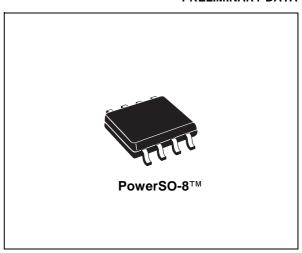


STSJ100NH3LL

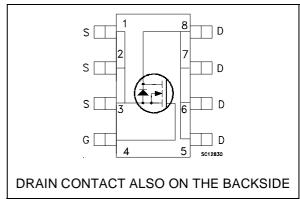
N-CHANNEL 30V - 0.0027 Ω - 100A PowerSO-8TM STripFETTM III POWER MOSFET FOR DC-DC CONVERSION

PRELIMINARY DATA

TYPE	TYPE V _{DSS}		I _D	
STSJ100NH3LL	30 V	<0.0035 Ω	100 A	


- TYPICAL $R_{DS}(on) = 0.0027 \Omega @ 10V$
- OPTIMAL R_{DS}(on) x Qg TRADE-OFF @ 4.5V
- CONDUCTION LOSSES REDUCED
- SWITCHING LOSSES REDUCED
- IMPROVED JUNCTION-CASE THERMAL RESISTANCE

DESCRIPTION


The STSJ100NH3LL utilizes the latest advanced design rules of ST's proprietary STripFETTM technology. This process compled to unique metallization techniques realizes the most advanced low voltage MOSFET in SO-8 ever produced. The exposed slug reduces the R_{thj-c} improving the current capability.

APPLICATIONS

■ SPECIFICALLY DESIGNED AND OPTIMISED FOR HIGH EFFICIENCY CPU CORE DC/DC CONVERTERS FOR MOBILE PCS

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	ol Parameter Value		Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	30	V
V_{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	30	V
V_{GS}	Gate- source Voltage	± 18	V
I _D	Drain Current (continuous) at T _C = 25°C	100	A
I _D	Drain Current (continuous) at T _C = 25°C (#)	22	A
I _D	Drain Current (continuous) at T _C = 100°C	62.5	A
I _{DM} (•)	Drain Current (pulsed)	400	A
P _{tot}	Total Dissipation at $T_C = 25^{\circ}C$ Total Dissipation at $T_C = 25^{\circ}C$ (#)	70 3	W W

^(•) Pulse width limited by safe operating area.

September 2003 1/6

THERMAL DATA

	Rthj-c Rthj-amb T _j T _{stq}	Thermal Resistance Junction-case (#)Thermal Resistance Junction-ambient Maximum Operating Junction Temperature Storage Temperature	Max Max	1.8 42 150 -55 to 150	°C/W °C °C °C
--	--	--	------------	--------------------------------	------------------------

^(#) When Mounted on FR-4 board with 1 inch² pad, 2 oz of Cu and t \leq 10 sec.

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	30			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating T_C = 125^{\circ}C$			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 18 V			±100	nA

ON (*)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	1			V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V V _{GS} = 4.5 V	I _D = 50 A I _D = 50 A		0.0027 0.0035	0.0035 0.005	Ω Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	$V_{DS}=10 \text{ V}$ $I_{D}=12 \text{ A}$		30		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25V$, $f = 1 MHz$, $V_{GS} = 0$		4450 655 50		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$\begin{split} V_{DD} &= 15 \text{ V} & I_D = 50 \text{ A} \\ R_G &= 4.7 \Omega & V_{GS} = 10 \text{ V} \\ \text{(Resistive Load, Figure 1)} \end{split}$		18 50		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V_{DD} =15V I_{D} =100A V_{GS} =4.5V (see test circuit, Figure 2)		32 12.5 10	43	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)}	Turn-off Delay Time Fall Time	$\begin{split} V_{DD} &= 15 \text{ V} & I_D = 50 \text{ A} \\ R_G &= 4.7 \Omega, & V_{GS} = 10 \text{ V} \\ \text{(Resistive Load, Figure 3)} \end{split}$		75 8		ns ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM}	Source-drain Current Source-drain Current (pulsed)				100 400	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 100 A V _{GS} = 0			1.2	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 100 A di/dt = 100A/µs V_{DD} = 25 V T_j = 150°C (see test circuit, Figure 3)		32 34 2.1		ns nC A

^(*)Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %. (•)Pulse width limited by safe operating area.

Fig. 1: Switching Times Test Circuits For Resistive Load

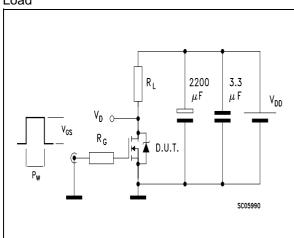


Fig. 2: Gate Charge test Circuit

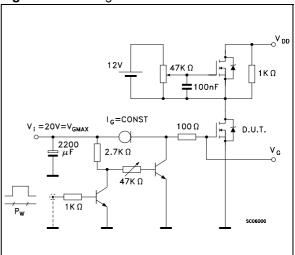
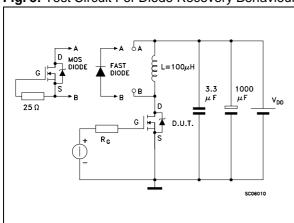
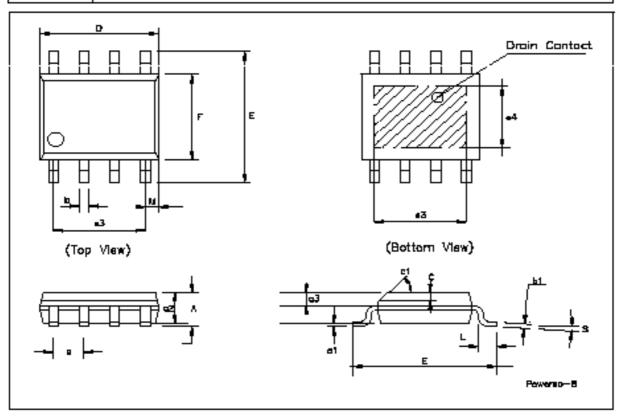




Fig. 3: Test Circuit For Diode Recovery Behaviour

PowerSO-8™ MECHANICAL DATA

DIM.		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α			1.75			0.068	
a1	0.1		0.25	0.003		0.009	
a2			1.65			0.064	
a3	0.65		0.85	0.025		0.033	
b	0.35		0.48	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.019	
c1			45°	(typ.)	•		
D	4.8		5.0	0.188		0.196	
E	5.8		6.2	0.228		0.244	
e		1.27			0.050		
63		3.81			0.150		
e4		2.79			0.110		
F	3.8		4.0	0.14		0.157	
L	0.4		1.27	0.015		0.050	
M			0.6			0.023	
S			8° (r	nax.)			

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics ® 2002 STMicroelectronics - All Rights Reserved

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com