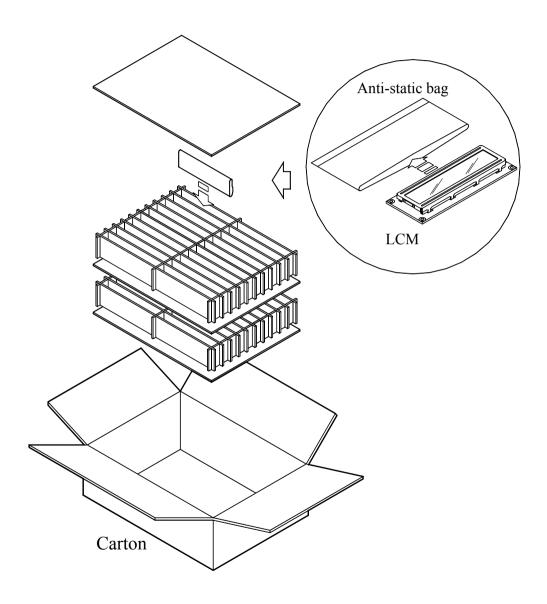
#### 2.4 Operation

- (1). The viewing angle can be adjusted by varying the LCD driving voltage V0.
- (2). Driving voltage should be kept within specified range; excess voltage shortens display life.
- (3). Response time increases with decrease in temperature.
- (4). Display may turn black or dark blue at temperatures above its operational range; this is (however not pressing on the viewing area) may cause the segments to appear "fractured".
- (5). Mechanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured".

#### 2.5 Storage


If any fluid leaks out of a damaged glass cell, wash off any human part that comes into contact with soap and water. Never swallow the fluid. The toxicity is extremely low but caution should be exercised at all the time.

#### 2.6 Limited Warranty


Unless otherwise agreed between DATA IMAGE and customer, DATA IMAGE will replace or repair any of its LCD and LCM which is found to be defective electrically and visually when inspected in accordance with DATA IMAGE acceptance standards, for a period on one year from date of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of DATA IMAGE is limited to repair and/or replacement on the terms set forth above. DATA IMAGE will not responsible for any subsequent or consequential events.

Page: 18 /20

#### 15 OUTLINE DRAWING



# Confidential Document 16. PACKAGE INFORMATION



Page: 20 /20