

Current Transducer LTC 1000-SF

 $I_{PN} = 1000 A$

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

PN	Primary current, meas Max overload not mea	Primary nominal r.m.s. current Primary current, measuring range @ 24 V Max overload not measurable		1000 0 ± 2400 ¹⁾ 10 / 10 kA	
$\mathbf{R}_{_{\mathrm{M}}}$	Measuring resistance		$\mathbf{R}_{_{ ext{M min}}}$	$R_{\text{M ma}}$	x
	with ± 15 V	@ $\pm 1000 A_{max}$	0	15	Ω
		@ ± 1200 A max	0	7	Ω
	with ± 24 V	@ ± 1000 A max	0	50	Ω
		@ ± 2000 A max	0	7	Ω
I_{SN}	Secondary nominal r.m.s. current		200		m A
K _N	Conversion ratio		1:500	00	
V c	Supply voltage (± 5 %)		± 15	24	V
	Current consumption		< 30 (@	±24V)+	-I _s m A
Ι _C	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		13.4 ²⁾		k۷
_			1.5 ³⁾		kV
\mathbf{V}_{e}	R.m.s. voltage for partial discharge extinction		> 2.8 ⁴)	kV

Accuracy - Dynamic performance data

X _G	Overall accuracy @ I _{PN} , T _A = 25°C	< ± 0.4	%
$\mathbf{e}_{\scriptscriptstyle L}$	@ \mathbf{I}_{PN} , \mathbf{T}_{A} = - 40°C+ Linearity	+ 85°C < ± 1 < 0.1	% %
Ι _ο Ι _{οτ}	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O - 40	Max ± 0.5 0°C + 85°C ± 1	m A m A
t _r di/dt f	Response time ⁵⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)	< 1 > 100 DC 100	μs A/μs kHz

General data

$T_{_{\rm A}}$	Ambient operating temperature	- 40 + 85	°C
T _s	Ambient storage temperature	- 45 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 85°C	44	Ω
m	Mass	780	g
	Standards	EN 50155 (01.12.20)	

Notes: 1) With a di/dt of > $5 \text{ A/}\mu\text{s}$

2) Between primary and secondary + shield

3) Between secondary and shield

4) Test carried out with a busbar Ø 40 mm centred in the through-hole

5) With a di/dt of 100 A/µs.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Transducer delivered with feet
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

030528/0

Dimensions LTC 1000-SF (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fixing the transducer

Fastening torque max

- Primary through-hole
- Connection of secondary Fastening torque max
- ±1 mm
- 4 slots \varnothing 6.5 mm
- 4 screws M6
- 5 Nm
- Ø 42 mm

M5 threaded studs 2.2 Nm or 1.62 Lb.-Ft. Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.