3.3 V/5.0 V ECL 1:15 Differential ÷1/÷2 Clock Driver The MC100LVE222 is a low skew 1:15 differential $\div 1/\div 2$ ECL fanout buffer designed with clock distribution in mind. The LVECL/LVPECL input signal pairs can be differential or used single–ended (with V_{BB} output reference bypassed and connected to the unused input of a pair). Either of two fully differential clock inputs may be selected. Each of the four output banks of 2, 3, 4, and 6 differential pairs may be indwependently configured to fanout 1X or 1/2X of the input frequency. The LVE222 specifically guarantees low output to output skew. Optimal design, layout, and processing minimize skew within a device and from lot to lot. The fsel pins and CLK_Sel pin are asynchronous control inputs. Any changes may cause indeterminate output states requiring an MR pulse to resynchronize any 1/2X outputs. The device tpd is affected by the quantity of output pairs terminated with a minimum occurring with only one output pair and increasing about 10–20 ps for all output pairs. Relative skew distribution is not affected as more pairs are terminated, but the increased tpd does shift the entire distribution. Unused output pairs should be left unterminated (open) to reduce power and switching noise. The MC100LVE222, as with most ECL devices, can be operated from a positive V_{CC}/V_{CCO} supply in PECL mode. This allows the LVE222 to be used for high performance clock distribution in +3.3 V systems. Operation with >3.8 |(V_{CC} or V_{CCO}–V_{EE}| span will require special thermal handling considerations. Designers can take advantage of the LVE222's performance to distribute low skew clocks across the backplane or the board. In a PECL environment series or Thevenin line, terminations are typically used as they require no additional power supplies. All power supply pins must be connected. For more information on using PECL, designers should refer to Application Note AN1406/D. For a SPICE model, refer to Application Note AN1560/D. - 200 ps Part-to-Part Skew - 50 ps Output-to-Output Skew - Selectable 1x or 1/2x Frequency Outputs - ESD Protection: >2 kV HBM, >200 V MM - The 100 Series Contains Temperature Compensation - PECL Mode Operating Range: $V_{CC}/V_{CCO} = 3.0 \text{ V}$ to 5.25 V with $V_{EE} = 0 \text{ V}$ - NECL Mode Operating Range: $V_{CC}/V_{CCO} = 0$ V with $V_{EE} = -3.0$ V to -5.25 V - Internal Input Pulldown Resistors - Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test - Moisture Sensitivity Level 2 For Additional Information, refer to Application Note AND8003/D - Flammability Rating: UL 94 V-0 @ 0.125 in, - Oxygen Index: 28 to 34 - Transistor Count = 684 devices - Pb-Free Packages are Available* *For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### ON Semiconductor® http://onsemi.com #### **MARKING DIAGRAM*** LQFP FA SUFFIX CASE 848D A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package e a la company *For additional information, see Application Note AND8002/D #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. Figure 1. Pinout Assignment (Top View) #### **Table 1. PIN DESCRIPTION** | PIN | FUNCTION | |-----------------------------------|---| | CLK0, CLK0 | ECL Differential Input Clock | | CLK1, CLK1 | ECL Differential Input Clock | | CLK_Sel | ECL Clock Select | | MR | ECL Master Reset | | Qa0:1, Qa0:1 | ECL Differential Outputs | | Qb0:2, Qb0:2 | ECL Differential Outputs | | Qc0:3, Qc0:3 | ECL Differential Outputs | | Qd0:5, Qd0:5 | ECL Differential Outputs | | fseln | ECL ÷1 or ÷2 Select | | V_{BB} | Reference Voltage Output | | V _{CC} /V _{CCO} | Positive Supply (V _{CC} = V _{CCO}) | | V _{EE} | Negative Supply | | NC | No Connect | **Note:** All V_{CC}/V_{CCO} , and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation. All V_{CC}/V_{CCO} pins are internally interconnected. **Table 2. FUNCTION TABLE** | | Function | | | | | | |------------------------|----------------------|---------------------|--|--|--|--| | Input | L | Н | | | | | | MR
CLK_Sel
fseln | Active
CLK0
÷1 | Reset
CLK1
÷2 | | | | | Figure 2. Logic Diagram Figure 3. Timing Diagram **Table 3. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |-----------------------------------|--|--|---|-------------------|----------| | V _{CC} /V _{CCO} | PECL Mode Power Supply | V _{EE} = 0 V | | 8 to 0 | V | | V _{EE} | NECL Mode Power Supply | V _{CC} or V _{CCO} = 0 V | | -8 to 0 | V | | VI | PECL Mode Input Voltage
NECL Mode Input Voltage | V _{EE} = 0 V
V _{CC} or V _{CCO} = 0 V | $ \begin{array}{c} V_I \leq (V_{CC} \text{ or } V_{CCO}) \\ V_I \geq V_{EE} \end{array} $ | 6 to 0
-6 to 0 | V
V | | l _{out} | Output Current | Continuous
Surge | | 50
100 | mA
mA | | I _{BB} | V _{BB} Sink/Source | | | ±0.5 | mA | | TA | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | θ _{JA} | Thermal Resistance (Junction to Ambient) | 0 LFPM
500 LFPM | 52 LQFP
52 LQFP | 70
48 | °C/W | | θЈС | Thermal Resistance (Junction to Case) | standard board | 52 LQFP | TBD | °C/W | | T _{sol} | Wave Solder | <2 to 3 sec @ 248°C | | 265 | °C | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. Table 4. LVPECL DC CHARACTERISTICS V_{CC} or V_{CCO} = 3.3 V; V_{EE} = 0.0 V (Note 1) | | | | -40°C | | | 25°C | | | 85°C | | | |-----------------|--|-------------|-------|------------|-------------|------|------------|-------------|------|------------|----------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 122 | 136 | | 122 | 136 | | 125 | 139 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 2215 | 2295 | 2420 | 2275 | 2345 | 2420 | 2275 | 2345 | 2420 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 1470 | 1605 | 1745 | 1490 | 1595 | 1680 | 1490 | 1595 | 1680 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 2135 | | 2420 | 2135 | | 2420 | 2135 | | 2420 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 1490 | | 1825 | 1490 | | 1825 | 1490 | | 1825 | mV | | V _{BB} | Output Voltage Reference | 1.92 | | 2.04 | 1.92 | | 2.04 | 1.92 | | 2.04 | V | | VIHCMR | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 6)
Vpp < 500 mV
Vpp ≧ 500 mV | 1.3
1.6 | | 2.9
2.9 | 1.2
1.5 | | 2.9
2.9 | 1.2
1.5 | | 2.9
2.9 | V
V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current Others CLK0, CLK1 | 0.5
-300 | | | 0.5
-300 | | | 0.5
-300 | | | μΑ
μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 1. Input and output parameters vary 1:1 with V_{CC}/V_{CCO}. V_{EE} can vary +0.3 V to −1.95 V. Operation with |V_{CC} or V_{CCO}-V_{EE}| ≥ 3.8 V span will require special thermal handling considerations. - Outputs are terminated through a 50 Ω resistor to (V_{CC} or V_{CCO}) 2.0 V. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}/V_{CCO}. V_{IHCMR} is defined as the range within which the V_{IH} level may vary, with the device still meeting the propagation delay specification. The V_{IL} level must be such that the peak to peak voltage is less than 1.0 V and greater than or equal to V_{PP}(min). Table 5. LVNECL DC CHARACTERISTICS V_{CC} or $V_{CCO} = 0.0 \text{ V}$; $V_{EE} = -3.3 \text{ V}$ (Note 4) | | | | –40°C 25°C | | | | | | | | | |--------------------|--|-------------|------------|-------|-------------|-------|-------|-------------|-------|-------|--------------------------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 122 | 136 | | 122 | 136 | | 125 | 139 | mA | | V _{OH} | Output HIGH Voltage (Note 5) | -1085 | -1005 | -880 | -1025 | -955 | -880 | -1025 | -955 | -880 | mV | | V _{OL} | Output LOW Voltage (Note 5) | -1830 | -1695 | -1555 | -1810 | -1705 | -1620 | -1810 | -1705 | -1620 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | -1165 | | -880 | -1165 | | -880 | -1165 | | -880 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | -1810 | | -1475 | -1810 | | -1475 | -1810 | | -1475 | mV | | V_{BB} | Output Voltage Reference | -1.38 | | -1.26 | -1.38 | | -1.26 | -1.38 | | -1.26 | V | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 6) | | | | | | | | | | | | | Vpp < 500 mV | -2.0 | | -0.4 | -2.1 | | -0.4 | -2.1 | | -0.4 | V | | | Vpp ≧ 500 mV | -1.7 | | -0.4 | -1.8 | | -0.4 | -1.8 | | -0.4 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current Others CLK0, CLK1 | 0.5
-300 | _ | _ | 0.5
-300 | _ | _ | 0.5
-300 | _ | _ | μ Α
μ Α | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 4. Input and output parameters vary 1:1 with V_{CC}/V_{CCO}. V_{EE} can vary +0.3 V to −1.95 V. Operation with |V_{CC} or V_{CCO}-V_{EE}| ≥ 3.8 V span will require special thermal handling considerations. - Outputs are terminated through a 50 Ω resistor to (V_{CC} or V_{CCO}) 2.0 V. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC}/V_{CCO} . V_{IHCMR} is defined as the range within which the V_{IH} level may vary, with the device still meeting the propagation delay specification. The V_{IL} level must be such that the peak to peak voltage is less than 1.0 V and greater than or equal to VPP(min). Table 6. AC CHARACTERISTICS V_{CC} or $V_{CCO} = 3.3 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CC}/V_{CCO} = 0.0 \text{ V}$; $V_{EE} = -3.3 \text{ V}$ (Note 7) | | | −40°C | | | 25°C | | 70°C | | | | | |--------------------------------------|---|---------------------|----------------------|----------------------|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | f _{max} | Maximum Toggle Frequency | 1.2 | > 1.5 | | 1.2 | > 1.5 | | 1.2 | > 1.5 | | GHz | | [†] PLH
[†] PHL | Propagation Delay to Output
IN (differential) (Note 8)
IN (single-ended) (Note 9)
MR | 1040
940
1100 | 1140
1140
1250 | 1240
1290
1400 | 1080
980
1170 | 1180
1180
1320 | 1280
1330
1470 | 1120
1020
1220 | 1220
1220
1370 | 1320
1370
1520 | ps | | t _{skew} | Within-Device Skew (Note 10) Part-to-Part Skew (Differential Configuration) | | | 50
200 | | | 50
200 | | | 50
200 | ps | | tJITTER | Random CLOCK Jitter (RMS) | | < 1.0 | | | < 1.0 | | | < 1.0 | | ps | | V _{PP} | Input Swing (Differential) (Note 11) | 400 | | 1000 | 400 | | 1000 | 400 | | 1000 | mV | | t _r /t _f | Output Rise/Fall Time 20%–80% | 200 | | 600 | 200 | | 600 | 200 | | 600 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 7. V_{EE} can vary +0.3 V to −1.95 V. Operation with |V_{CC} or pV_{CCO}−V_{EE}| ≥ 3.8 V span will require special thermal handling considerations. - 8. The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the differential output signals. - 9. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal. - 10. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device. - 11. V_{PP}(min) is defined as the minimum input differential voltage which will cause no increase in the propagation delay. The V_{PP}(min) is AC limited for the LVE222. A differential input as low as 50 mV will still produce full ECL levels at the output. Figure 4. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020 – Termination of ECL Logic Devices) #### **ORDERING INFORMATION** AN1504 | Device | Package | Shipping [†] | |------------------|----------------------|-----------------------| | MC100LVE222FA | LQFP-52 | 160 Units / Rail | | MC100LVE222FAR2 | LQFP-52 | 1500 / Tape & Reel | | MC100LVE222FAG | LQFP-52
(Pb-Free) | 160 Units / Rail | | MC100LVE222FAR2G | LQFP-52
(Pb-Free) | 1500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **Resource Reference of Application Notes** AN1404 - ECLinPS Circuit Performance at Non-Standard V_{IH} Levels AN1405 - ECL Clock Distribution Techniques AN1406 - Designing with PECL (ECL at +5.0 V) AN1503 - ECLinPS I/O SPICE Modeling Kit AN1560 – Low Voltage ECLinPS SPICE Modeling Kit AN1568 - Interfacing Between LVDS and ECL AN1596 - ECLinPS Lite Translator ELT Family SPICE I/O Model Kit Metastability and the ECLinPS Family AN1650 - Using Wire-OR Ties in ECLinPS Designs AN1672 - The ECL Translator Guide AND8001 - Odd Number Counters Design AND8002 - Marking and Date Codes AND8020 - Termination of ECL Logic Devices #### PACKAGE DIMENSIONS #### **FA SUFFIX** LQFP PACKAGE CASE 848D-03 ISSUE D - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS -L-, -M- AND -N- TO BE DETERMINED AT DATUM PLANE -H-. 5. DIMENSIONS S AND VTO BE DETERMINED AT SFATING PI ANF. T- - DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -T-. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.46 (0.018). MINIMUM SPACE BETWEEN PROTRUSION ON AND ADJACENT LEAD OR PROTRUSION 0.07 (0.003). PROTRUSION 0.07 (0.003). | | MILLIN | IETERS | INCHES | | | |-----|--------|---------|-----------|-------|--| | DIM | MIN | MIN MAX | | MAX | | | Α | 10.00 | BSC | 0.394 BSC | | | | A1 | 5.00 | BSC | 0.197 | BSC | | | В | 10.00 | BSC | 0.394 | BSC | | | B1 | 5.00 | BSC | 0.197 | BSC | | | С | | 1.70 | | 0.067 | | | C1 | 0.05 | 0.20 | 0.002 | 0.008 | | | C2 | 1.30 | 1.50 | 0.051 | 0.059 | | | D | 0.20 | 0.40 | 0.008 | 0.016 | | | Е | 0.45 | 0.75 | 0.018 | 0.030 | | | F | 0.22 | 0.35 | 0.009 | 0.014 | | | G | 0.65 | BSC | 0.026 BSC | | | | J | 0.07 | 0.20 | 0.003 | 0.008 | | | K | 0.50 | REF | 0.020 REF | | | | R1 | 0.08 | 0.20 | 0.003 | 0.008 | | | S | 12.00 | BSC | 0.472 BSC | | | | S1 | 6.00 | BSC | 0.236 | BSC | | | U | 0.09 | 0.16 | 0.004 | 0.006 | | | ٧ | 12.00 | BSC | 0.472 BSC | | | | V1 | 6.00 | BSC | 0.236 BSC | | | | W | 0.20 | REF | 0.008 REF | | | | Z | | REF | | REF | | | θ | 0° | 7° | 0° | 7° | | | θ1 | 0° | | 0° | | | | θ2 | 12° | REF | 12° REF | | | | θ3 | 12° | REF | 12° | REF | | ON Semiconductor and was a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.