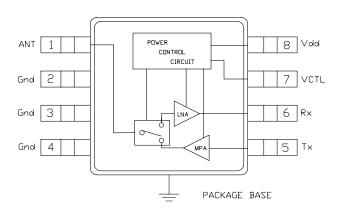


HMC310MS8G


BLUETOOTH & 2.4 GHz WLAN GaAs MMIC TRANSCEIVER

Typical Applications

Transmit & Receive Switch for 2.4 GHz Applications:

- Bluetooth
- HomeRF
- WLAN Radios

Functional Diagram

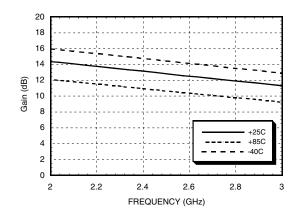
Features

Tx Gain: 15 dB, Rx Gain: 13 dB
Tx 1 dB Compression Point: 5 dBm
Rx Noise Figure: 3 dB @ 2.4 GHz

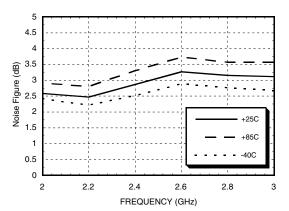
Single Positive Supply: +3V
No External Matching Required

General Description

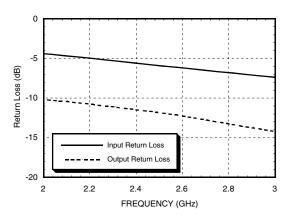
The HMC310MS8G is a multifunction RFIC that incorporates a power amplifier (PA) and low noise amplifier (LNA) with a transmit/receive switch. The RFIC offers 15 dB gain and +5 dBm P1dB in the transmit mode and 13 dB of gain with an overall noise figure of 3 dB when in receive mode. Transmit and receive performance levels have been selected to meet the BLUETOOTH Class 2 & 3 requirements when used in conjunction with 2.4 GHz ASICs such as National Semiconductor's LMX3162. This low current and low cost transceiver requires no external circuitry to operate the amplifier power down features, and is available in the industry standard MSOP8G package, which is 0.118" x 0.190" (3.0mm x 4.9mm).

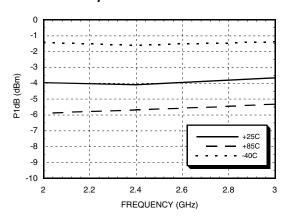

Electrical Specifications, $T_A = +25^{\circ} C$, Vdd = +3V

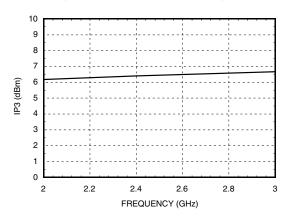
Parameter	Receive Mode			Transmit Mode			
	Min.	Rx Typ.	Max.	Min.	Тх Тур.	Max.	Units
Frequency Range		2.4 - 2.5		2.4 - 2.5			GHz
Gain	8	13	15	12	15	17	dB
Gain Variation over Temperature		0.03	0.04		0.03	0.04	dB/°C
Noise Figure		3.0	4.0				dB
Input Return Loss	4	6		4	7		dB
Output Return Loss	9	12		10	13		dB
Output Power for 1 dB Compression (P1dB)	-7	-4		1	5		dBm
Saturated Output Power (Psat)	-5	0		3	7		dBm
Output Third Order Intercept (IP3)	3	6		3	10		dBm
Supply Current (Idd)		12			24		mA



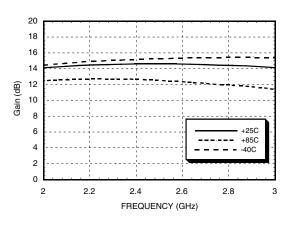
BLUETOOTH & 2.4 GHz WLAN GaAs MMIC TRANSCEIVER

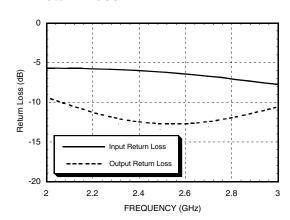

Rx Gain


Rx Noise Figure

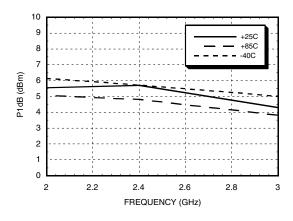

Rx Return Loss

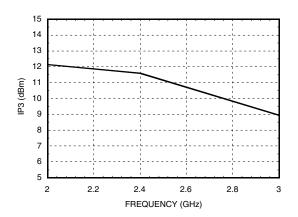
Rx 1dB Compression Point


Rx Output Third Order Intercept Point



BLUETOOTH & 2.4 GHz WLAN GaAs MMIC TRANSCEIVER

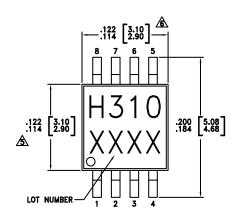

Tx Gain

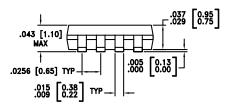

Tx Return Loss

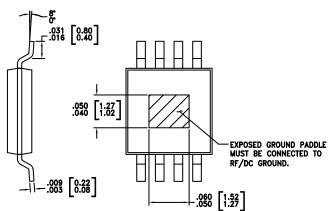
Tx 1dB Compression Point

Tx Output Third Order Intercept Point

BLUETOOTH & 2.4 GHz WLAN GAAS MMIC TRANSCEIVER

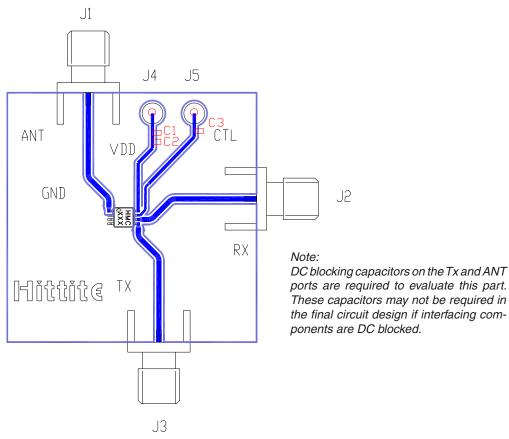

Absolute Maximum Ratings


Drain Bias Voltage (Vdd)	+7.0 Vdc
Control Voltage Range (Vctl)	-0.2 to Vdd
RF Input Power (Vdd = +3.0 Vdc)	0 dBm
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 5 mW/°C above 85 °C)	0.325 W
Thermal Resistance (channel to ground paddle)	200 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C


Truth Table

Tx Section Active	VCTL = Vdd
Rx Section Active	VCTL = 0V

Outline Drawing


NOTES:

- PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEADFRAME MATERIAL: COPPER ALLOY
- 3. LEADFRAME PLATING: Sn/Pb SOLDER
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- 6 DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 7. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

BLUETOOTH & 2.4 GHz WLAN GaAs MMIC TRANSCEIVER

Evaluation PCB

List of Material

Item	Description		
J1, J2, J3	PC Mount SMA Connector		
J4, J5	DC Pins		
C1	.01 μF Capacitor, 0603 Pkg.		
C2, C3	100 pF Capaciotor, 0603 Pkg.		
U1	HMC310MS8G Transceiver		
PCB*	Evaluation Board 1.5" x 1.55"		
*Circuit Board Material: Roger 4350			

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

v01.0401

8

AMPLIFIERS - SMT

BLUETOOTH & 2.4 GHz WLAN GaAs MMIC TRANSCEIVER

Notes: