

January 2007

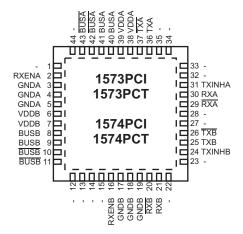
HI-1573, HI-1574

MIL-STD-1553
3.3V Monolithic Dual Transceivers

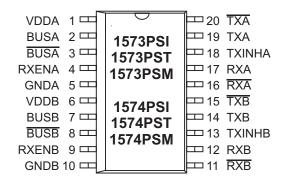
DESCRIPTION

The HI-1573 and HI-1574 are low power CMOS dual transceivers designed to meet the requirements of the MIL-STD-1553 specification.

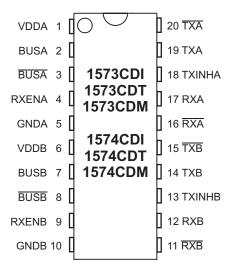
The transmitter section of each channel takes complementary CMOS / TTL digital input data and converts it to bi-phase Manchester encoded 1553 signals suitable for driving the bus isolation transformer. Separate transmitter inhibit control signals are provided for each transmitter.


The receiver section of the each channel converts the 1553 bus bi-phase data to complementary CMOS / TTL data suitable for inputting to a Manchester decoder. Each receiver has a separate enable input which can be used to force the output of the receiver to a logic "0" (HI-1573) or logic 1 (HI-1574).

To minimize the package size for this function, the transmitter outputs are internally connected to the receiver inputs, so that only two pins are required for connection to each coupling transformer. For designs requiring independent access to transmitter and receiver 1553 signals, please contact your Holt Sales representative.


FEATURES

- Compliant to MIL-STD-1553A & B, ARINC 708A
- 3.3V single supply operation
- Smallest footprint available in 20 pin plastic ESOIC (thermally enhanced SOIC) package
- Less than 0.5W maximum power dissipation
- 7 mm x 7 mm 44-pin plastic chip-scale package
- Available in DIP and small outline (ESOIC) package options
- Military processing options
- Industry standard pin configurations


PIN CONFIGURATIONS

44 Pin Plastic 7mm x 7mm Chip-scale package

20 Pin Plastic ESOIC - WB package

20 Pin Ceramic DIP package

PIN DESCRIPTIONS

PIN (DIP & SOIC)	SYMBOL	FUNCTION	DESCRIPTION
1	VDDA	power supply	+3.3 volt power for transceiver A
2	BUSA	analog output	MIL-STD-1533 bus driver A, positive signal
3	BUSA	analog output	MIL-STD-1553 bus driver A, negative signal
4	RXENA	digital input	Receiver A enable. If low, forces RXA and RXA low (HI-1573) or High (HI-1574)
5	GNDA	power supply	Ground for transceiver A
6	VDDB	power supply	+3.3 volt power for transceiver B
7	BUSB	analog output	MIL-STD-1533 bus driver B, positive signal
8	BUSB	analog output	MIL-STD-1553 bus driver B, negative signal
9	RXENB	digital input	Receiver B enable. If low, forces RXB and RXB low (HI-1573) or High (HI-1574)
10	GNDB	power supply	Ground for transceiver B
11	RXB	digital output	Receiver B output, inverted
12	RXB	digital output	Receiver B output, non-inverted
13	TXINHB	digital input	Transmit inhibit, bus B. If high BUSB, BUSB disabled
14	TXB	digital input	Transmitter B digital data input, non-inverted
15	TXB	digital input	Transmitter B digital data input, inverted
16	RXA	digital output	Receiver A output, inverted
17	RXA	digital output	Receiver A output, non-inverted
18	TXINHA	digital input	Transmit inhibit, bus A. If high BUSA, BUSA disabled
19	TXA	digital input	Transmitter A digital data input, non-inverted
20	TXA	digital input	Transmitter A digital data input, inverted

FUNCTIONAL DESCRIPTION

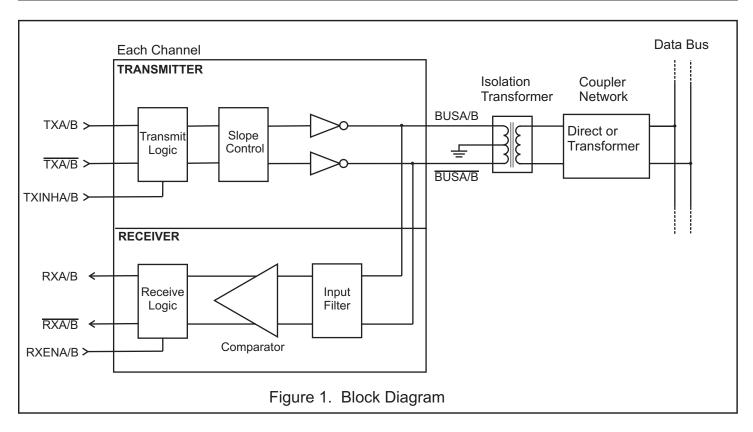
The HI-1573 family of data bus transceivers contains differential voltage source drivers and differential receivers. They are intended for applications using a MIL-STD-1553 A/B data bus. The device produces a trapezoidal output waveform during transmission.

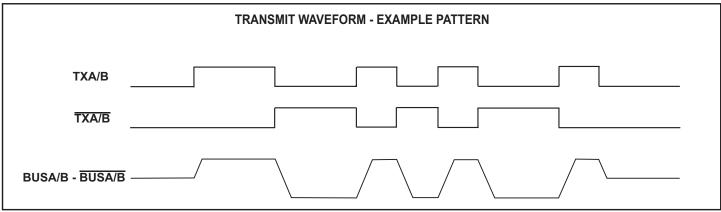
TRANSMITTER

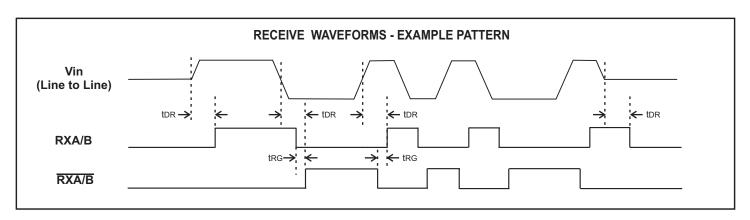
Data input to the device's transmitter section is from the complementary CMOS inputs TXA/B and $\overline{TXA/B}$. The transmitter accepts Manchester II bi-phase data and converts it to differential voltages on BUSA/B and $\overline{BUSA/B}$. The transceiver outputs are either direct or transformer coupled to the MIL-STD-1553 data bus. Both coupling methods produce a nominal voltage on the bus of 7.5 volts peak to peak.

The transmitter is automatically inhibited and placed in the high impedance state when both TXA/B and $\overline{TXA/B}$ are either at a logic "1" or logic "0" simultaneously. A logic "1" applied to the TXINHA/B input will force the transmitter to the high impedance state, regardless of the state of TXA/B and $\overline{TXA/B}$.

RECEIVER


The receiver accepts bi-phase differential data from the MIL-STD-1553 bus through the same direct or transformer coupled interface as the transmitter. The receiver's differential input stage drives a filter and threshold comparator that produces CMOS data at the RXA/B and RXA/B output pins.


Each set of receiver outputs can be independently forced to a logic "0" (HI-1573) or logic "1" (HI-1574) by setting RXENA or RXENB low.


MIL-STD-1553 BUS INTERFACE

A direct coupled interface (see Figure 2) uses a 1:2.5 ratio isolation transformer and two 55 ohm isolation resistors between the transformer and the bus.

In a transformer coupled interface (see Figure 3), the transceiver is connected to a 1:1.79 isolation transformer which in turn is connected to a 1:1.4 coupling transformer. The transformer coupled method also requires two coupling resistors equal to 75% of the bus characteristic impedence (Zo) between the coupling transformer and the bus.

ABSOLUTE MAXIMUM RATINGS

RECOMMENDED OPERATING CONDITIONS

Supply voltage (VDD)	-0.3 V to +5 V
Logic input voltage range	-0.3 V dc to +3.6 V
Receiver differential voltage	10 Vp-p
Driver peak output current	+1.0 A
Power dissipation at 25°C ceramic DIL, derate	1.0 W 7mW/°C
Solder Temperature	275°C for 10 sec.
Junction Temperature	175°C
Storage Temperature	-65°C to +150°C

Supply Voltage
VDD 3.3V ±5%
Temperature Range
Industrial Screening40°C to +85°C Hi-Temp Screening55°C to +125°C Military Screening55°C to +125°C

NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

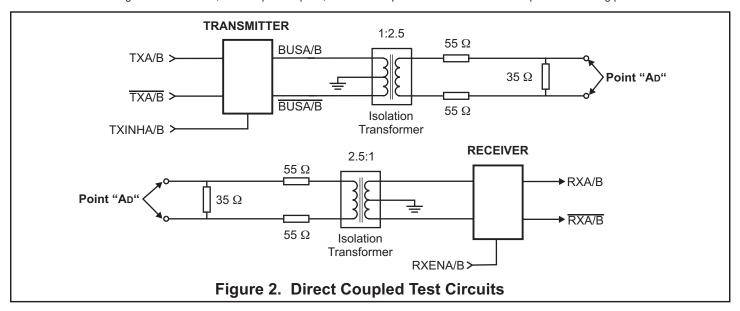
DC ELECTRICAL CHARACTERISTICS

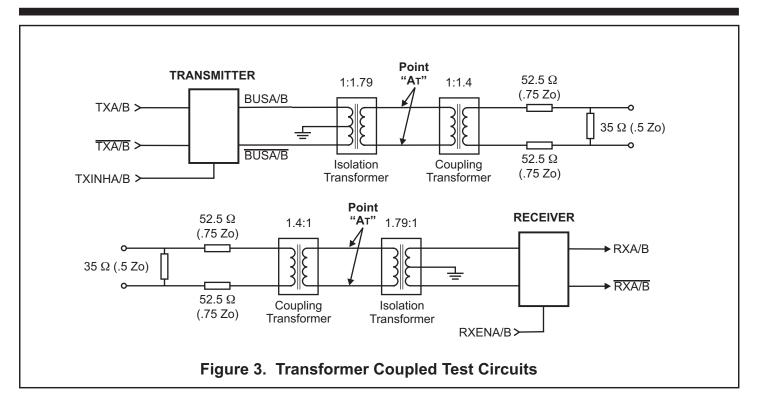
VDD = 3.3 V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Operating Voltage	VDD		3.15	3.30	3.45	V
Total Supply Current	ICC1	Not Transmitting		4	10	mA
	ICC2	Transmit one channel @ 50% duty cycle		225	250	mA
	ICC3	Transmit one channel @ 100% duty cycle		425	500	mA
Power Dissipation	PD1	Not Transmitting			0.06	W
	PD2	Transmit one channel @ 100% duty cycle		0.3	0.5	W
Min. Input Voltage (HI)	Vін	Digital inputs	70%			VDD
Max. Input Voltage (LO)	VIL	Digital inputs			30%	VDD
Min. Input Current (HI)	Іін	Digital inputs			20	μA
Max. Input Current (LO)	lıL	Digital inputs	-20			μA
Min. Output Voltage (HI)	Voн	louт = -1.0mA, Digital outputs	90%			VDD
Max. Output Voltage (LO)	Vін	Iουτ = 1.0mA, Digital outputs			10%	VDD
RECEIVER (Measured at Point "Ap" in I	igure 2 unles	s otherwise specified)				
Input resistance	Rın	Differential	20			Kohm
Input capacitance	Cin	Differential			5	pF
Common mode rejection ratio	CMRR		40			dB
Input Level	VIN	Differential			9	Vp-p
Input common mode voltage	VICM		-5.0		5.0	V-pk
Threshold Voltage - Direct-coupled Detect	VTHD	1 Mhz Sine Wave	1.15		20.0	Vp-p
No Detect	VTHND	(Measured at Point "Ap" in Figure 2)			0.28	Vp-p
Theshold Voltage - Transformer-coupled Detect	VTHD	1 MHz Sine Wave	0.86		14.0	Vp-p
No Detect	VTHND	(Measured at Point "Aτ" in Figure 3)			0.20	Vp-p

DC ELECTRICAL CHARACTERISTICS (cont.)

VDD = 3.3 V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).


PARAMETER		SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
TRANSMITTER	(Measured at Point "AD" in Fi	gure 2 unless	otherwise specified)				
Output Voltage	Direct coupled	Vouт	35 ohm load (Measured at Point "Ap" in Figure 2)	.6.0		9.0	Vp-p
	Transformer coupled	Vouт	70 ohm load (Measured at Point "Ατ" in Figure 3)	.18.0		27.0	Vp-p
Output Noise		Von	Differential, inhibited			10.0	mVp-p
Output Dynamic Offset Voltage Direct coupled		Vdyn	35 ohm load (Measured at Point "Aɒ" in Figure 2)	-90		90	mV
Transformer coupled		Vdyn	70 ohm load (Measured at Point "Ατ" in Figure 3)	-250		250	mV
Output resistance)	Rout	Differential, not transmitting	10			Kohm
Output Capacitan	nce	Соит	1 MHz sine wave			15	pF


AC ELECTRICAL CHARACTERISTICS

VDD = 3.3 V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
RECEIVER (Measured	at Point "Ат"	in Figure 3)				
Receiver Delay	tDR	From input zero crossing to RXA/B or RXA/B			500	ns
					Note 3	
Receiver gap time	tRG	Spacing between RXA/B and RXA/B pulses	60		430	ns
			Note 1		Note 2	
Receiver Enable Delay	tREN	From RXENA/B rising or falling edge to			40	ns
	UNLIN	RXA/B or RXA/B			40	113
TRANSMITTER (Measured	l at Point "A _D "	in Figure 2)				
Driver Delay	tDT	TXA/B, TXA/B to BUSA/B, BUSA/B			150	ns
Rise time	ise time tr 35 ohm load		100		300	ns
Fall Time	Fall Time tf 35 ohm load		100		300	ns
Inhibit Delay	tDI-H	Inhibited output			100	ns
	tDI-L	Active output			150	ns

- Note 1. Measured using a 1 MHz sinusoid, 20 V peak to peak, line to line at point "AT" (Guaranteed but not tested).
- Note 2. Measured using a 1 MHz sinusoid, 860 mV peak to peak, line to line at point "AT" (100% tested).
- Note 3. Measured using a 1 MHz sinusoid, 860 mV peak to peak, line to line at point "AT". Measured from input zero crossing point.

HEAT SINK - ESOIC & CHIP-SCALE PACKAGE

Both the HI-1573PSI/T/M and HI-1574PSI/T/M use a 20-pin thermally enhanced SOIC package. The HI-1573PCI/T and HI-1574PCI/T use a plastic chip-scale package. These packages include a metal heat sink located on the bottom surface of the device. This heat sink should be soldered down to the printed circuit board for optimum thermal dissipation. The heat sink is electrically isolated and may be soldered to any convenient power or ground plane.

APPLICATIONS NOTE

Holt Applications Note AN-500 provides circuit design notes regarding the use of Holt's family of MIL-STD-1553 transceivers. Layout considerations, as well as recommended interface and protection components are included.

THERMAL CHARACTERISTICS

PART NUMBER	PACKAGE STYLE	CONDITION	Ø	JUNCTION TEMPERATURE			
PART NUMBER	PACKAGE STILE	CONDITION	Ø _{JA}	T _A =25°C	T _A =85°C	T _A =125°C	
HI-1573PSI / T / M	20-pin Thermally enhanced plastic	Heat sink unsoldered	54°C/W	52°C	112°C	152°C	
HI-1574PSI / T / M	SOIC (ESOIC)	Heat sink soldered	47°C/W	49°C	109°C	149°C	
HI-1573CDI / T / M	20-pin Ceramic	Socketed	62°C/W	56°C	116°C	156°C	
HI-1574CDI / T / M	side-brazed DIP	Socketed	02 C/VV	50 C	110 0	130 C	
HI-1573PCI / T	44-pin Plastic chip-	Heat sink	49°C/W	50°C	110°C	150°C	
HI-1574PCI / T	scale package	unsoldered	49 0/00	50 C	110 C	150 C	

Data taken at VDD=3.3V, continuous transmission at 1Mbit/s, single transmitter enabled.

ORDERING INFORMATION

HI - <u>157x xx x x</u> (Plastic)

PART NUMBER	LEAD FINISH
Blank	Tin / Lead (Sn / Pb) Solder
F	100% Matte Tin (Pb-free, RoHS compliant)

PART NUMBER	TEMPERATURE RANGE	FLOW	BURN IN
I	-40°C TO +85°C	I	NO
Т	-55°C TO +125°C	Т	NO
М	-55°C TO +125°C	М	YES

PART NUMBER	PACKAGE DESCRIPTION
PC	44 PIN PLASTIC CHIP-SCALE (LPCC)
PS	20 PIN PLASTIC ESOIC (Wide Body, Thermally Enhanced SOIC w/Heat Sink)

PART			RXENB = 0		
NUMBER	RXA	RXA	RXB	RXB	
1573	0	0	0	0	
1574	1	1	1	1	

HI - 157xCD x (Ceramic)

PART NUMBER	TEMPERATURE RANGE	FLOW	BURN IN	LEAD FINISH
I	-40°C TO +85°C	I	NO	Gold (Pb-free, RoHS compliant)
Т	-55°C TO +125°C	Т	NO	Gold (Pb-free, RoHS compliant)
M	-55°C TO +125°C	М	YES	Tin / Lead (Sn / Pb) Solder

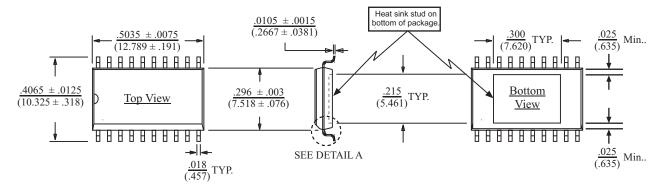
PART	RXENA = 0		RXENB = 0		PACKAGE	
NUMBER	RXA	RXA	RXB	RXB	DESCRIPTION	
1573CD	0	0	0	0	20 PIN CERAMIC SIDE BRAZED DIP	
1574CD	1	1	1	1	20 PIN CERAMIC SIDE BRAZED DIP	

RECOMMENDED TRANSFORMERS

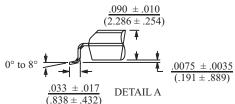
The HI-1573 and HI-1574 transceivers have been characterized for compliance with the electrical requirements of MIL-STD-1553 when used with the following

transformers. Holt recommends the Premier Magnetics parts as offering the best combination of electrical performance, low cost and small footprint.

MANUFACTURER	PART NUMBER	APPLICATION	TURNS RATIO(S)	DIMENSIONS
Technotrol	TL1553-45	Isolation	Dual tapped 1:1.79, 1:2.5	.630 x 630 x .155 inches
Premier Magnetics	PM-DB2725EX	Isolation	Dual tapped 1:1.79, 1:2.5	.500 x .500 x .375 inches
Technotrol	TQ1553-2	Stub coupling	1:1.4	.625 x .625 x .250 inches
Premier Magnetics	PM-DB2702	Stub coupling	1:1.4	.625 x .500 x .250 inches

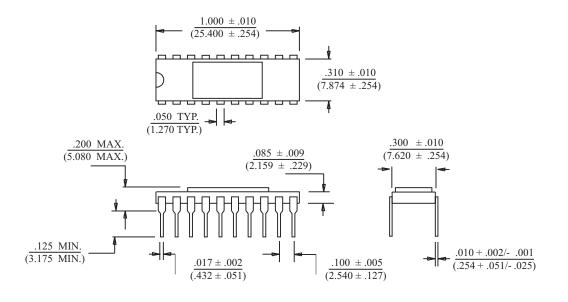

PACKAGE DIMENSIONS

inches (millimeters)

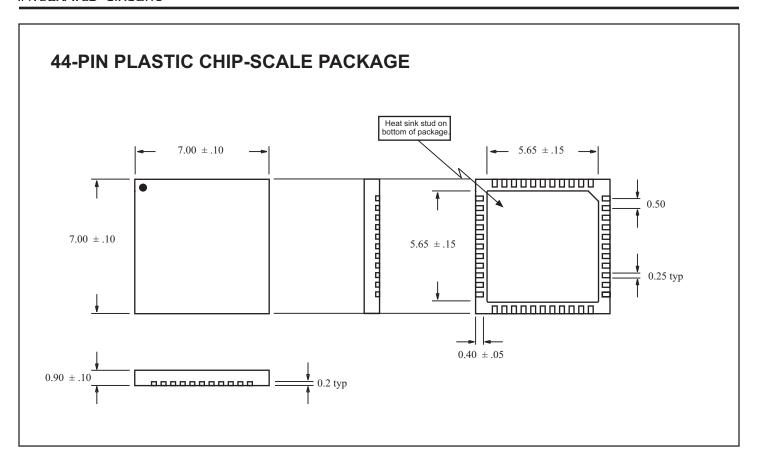

20-PIN PLASTIC SMALL OUTLINE (ESOIC) - WB

(Wide Body, Thermally Enhanced)

Package Type: 24HEW



20-PIN CERAMIC SIDE-BRAZED DIP


PACKAGE TYPE: 20C

PACKAGE DIMENSIONS

millimeters

