Current Transducer LTC 1000-SF $I_{PN} = 1000 A$ For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). ## **Electrical data** | PN | Primary current, meas
Max overload not mea | Primary nominal r.m.s. current
Primary current, measuring range @ 24 V
Max overload not measurable | | 1000
0 ± 2400 ¹⁾
10 / 10 kA | | |------------------------------|---|--|-------------------------------|--|---------------------| | $\mathbf{R}_{_{\mathrm{M}}}$ | Measuring resistance | | $\mathbf{R}_{_{ ext{M min}}}$ | $R_{\text{M ma}}$ | x | | | with ± 15 V | @ $\pm 1000 A_{max}$ | 0 | 15 | Ω | | | | @ ± 1200 A max | 0 | 7 | Ω | | | with ± 24 V | @ ± 1000 A max | 0 | 50 | Ω | | | | @ ± 2000 A max | 0 | 7 | Ω | | I_{SN} | Secondary nominal r.m.s. current | | 200 | | m A | | K _N | Conversion ratio | | 1:500 | 00 | | | V c | Supply voltage (± 5 %) | | ± 15 | 24 | V | | | Current consumption | | < 30 (@ | ±24V)+ | -I _s m A | | Ι _C | R.m.s. voltage for AC isolation test, 50 Hz, 1 mn | | 13.4 ²⁾ | | k۷ | | _ | | | 1.5 ³⁾ | | kV | | \mathbf{V}_{e} | R.m.s. voltage for partial discharge extinction | | > 2.8 ⁴ |) | kV | #### **Accuracy - Dynamic performance data** | X _G | Overall accuracy @ I _{PN} , T _A = 25°C | < ± 0.4 | % | |-------------------------------------|--|--------------------------------|-------------------| | $\mathbf{e}_{\scriptscriptstyle L}$ | @ \mathbf{I}_{PN} , \mathbf{T}_{A} = - 40°C+ Linearity | + 85°C < ± 1 < 0.1 | %
% | | Ι _ο
Ι _{οτ} | Offset current @ $I_p = 0$, $T_A = 25$ °C
Thermal drift of I_O - 40 | Max
± 0.5
0°C + 85°C ± 1 | m A
m A | | t _r
di/dt
f | Response time ⁵⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB) | < 1
> 100
DC 100 | μs
A/μs
kHz | #### General data | $T_{_{\rm A}}$ | Ambient operating temperature | - 40 + 85 | °C | |---------------------------|---|---------------------|----| | T _s | Ambient storage temperature | - 45 + 90 | °C | | \mathbf{R}_{s} | Secondary coil resistance @ T _A = 85°C | 44 | Ω | | m | Mass | 780 | g | | | Standards | EN 50155 (01.12.20) | | | | | | | Notes: 1) With a di/dt of > $5 \text{ A/}\mu\text{s}$ 2) Between primary and secondary + shield 3) Between secondary and shield 4) Test carried out with a busbar Ø 40 mm centred in the through-hole 5) With a di/dt of 100 A/µs. #### **Features** - Closed loop (compensated) current transducer using the Hall effect - Insulated plastic case recognized according to UL 94-V0 - Transducer delivered with feet - Railway equipment. ### **Advantages** - Excellent accuracy - Very good linearity - Low temperature drift - Optimized response time - Wide frequency bandwidth - No insertion losses - High immunity to external interference - Current overload capability. ## **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - Battery supplied applications - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Power supplies for welding applications. 030528/0 # **Dimensions LTC 1000-SF** (in mm. 1 mm = 0.0394 inch) # Mechanical characteristics - General tolerance - Fixing the transducer Fastening torque max - Primary through-hole - Connection of secondary Fastening torque max - ±1 mm - 4 slots \varnothing 6.5 mm - 4 screws M6 - 5 Nm - Ø 42 mm M5 threaded studs 2.2 Nm or 1.62 Lb.-Ft. Faston 6.3 x 0.8 mm #### Remarks - I_s is positive when I_p flows in the direction of the arrow. - Temperature of the primary conductor should not exceed 100°C. - Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole. - This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.